用户名: 密码: 验证码:
新型抗菌增敏剂的分子设计、合成及生物学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     随着革兰阴性菌对抗菌药物多重耐药性的不断增加,多重耐药的革兰阴性菌感染成为临床病人死亡的主要原因。临床最常见多重耐药革兰阴性菌包括大肠埃希菌、鲍曼不动杆菌、肺炎克雷伯菌、铜绿假单胞菌等,其中大肠埃希菌在ICU病房的分离率高达34%,多重耐药率高达44%。因此,寻找新的有效抗菌药物或者具有提高现有抗菌药物作用的药物(抗菌增敏剂)、研究其作用机制具有重要意义。
     AcrAB-TolC属于外排泵RND家族,是导致大肠埃希菌多药耐药的重要因素。在前期研究发现青蒿素衍生物青蒿琥酯具有提高大肠埃希菌对β-内酰胺类抗生素敏感性的作用,其抗菌增敏作用的靶点为大肠埃希菌多药外排泵转运子AcrB,并可抑制AcrBmRNA表达,但其增敏作用强度仍需进一步提高才可能具有临床应用开发价值。因此,本研究拟以AcrB为靶点,运用计算机辅助药物设计(ComputerAided Drug Design,CADD)方法,对青蒿素及其衍生物进行结构设计和改造、并研究其生物学活性,以期得到具有更强抗菌增敏效果的青蒿素衍生物,为新的抗菌增敏剂的研发奠定基础。
     方法:
     1.采用计算机辅助分子对接的方法模拟青蒿素及其衍生物分子与大肠埃希菌多药外排泵转运子AcrB的结合,以此为依据确立青蒿素衍生物分子结构设计原则;
     2.采用化学合成方法合成青蒿素衍生物21个;
     3.构建基因重组大肠埃希菌AG100A-AcrB,建立以AcrB为靶点的体外活性定向筛选体系;
     4.采用棋盘二倍微孔稀释法对新型青蒿素衍生物增强β-内酰胺类抗生素氨苄西林、头孢呋辛对重组大肠埃希菌AG100A-AcrB的体外抗菌作用进行初筛;
     5.采用动态生长曲线法检测具有较强抗菌增敏作用的新型青蒿素衍生物增强氨苄西林、头孢呋辛对重组大肠埃希菌AG100A-AcrB生长的抑制作用进行复筛;
     6.采用棋盘二倍微孔稀释法和动态生长曲线法观察新型青蒿素衍生物DHA-7联合氨苄西林对大肠埃希菌ATCC35218的抗菌增敏作用;
     7.采用半定量RT-PCR检测青蒿素衍生物DHA-7联合氨苄西林对大肠埃希菌ATCC35218多药外排泵转运子AcrB及其调控子表达的影响;
     8.采用Realtime PCR检测检测青蒿素衍生物DHA-7联合氨苄西林对大肠埃希菌ATCC35218多药外排泵转运子AcrB及其调控子表达的影响。
     结果:
     1.青蒿素及其衍生物与大肠埃希菌多药外排泵转运子AcrB的分子对接结果表明,青蒿素及其衍生物与AcrB分子主要通过青蒿素母核结合。对比观察三个分子的对接结果,可以发现青蒿琥酯和双氢青蒿素的位置几乎相同。青蒿琥酯的支链部分在活性中心中很好的伸展,使得青蒿琥酯几乎不可能出现类似青蒿素的结合方式。所以,可以假设青蒿琥酯的琥酯支链部分对于其与AcrB活性中心的结合有重要作用。它可以阻止药物分子结合到活性中心,并且可以阻隔活性中心附近的药物通道,从而切断药物的运输。此外,Gln176和Ser46可以通过氢键连接来固定这三个分子的骨架结构。
     2.依据分子对接结果,进行结构设计,以青蒿素母核结构为基础进行结构改造,合成了21个青蒿素衍生物,其中17个为新化合物。
     3.经体外抗菌增敏活性筛选,得到了具有较强抗菌增敏活性的新型青蒿素衍生物DHA-7;
     4.半定量RT-PCR及Realtime-PCR结果均表明,新型青蒿素衍生物DHA-7单独作用,对大肠埃希菌多药外排泵转运子AcrB及其上游调控子的表达并没有明显影响。而相对于单纯的氨苄西林(8μg/mL)处理,256μg/mL DHA-7联合8μg/mL氨苄西林可明显减少AcrB及其上游正向调控子SoxS、MarA等的表达水平,同时,青蒿素衍生物联合氨苄西林对于负向调控子AcrR、MppA的表达没有明显影响。
     结论:
     经以大肠埃希菌多药外排泵转运子AcrB为靶点进行计算机辅助分子对接,设计合成了21个青蒿素衍生物,其中17个为新化合物。经体外筛选得到新型青蒿素衍生物DHA-7。新型青蒿素衍生物DHA-7具有增强β-内酰胺类抗生素氨苄西林、头孢呋辛对大肠埃希菌的抗菌作用。初步机制研究表明,DHA-7通过显著下调大肠埃希菌多药外排泵转运子AcrB及其上游正向调控子如MarA和SoxS等的表达,发挥对β-内酰胺类抗生素氨苄西林的抗菌增敏作用。
Objective:
     The infection caused by multi-drug resistance gram-negative bacteria is one of themain death cause of patients. The common multi-drug resistance G-bacteria strains includeEscherichia coli (E. coli), Acinetobacter baumannii, Klebsiella pneumoniae andPseudomonas aeruginosa. A serious phenomenon is34%of clinical isolates are E. coli inintensive care units, and44%of those are multi-drug resistance. In view of this, it seemsmore important to discover new efficient anti-E. coli drugs or antibacterial sensitizer.
     AcrAB-TolC, a resistance-nodulation-cell-division (RND) superfamily derived effluxpump system, plays a very important role for multi-drug resistance in E. coli. Previously,we demonstrated that artesunate (AS), an artemisinin (ART) derivant, significantlyincreased the antibacterial effect of β-lactam antibiotics against E. coli via decreasing AcrBmRNA expression. The aim of the present study plan to obtain new antibacterial sensitizerwith better bioactivities targeting AcrB, using ART and its derivatives AS anddihydroartemisinin (DHA) as direct chemicals to design and synthesize new derivants. Andthe bioactivity of new ART derivants will be also studied.
     Methods:
     1. The molecular interactions between AcrB, ART or its derivants were computermodelled by molecular docking method. The structures of new molecules were designedbased on the interaction details.
     2. Twenty-one ART derivants were synthesized by side chain modifications.
     3. Construction of recombinant E. coli AG100A-AcrB which used as in vitrobioactivity screening system targeting AcrB.
     4. Two-fold diluted method was used to measure the susceptibility of E. coliAG100A-AcrB to various β-lactam antibiotics ampicillin or cefuroxime in the absence orpresence of new ART derivants.
     5. Dynamic growth assays of effects of ampicillin or cefuroxime alone or combinedwith new ART derivants on E. coli AG100A-AcrB.
     6. Dynamic growth assays of effects of ampicillin or cefuroxime alone or combinedwith DHA-7on E. coli ATCC35218.
     7. Semi-quantitative RT-PCR analysis of the mRNA levels of AcrB and upstreamregulators within ATCC35218after the treatment of DHA-7combined with ampicillin.
     8.Realtime PCR analysis of the mRNA levels of AcrB and upstream regulators withinATCC35218after the treatment of the treatment of DHA-7combined with ampicillin.
     Results:
     1. The molecular docking results suggested the three candidate ligands could dock intoAcrB very well by immobilizing the parent sesquiterpene lactone nuclear to Gln176andSer46. In the most favored docking mode, although three ligands had the same parentsesquiterpene lactone structure, only DHA and AS had the same docking poses, while ARTwas different from the two derivants. The succinic acid ester tail of AS could extended inthe drug transport tunnel of the AcrB very well. It was pretended to prevent the drug bind tothe active center and then block the drug efflux tunnel.
     2. The sesquiterpene lactone nuclear was used as the pharmacophore based on themolecular docking results, and the side chain was modified to obtain twenty-one ARTderivants, seventeen of which were new structures.
     3. DHA-7was considered to be the best antibacterial sensitizer according to the invitro bioavtivity evaluations.
     4. Semi-quantitative RT-PCR and Realtime PCR results demonstrated that althoughDHA-7itselves could not change the mRNA expressions of AcrB and its upstreamregulators of ATCC35218, while DHA-7combined with ampicillin could significantlydecrease the mRNA expressions of AcrB and its upstream positive regulators, MarA, Rob,FIS, etc. Meanwhile, the results also suggested that DHA-7combined with ampicillin didnot decrease AcrB expression by change the negative regulators, AcrR, MppA, etc.
     Conclusions:
     New ART derivants targeting multi-drug efflux pump transportor AcrB of E. coli wasdesigned using molecular docking method based on computer modeling. Twenty-one newART derivants were synthesized, and seventeen of which were new structures. DHA-7was considered to be the best antibacterial sensitizer according to the in vitro evaluations.DHA-7could increase the sensibility of E. coli to ampicillin or cefuroxime throughsignificantly decreased mRNA expression of multi-drug efflux pump transporter AcrBcombined with antibiotics. The results also suggested the inhibition of AcrB might beassociated with the decreased mRNA expressions of AcrB positive regulators, MarA, Roband FIS, etc.
引文
1Zahar J.R., Timsit J.F., Garrouste-Orgeas M., Francais A., et al. Outcomes in severe sepsis and patients with septicshock: pathogen species and infection sites are not associated with mortality [J]. Critical care medicine2011,39(8):1886-1895.
    2Linares L., Garcia-Goez J.F., Cervera C., Almela M., et al. Early bacteremia after solid organ transplantation [J].Transplantation proceedings2009,41(6):2262-2264.
    3Harbarth S., Rohner P., Auckenthaler R., Safran E., et al. Impact and pattern of gram-negative bacteraemia during6y ata large university hospital [J]. Scandinavian journal of infectious diseases1999,31(2):163-168.
    4Nemeth J., Ledergerber B., Preiswerk B., Nobile A., et al. Multidrug-resistant bacteria in travellers hospitalized abroad:prevalence, characteristics, and influence on clinical outcome [J]. The Journal of hospital infection2012,82(4):254-259.
    5Tu C., Fang X., Shen L., Liu X., et al. The epidemiological and Drug-resistant study of pathogenic bacteria inIntensive Care Unit [J]. Chongqing Medicine2011,40(8):1843-1844.
    6Chen S., Li Z., Lu J., Song X., et al. Distribution and Drug Resistance of Nosocomial Infection Bacteria in IntensiveCare Unit [J]. Journal of Microbiology2011,32(1):111-105.
    7Alekshun M.N., Levy S.B. Molecular mechanisms of antibacterial multidrug resistance [J]. Cell2007,128(6):1037-1050.
    8Fischbach M.A., Walsh C.T. Antibiotics for emerging pathogens [J]. Science2009,325(5944):1089-1093.
    1Martins M., Dastidar S.G., Fanning S., Kristiansen J.E., et al. Potential role of non-antibiotics (helper compounds) inthe treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities [J].
    2International journal of antimicrobial agents2008,31(3):198-208.Piddock L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J]. Clinicalmicrobiology reviews2006,19(2):382-402.
    3Li X.Z., Nikaido H. Efflux-mediated drug resistance in bacteria: an update [J]. Drugs2009,69(12):1555-1623.
    4,6Nishino K., Nikaido E., Yamaguchi A. Regulation and physiological function of multidrug efflux pumps in Escherichiacoli and Salmonella [J]. Biochim Biophys Acta2009,1794(5):834-843.
    5,9Kiralj R., Ferreira M.M. Molecular graphics approach to bacterial AcrB protein-beta-lactam antibiotic molecularrecognition in drug efflux mechanism [J]. Journal of molecular graphics&modelling2006,25(1):126-145.
    7Nikaido H., Takatsuka Y. Mechanisms of RND multidrug efflux pumps [J]. Biochim Biophys Acta2009,1794(5):769-781.
    8Nishino K., Nikaido E., Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metalresistance of Salmonella enterica serovar Typhimurium [J]. J Bacteriol2007,189(24):9066-9075.
    10Blair J.M., Piddock L.J. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update[J]. Curr Opin Microbiol2009,12(5):512-519.
    11Wiriyathanawudhiwong N., Ohtsu I., Li Z.D., Mori H., et al. The outer membrane TolC is involved in cysteinetolerance and overproduction in Escherichia coli [J]. Appl Microbiol Biotechnol2009,81(5):903-913.
    1Murakami S., Nakashima R., Yamashita E., Matsumoto T., et al. Crystal structures of a multidrug transporter reveal afunctionally rotating mechanism [J]. Nature2006,443(7108):173-179.
    2Das D., Xu Q.S., Lee J.Y., Ankoudinova I., et al. Crystal structure of the multidrug efflux transporter AcrB at3.1Aresolution reveals the N-terminal region with conserved amino acids [J]. J Struct Biol2007,158(3):494-502.
    34Pos K.M. Drug transport mechanism of the AcrB efflux pump [J]. Biochim Biophys Acta2009,1794(5):782-793.
    4Yu L., Lu W., Wei Y. AcrB trimer stability and efflux activity, insight from mutagenesis studies [J]. PLoS One2011,6(12):e28390.
    1Randall L.P., Woodward M.J. The multiple antibiotic resistance (mar) locus and its significance [J]. Research inveterinary science2002,72(2):87-93.
    2,5Hartog E., Ben-Shalom L., Shachar D., Matthews K.R., et al. Regulation of marA, soxS, rob, acrAB and micF inSalmonella enterica serovar Typhimurium [J]. Microbiology and immunology2008,52(12):565-574.
    3Ruiz C., Levy S.B. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli [J].Antimicrob Agents Chemother2010,54(5):2125-2134.
    4Nishino K., Nikaido E., Yamaguchi A. Regulation and physiological function of multidrug efflux pumps in Escherichiacoli and Salmonella [J]. Biochim Biophys Acta2009,1794(5):834-843.
    1,7Stavri M., Piddock L.J., Gibbons S. Bacterial efflux pump inhibitors from natural sources [J]. J Antimicrob Chemother2007,59(6):1247-1260.
    2Garvey M.I., Rahman M.M., Gibbons S., Piddock L.J. Medicinal plant extracts with efflux inhibitory activity againstGram-negative bacteria [J]. International journal of antimicrobial agents2011,37(2):145-151.
    3Lomovskaya O., Warren M.S., Lee A., Galazzo J., et al. Identification and characterization of inhibitors of multidrugresistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy [J]. Antimicrob AgentsChemother2001,45(1):105-116.
    4Bohnert J.A., Kern W.V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia colioverexpressing RND efflux pumps [J]. Antimicrob Agents Chemother2005,49(2):849-852.
    5Moellering R.C., Jr. Discovering new antimicrobial agents [J]. International journal of antimicrobial agents2011,37(1):2-9.
    6Seeger M.A., Diederichs K., Eicher T., Brandstatter L., et al. The AcrB efflux pump: conformational cycling andperistalsis lead to multidrug resistance [J]. Curr Drug Targets2008,9(9):729-749.
    8Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    1Murakami S., Nakashima R., Yamashita E., Yamaguchi A. Crystal structure of bacterial multidrug efflux transporterAcrB [J]. Nature2002,419(6907):587-593.
    1Martins M., Dastidar S.G., Fanning S., Kristiansen J.E., et al. Potential role of non-antibiotics (helper compounds) inthe treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities [J].
    2I,n4ternational journal of antimicrobial agents2008,31(3):198-208.Piddock L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J]. Clinical
    3microbiology reviews2006,19(2):382-402.Piddock L.J. Multidrug-resistance efflux pumps-not just for resistance [J]. Nat Rev Microbiol2006,4(8):629-636.
    5Sato T., Yokota S., Okubo T., Ishihara K., et al. Contribution of the AcrAB-TolC efflux pump to high-level
    6fluoroquinolone resistance in Escherichia coli isolated from dogs and humans [J]. J Vet Med Sci2013,75(4):407-414.de Cristobal R.E., Vincent P.A., Salomon R.A. Multidrug resistance pump AcrAB-TolC is required for high-level,
    7Tet(A)-mediated tetracycline resistance in Escherichia coli [J]. J Antimicrob Chemother2006,58(1):31-36.Murakami S., Nakashima R., Yamashita E., Matsumoto T., et al. Crystal structures of a multidrug transporter reveal a
    8functionally rotating mechanism [J]. Nature2006,443(7108):173-179.Stojanovic V., Milosevic B.[Resistence of Escherichia coli, the most frequent cause of urinary tract infection in
    9children, to antibiotics][J]. Med Pregl2010,63(1-2):109-112.Petrovici C.G., Dorobat C., Matei M., Teodor A., et al.[Aspects of the antimicrobial resistence profile in infections
    with Escherichia coli and Klebsiella pneumoniae in diabetic patients][J]. Rev Med Chir Soc Med Nat Iasi2011,115(3):769-775.
    1Piddock L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J]. Clinical2microbiology reviews2006,19(2):382-402.
    Yu E.W., Aires J.R., Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity ofexceptional flexibility generates its extremely wide substrate specificity [J]. J Bacteriol2003,185(19):5657-5664.
    1Blair J.M., Piddock L.J. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update[J]. Curr Opin Microbiol2009,12(5):512-519.
    2Kiralj R., Ferreira M.M. Molecular graphics approach to bacterial AcrB protein-beta-lactam antibiotic molecularrecognition in drug efflux mechanism [J]. Journal of molecular graphics&modelling2006,25(1):126-145.
    3Pos K.M. Drug transport mechanism of the AcrB efflux pump [J]. Biochim Biophys Acta2009,1794(5):782-793.
    1Mager T., Rimon A., Padan E., Fendler K. Transport mechanism and pH regulation of the Na+/H+antiporter NhaAfrom Escherichia coli: an electrophysiological study [J]. The Journal of biological chemistry2011,286(26):23570-23581.
    2Stavri M., Piddock L.J., Gibbons S. Bacterial efflux pump inhibitors from natural sources [J]. J Antimicrob Chemother2007,59(6):1247-1260.
    3Garvey M.I., Rahman M.M., Gibbons S., Piddock L.J. Medicinal plant extracts with efflux inhibitory activity againstGram-negative bacteria [J]. International journal of antimicrobial agents2011,37(2):145-151.
    4Lomovskaya O., Warren M.S., Lee A., Galazzo J., et al. Identification and characterization of inhibitors of multidrugresistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy [J]. Antimicrob AgentsChemother2001,45(1):105-116.
    5Bohnert J.A., Kern W.V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia colioverexpressing RND efflux pumps [J]. Antimicrob Agents Chemother2005,49(2):849-852.
    6Moellering R.C., Jr. Discovering new antimicrobial agents [J]. International journal of antimicrobial agents72011,37(1):2-9
    Seeger M.A., Diederichs K., Eicher T., Brandstatter L., et al. The AcrB efflux pump: conformational cycling andperistalsis lead to multidrug resistance [J]. Curr Drug Targets2008,9(9):729-749.
    1Stavri M., Piddock L.J., Gibbons S. Bacterial efflux pump inhibitors from natural sources [J]. J Antimicrob Chemother22007,59(6):1247-1260.Winiwarter S., Hilgendorf C. Modeling of drug-transporter interactions using structural information [J]. Currentopinion in drug discovery&development2008,11(1):95-103.
    3Rhee S.Y., Taylor J., Fessel W.J., Kaufman D., et al. HIV-1protease mutations and protease inhibitor cross-resistance[J]. Antimicrob Agents Chemother2010,54(10):4253-4261.
    4Gill J., Feinberg J. Saquinavir soft gelatin capsule: a comparative safety review [J]. Drug safety: an internationaljournal of medical toxicology and drug experience2001,24(3):223-232.
    5Samson M., Pizzorno A., Abed Y., Boivin G. Influenza virus resistance to neuraminidase inhibitors [J]. Antiviral
    6research2013,98(2):174-185.Chairat K., Tarning J., White N.J., Lindegardh N. Pharmacokinetic properties of anti-influenza neuraminidaseinhibitors [J]. Journal of clinical pharmacology2013,53(2):119-139.
    7Robles N.R., Cerezo I., Hernandez-Gallego R. Renin-Angiotensin System Blocking Drugs [J]. Journal ofcardiovascular pharmacology and therapeutics2013.
    8Quintas-Cardama A., Cortes J. Kinase inhibitors in chronic myelogenous leukemia [J]. Clinical advances inhematology&oncology: H&O2006,4(5):365-374.
    9Jhawer M., Rosen L., Dancey J., Hochster H., et al. Phase II trial of nolatrexed dihydrochloride [Thymitaq, AG337] inpatients with advanced hepatocellular carcinoma [J]. Investigational new drugs2007,25(1):85-94.
    Ford B.M., Eid A.A., Gooz M., Barnes J.L., et al. ADAM17mediates Nox4expression and NADPH oxidase activityin the kidney cortex of OVE26mice [J]. American journal of physiology Renal physiology2013,305(3):F323-332.
    1Botelho M.G. Fractional inhibitory concentration index of combinations of antibacterial agents against cariogenicorganisms [J]. J Dent2000,28(8):565-570.
    2Mackay M.L., Milne K., Gould I.M. Comparison of methods for assessing synergic antibiotic interactions [J].International journal of antimicrobial agents2000,15(2):125-129.
    Odds F.C. Synergy, antagonism, and what the chequerboard puts between them [J]. J Antimicrob Chemother2003,52(1):1.
    1Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    1Botelho M.G. Fractional inhibitory concentration index of combinations of antibacterial agents against cariogenicorganisms [J]. J Dent2000,28(8):565-570.
    2Mackay M.L., Milne K., Gould I.M. Comparison of methods for assessing synergic antibiotic interactions [J].International journal of antimicrobial agents2000,15(2):125-129.
    Odds F.C. Synergy, antagonism, and what the chequerboard puts between them [J]. J Antimicrob Chemother2003,52(1):1.
    1Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system2AcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    Wu C., Liu J., Pan X., Xian W., et al. Design, synthesis and evaluation of the antibacterial enhancement activities ofamino dihydroartemisinin derivatives [J]. Molecules2013,18(6):6866-6882.
    1Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    1Pan X., Yue J., Ding G., Li B., et al. Leucine-rich repeat11of Toll-like receptor9can tightly bind to CpG-containingoligodeoxynucleotides, and the positively charged residues are critical for the high affinity [J]. The Journal of biologicalchemistry2012,287(36):30596-30609.
    2Liu X., Zheng X., Wang N., Cao H., et al. Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is a potentialcandidate for sepsis treatment [J]. British journal of pharmacology2011,162(6):1274-1290.
    3Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    1CDC publishes report on antibiotic resistance threats in the United States for the first time [J]. Euro Surveill2013,18(38).
    2CDC publishes report on antibiotic resistance threats in the United States for the first time [J]. Euro Surveill2013,18(38).
    3Chen S., Li Z., Lu J., Song X., et al. Distribution and Drug Resistance of Nosocomial Infection Bacteria in IntensiveCare Unit [J]. Journal of Microbiology2011,32(1):111-105.
    4Zahar J.R., Timsit J.F., Garrouste-Orgeas M., Francais A., et al. Outcomes in severe sepsis and patients with septicshock: pathogen species and infection sites are not associated with mortality [J]. Critical care medicine2011,39(8):1886-1895.
    Linares L., Garcia-Goez J.F., Cervera C., Almela M., et al. Early bacteremia after solid organ transplantation [J].Transplantation proceedings2009,41(6):2262-2264.
    1Harbarth S., Rohner P., Auckenthaler R., Safran E., et al. Impact and pattern of gram-negative bacteraemia during6y at
    2a large university hospital [J]. Scandinavian journal of infectious diseases1999,31(2):163-168.Nemeth J., Ledergerber B., Preiswerk B., Nobile A., et al. Multidrug-resistant bacteria in travellers hospitalized abroad:prevalence, characteristics, and influence on clinical outcome [J]. The Journal of hospital infection2012,82(4):254-259.
    3Piddock L.J. Multidrug-resistance efflux pumps-not just for resistance [J]. Nat Rev Microbiol2006,4(8):629-636.
    4Nikaido H., Takatsuka Y. Mechanisms of RND multidrug efflux pumps [J]. Biochim Biophys Acta2009,1794(5):769-781.
    5Piddock L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J]. Clinicalmicrobiology reviews2006,19(2):382-402.
    6Li X.Z., Nikaido H. Efflux-mediated drug resistance in bacteria: an update [J]. Drugs2009,69(12):1555-1623.
    7ynch A.S. Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view [J].Biochemical pharmacology2006,71(7):949-956.
    1Nikaido H., Takatsuka Y. Mechanisms of RND multidrug efflux pumps [J]. Biochim Biophys Acta2009,1794(5):769-781.
    2Piddock L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J]. Clinicalmicrobiology reviews2006,19(2):382-402.
    3Nishino K., Nikaido E., Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal
    4resistance of Salmonella enterica serovar Typhimurium [J]. J Bacteriol2007,189(24):9066-9075.Murakami S. Multidrug efflux transporter, AcrB--the pumping mechanism [J]. Curr Opin Struct Biol2008,18(4):459-465.
    5Eswaran J., Koronakis E., Higgins M.K., Hughes C., et al. Three's company: component structures bring a closer viewof tripartite drug efflux pumps [J]. Curr Opin Struct Biol2004,14(6):741-747.
    6Poole K. Efflux-mediated multiresistance in Gram-negative bacteria [J]. Clin Microbiol Infect2004,10(1):12-26.
    7Poole K. Efflux-mediated antimicrobial resistance [J]. J Antimicrob Chemother2005,56(1):20-51.
    8Higgins C.F. Multiple molecular mechanisms for multidrug resistance transporters [J]. Nature92007,446(7137):749-757.
    Nishino K., Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli [J]. JBacteriol2001,183(20):5803-5812.
    10Borges-Walmsley M.I., McKeegan K.S., Walmsley A.R. Structure and function of efflux pumps that confer resistanceto drugs [J]. Biochem J2003,376(Pt2):313-338.
    11Murakami S. Multidrug efflux transporter, AcrB--the pumping mechanism [J]. Curr Opin Struct Biol2008,18(4):459-465.
    12Grkovic S., Brown M.H., Skurray R.A. Regulation of bacterial drug export systems [J]. Microbiol Mol Biol Rev2002,66(4):671-701, table of contents.
    Nishino K., Yamada J., Hirakawa H., Hirata T., et al. Roles of TolC-dependent multidrug transporters of Escherichiacoli in resistance to beta-lactams [J]. Antimicrob Agents Chemother2003,47(9):3030-3033.
    1Fujihira E., Tamura N., Yamaguchi A. Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli[J]. J Biochem2002,131(1):145-151.
    2Seeger M.A., Diederichs K., Eicher T., Brandstatter L., et al. The AcrB efflux pump: conformational cycling andperistalsis lead to multidrug resistance [J]. Curr Drug Targets2008,9(9):729-749.
    3urakami S. Multidrug efflux transporter, AcrB--the pumping mechanism [J]. Curr Opin Struct Biol2008,18(4):459-465.
    4Murakami S., Nakashima R., Yamashita E., Matsumoto T., et al. Crystal structures of a multidrug transporter reveal afunctionally rotating mechanism [J]. Nature2006,443(7108):173-179.
    5Das D., Xu Q.S., Lee J.Y., Ankoudinova I., et al. Crystal structure of the multidrug efflux transporter AcrB at3.1Aresolution reveals the N-terminal region with conserved amino acids [J]. J Struct Biol2007,158(3):494-502.
    6Murakami S., Nakashima R., Yamashita E., Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter7AcrB [J]. Nature2002,419(6907):587-593.
    Fujihira E., Tamura N., Yamaguchi A. Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli[J]. J Biochem2002,131(1):145-151.
    8Koronakis V., Sharff A., Koronakis E., Luisi B., et al. Crystal structure of the bacterial membrane protein TolC centralto multidrug efflux and protein export [J]. Nature2000,405(6789):914-919.
    9Nakashima R., Sakurai K., Yamasaki S., Nishino K., et al. Structures of the multidrug exporter AcrB reveal a proximalmultisite drug-binding pocket [J]. Nature2011,480(7378):565-569.
    10Lu W., Chai Q., Zhong M., Yu L., et al. Assembling of AcrB Trimer in Cell Membrane [J]. J Mol Biol2012.
    11Manchester J.I., Buurman E.T., Bisacchi G.S., McLaughlin R.E. Molecular determinants of AcrB-mediated bacterialefflux implications for drug discovery [J]. J Med Chem2012,55(6):2532-2537.
    12Pos K.M. Drug transport mechanism of the AcrB efflux pump [J]. Biochim Biophys Acta2009,1794(5):782-793.
    1Muller R.H., Hoffmann D. Uptake kinetics of2,4-dichlorophenoxyacetate by Delftia acidovorans MC1and derivativestrains: complex characteristics in response to pH and growth substrate [J]. Bioscience, biotechnology, and biochemistry2006,70(7):1642-1654.
    2Markham P.N. Inhibition of the emergence of ciprofloxacin resistance in Streptococcus pneumoniae by the multidrugefflux inhibitor reserpine [J]. Antimicrob Agents Chemother1999,43(4):988-989.
    3Stavri M., Piddock L.J., Gibbons S. Bacterial efflux pump inhibitors from natural sources [J]. J Antimicrob Chemother2007,59(6):1247-1260.
    4Stermitz F.R., Tawara-Matsuda J., Lorenz P., Mueller P., et al.5'-Methoxyhydnocarpin-D and pheophorbide A:Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus [J]. Journal ofnatural products2000,63(8):1146-1149.
    5Garvey M.I., Rahman M.M., Gibbons S., Piddock L.J. Medicinal plant extracts with efflux inhibitory activity againstGram-negative bacteria [J]. International journal of antimicrobial agents2011,37(2):145-151.
    6Musumeci R., Speciale A., Costanzo R., Annino A., et al. Berberis aetnensis C. Presl. extracts: antimicrobial propertiesand interaction with ciprofloxacin [J]. International journal of antimicrobial agents2003,22(1):48-53.
    Mesaros N., Glupczynski Y., Avrain L., Caceres N.E., et al. A combined phenotypic and genotypic method for thedetection of Mex efflux pumps in Pseudomonas aeruginosa [J]. J Antimicrob Chemother2007,59(3):378-386.
    1Lomovskaya O., Warren M.S., Lee A., Galazzo J., et al. Identification and characterization of inhibitors of multidrugresistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy [J]. Antimicrob Agents
    2Chemother2001,45(1):105-116.Maira-Litran T., Allison D.G., Gilbert P. An evaluation of the potential of the multiple antibiotic resistance operon (mar)and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms [J]. J
    3Antimicrob Chemother2000,45(6):789-795.Bohnert J.A., Kern W.V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli
    4overexpressing RND efflux pumps [J]. Antimicrob Agents Chemother2005,49(2):849-852.Warner D.M., Levy S.B. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility ofEscherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon [J].
    5Microbiology2010,156(Pt2):570-578.Hartog E., Ben-Shalom L., Shachar D., Matthews K.R., et al. Regulation of marA, soxS, rob, acrAB and micF in
    6Salmonella enterica serovar Typhimurium [J]. Microbiology and immunology2008,52(12):565-574.Grkovic S., Brown M.H., Skurray R.A. Regulation of bacterial drug export systems [J]. Microbiol Mol Biol Rev2002,66(4):671-701, table of contents.
    Grkovic S., Brown M.H., Skurray R.A. Transcriptional regulation of multidrug efflux pumps in bacteria [J]. Semin CellDev Biol2001,12(3):225-237.
    8artog E., Ben-Shalom L., Shachar D., Matthews K.R., et al. Regulation of marA, soxS, rob, acrAB and micF inSalmonella enterica serovar Typhimurium [J]. Microbiology and immunology2008,52(12):565-574.
    9arner D.M., Levy S.B. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility ofEscherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon [J].Microbiology2010,156(Pt2):570-578.
    1Hartog E., Ben-Shalom L., Shachar D., Matthews K.R., et al. Regulation of marA, soxS, rob, acrAB and micF inSalmonella enterica serovar Typhimurium [J]. Microbiology and immunology2008,52(12):565-574.
    2Randall L.P., Woodward M.J. The multiple antibiotic resistance (mar) locus and its significance [J]. Research inveterinary science2002,72(2):87-93.
    3Warner D.M., Levy S.B. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility ofEscherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon [J].Microbiology2010,156(Pt2):570-578.
    4Fang J., Yu L., Wu M., Wei Y. Dissecting the function of a protruding loop in AcrB trimerization [J]. J Biomol StructDyn2012.
    5Li M., Gu R., Su C.C., Routh M.D., et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli[J]. J Mol Biol2007,374(3):591-603.
    6Watanabe R., Doukyu N. Contributions of mutations in acrR and marR genes to organic solvent tolerance inEscherichia coli [J]. AMB Express2012,2(1):58.
    7Swick M.C., Morgan-Linnell S.K., Carlson K.M., Zechiedrich L. Expression of multidrug efflux pump genesacrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrugresistance [J]. Antimicrob Agents Chemother2011,55(2):921-924.
    1Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    2Trampuz A., Jereb M., Muzlovic I., Prabhu R.M. Clinical review: Severe malaria [J]. Critical care2003,7(4):315-323.
    3Ansari M.T., Saify Z.S., Sultana N., Ahmad I., et al. Malaria and artemisinin derivatives: an updated review [J]. Minireviews in medicinal chemistry2013.
    4Aldieri E., Atragene D., Bergandi L., Riganti C., et al. Artemisinin inhibits inducible nitric oxide synthase and nuclearfactor NF-kB activation [J]. FEBS Lett2003,552(2-3):141-144.
    5Efferth T. Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells [J]. CurrDrug Targets2006,7(4):407-421.
    6金慧玲,张汝芝,高玉祥,唐素兰.青蒿琥酯抗真菌、抗细菌的实验研究[J].中国微生态学杂志2003,01):29-30.
    1Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    2Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    1Hoppe H.C., van Schalkwyk D.A., Wiehart U.I., Meredith S.A., et al. Antimalarial quinolines and artemisinin inhibitendocytosis in Plasmodium falciparum [J]. Antimicrob Agents Chemother2004,48(7):2370-2378.
    2,2Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of {beta}-lactam antibioticsagainst Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump systemAcrAB-TolC [J]. J Antimicrob Chemother2011,66(4):769-777.
    1Hasdemir U. The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria [J].Mikrobiyol Bul,2007,41(2):309-327.
    2Vila J, Martínez JL. Clinical impact of the over-expression of efflux pump in non-fermentative Gram-negative bacilli,development of efflux pump inhibitors[J]. Curr Drug Targets.2008;9:797-807.
    3Poole K. Efflux-mediated antimicrobial resistance[J]. J Antimicrob Chemother.2005;56:20-51.
    4Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria[J]. ClinMicrobiol Rev.2006;19:382-402
    5Nikaido H. Molecular basis of bacterial outer membrane permeability revisited[J]. Microbiol Mol Biol Rev.2003;67:593-656.
    Page JM. Role of bacterial porins in antibiotic susceptibility of Gram-negative bacteria. In: Benz R. ed. Bacterial andEukaryotic Porins[J]. Chichester: Wiley-VCH,2004;41-59.
    1Hasdemir U. The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria [J].Mikrobiyol Bul,2007,41(2):309-327.
    2Vila J, Martínez JL. Clinical impact of the over-expression of efflux pump in non-fermentative Gram-negative bacilli,development of efflux pump inhibitors[J]. Curr Drug Targets.2008;9:797-807.
    3oole K. Efflux-mediated antimicrobial resistance[J]. J Antimicrob Chemother.2005;56:20-51.Van-Bambeke F,Balzi E,Tulkens PM. Antibiotic effluxpumps [J]. Biochem P harm acol,2000,60(4):457-470.
    4aulsen IT,Brown MH,Skurray RA. Proton-dependent multidrug efflux systems [J]. Microbiol Rev,1996,60(4):75-608.
    5yush K, Herbert P S. Bacterial resistance to antibiotics: Active efflux and reduced uptake [J]. Advan Drug Deli Rev,2005,57:1486-1513.
    6asdemir U. The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria [J].Mikrobiyol Bul,2007,41(2):309-327.
    7a D, Cook D N, Hearst J E, et al. Efflux pumps and drug resistance in gram-negative bacteria [J]. Trends Microbiol,1994,2:489-491.
    1Nikaido, H. and Y. Takatsuka (2009)."Mechanisms of RND multidrug efflux pumps." Biochim Biophys Acta1794(5):2769-781.
    Poole K. Efflux-mediated resistance to fluoroquinolonesin Gram-negative bacteria [J]. Antimicrob Agents Chem ther,2000,44(9):2233-2241.
    1张小林,李家泰.大肠杆菌临床分离株多重耐药过程中的主动外排机制[J].中华医学杂志,2000,80(8):614-617.
    2Ramos JL,Mart′nez-Bueno M,Molina-Henares AJ,et al.The TetR family of transcriptional repressors [J]. MicrobiolMol Biol Rev,2005,69(2):326-356
    3Page JM. Role of bacterial porins in antibiotic susceptibility of Gram-negative bacteria. In: Benz R. ed. Bacterial andEukaryotic Porins[J]. Chichester: Wiley-VCH,2004;41-59.
    4Li M,Gu R,Su CC,et al. Crystal structure of the transcriptionalregulator AcrR from Escherichia coli [J]. JMolBiol,2007,373:591-603.
    5Li H,Park JT. The periplasm icmurein peptide-binding protein MppA is a negative regulator of multiple antibioticresistance in Escherichia coli [J]. J Bacterial,1999,181(16):4842-4847.
    Bina X, Perreten V, Levy SB. The periplasmic protein MppA requires an additional mutated locus to repress marAexpression in Escherichia coli [J]. J Bacteriol2003;185:1465-1469.
    1Grkovic S,Brow nM H,Skurray R A. Regulat ion ofbacterial drug export systems [J]. Microbiol Mol Biol Rev,2002,66(4):671-701.
    2,3Steve Grkovic,Ronald A. Skurray Regulation of bacterial drug export system microbiology and Microbiol Mol BiolRev,Dec.2002,p.671–701
    4Chou JH,Greenberg JT,Demple B. Post transcriptional repression of Escherichia coli OmpF protein in response to5redox stress: positive control of the micF antisense RNA by the soxRS locus [J]. J Bacteriol,1993,175(4):1026-1031.
    Rosenberg EY,Bertenthal D,Nilles ML,et al. Bilesalts and fatty acids induce the expression of Escherichiacoli AcrABmultidrug efflux pump through their interaction with Rob rgulatory protein [J]. Mol Microbiol,2003,48(6):1609-1619
    1Tanaka T,Horii T,Shibayama K,et al. RobA-induced multiple antibiotic resistance largely depends on the activation ofthe AcrAB efflux [J]. Microbiol Immunol,1997,41(9):697-702.
    2Grkovic S,Brown MH,Skurray RA. Regulation of bacterial drug export systems [J]. M icrobiol MolBiolR ev,2002,66(4):671-701.
    3Rahmati S,Yang S,Davidson AL,et al. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA[J]. M olMicrobiol,2002,43(3):677-685.
    4rkovic S,Brown MH,Skurray RA. Regulation of bacterial drug export systems [J]. M icrobiol MolBiolR ev,2002,66(4):671-701.
    1王芝敏.大肠埃希菌多药外排泵AcrAB-TolC系统的研究进展[J].福建医科大学学报,2005,39(8):13-15.
    2陈晓玲,范昕建,吕晓菊.肠杆菌科细菌多药外排系统AcrAB的研究进展[J].中华微生物学与免疫学,2003,23(11):916-918.
    3Yang S,Lopez CR,Zechiedrich EL. Quorum sensing and multidrug transporters in Escherichia coli [J]. Proc Natl AcadSci USA,2006,103(7):2386-2391.
    4a D,Cook DN,Lberti M,et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli [J].Mol Microbiol,1995,16(1):45-55.
    1. Zahar J.R., Timsit J.F., Garrouste-Orgeas M., Francais A., et al. Outcomes in severesepsis and patients with septic shock: pathogen species and infection sites are notassociated with mortality [J]. Critical care medicine2011,39(8):1886-1895.
    2. Linares L., Garcia-Goez J.F., Cervera C., Almela M., et al. Early bacteremia after solidorgan transplantation [J]. Transplantation proceedings2009,41(6):2262-2264.
    3. Harbarth S., Rohner P., Auckenthaler R., Safran E., et al. Impact and pattern ofgram-negative bacteraemia during6y at a large university hospital [J]. Scandinavianjournal of infectious diseases1999,31(2):163-168.
    4. Nemeth J., Ledergerber B., Preiswerk B., Nobile A., et al. Multidrug-resistant bacteriain travellers hospitalized abroad: prevalence, characteristics, and influence on clinicaloutcome [J]. The Journal of hospital infection2012,82(4):254-259.
    5. Chen S., Li Z., Lu J., Song X., et al. Distribution and Drug Resistance of NosocomialInfection Bacteria in Intensive Care Unit [J]. Journal of Microbiology2011,32(1):111-105.
    6. Tu C., Fang X., Shen L., Liu X., et al. The epidemiological and Drug-resistant study ofpathogenic bacteria in Intensive Care Unit [J]. Chongqing Medicine2011,40(8):1843-1844.
    7. Alekshun M.N., Levy S.B. Molecular mechanisms of antibacterial multidrug resistance[J]. Cell2007,128(6):1037-1050.
    8. Fischbach M.A., Walsh C.T. Antibiotics for emerging pathogens [J]. Science2009,325(5944):1089-1093.
    9. Martins M., Dastidar S.G., Fanning S., Kristiansen J.E., et al. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negativeinfections: mechanisms for their direct and indirect activities [J]. International journalof antimicrobial agents2008,31(3):198-208.
    10. Piddock L.J. Clinically relevant chromosomally encoded multidrug resistance effluxpumps in bacteria [J]. Clinical microbiology reviews2006,19(2):382-402.
    11. Li X.Z., Nikaido H. Efflux-mediated drug resistance in bacteria: an update [J]. Drugs2009,69(12):1555-1623.
    12. Nishino K., Nikaido E., Yamaguchi A. Regulation and physiological function ofmultidrug efflux pumps in Escherichia coli and Salmonella [J]. Biochim Biophys Acta2009,1794(5):834-843.
    13. Kiralj R., Ferreira M.M. Molecular graphics approach to bacterial AcrB protein-beta-lactam antibiotic molecular recognition in drug efflux mechanism [J]. Journal ofmolecular graphics&modelling2006,25(1):126-145.
    14. Nikaido H., Takatsuka Y. Mechanisms of RND multidrug efflux pumps [J]. BiochimBiophys Acta2009,1794(5):769-781.
    15. Nishino K., Nikaido E., Yamaguchi A. Regulation of multidrug efflux systems involvedin multidrug and metal resistance of Salmonella enterica serovar Typhimurium [J]. JBacteriol2007,189(24):9066-9075.
    16. Blair J.M., Piddock L.J. Structure, function and inhibition of RND efflux pumps inGram-negative bacteria: an update [J]. Curr Opin Microbiol2009,12(5):512-519.
    17. Wiriyathanawudhiwong N., Ohtsu I., Li Z.D., Mori H., et al. The outer membrane TolCis involved in cysteine tolerance and overproduction in Escherichia coli [J]. ApplMicrobiol Biotechnol2009,81(5):903-913.
    18. Murakami S., Nakashima R., Yamashita E., Matsumoto T., et al. Crystal structures of amultidrug transporter reveal a functionally rotating mechanism [J]. Nature2006,443(7108):173-179.
    19. Das D., Xu Q.S., Lee J.Y., Ankoudinova I., et al. Crystal structure of the multidrugefflux transporter AcrB at3.1A resolution reveals the N-terminal region with conservedamino acids [J]. J Struct Biol2007,158(3):494-502.
    20. Pos K.M. Drug transport mechanism of the AcrB efflux pump [J]. Biochim BiophysActa2009,1794(5):782-793.
    21. Yu L., Lu W., Wei Y. AcrB trimer stability and efflux activity, insight from mutagenesisstudies [J]. PLoS One2011,6(12):e28390.
    22. Randall L.P., Woodward M.J. The multiple antibiotic resistance (mar) locus and itssignificance [J]. Research in veterinary science2002,72(2):87-93.
    23. Hartog E., Ben-Shalom L., Shachar D., Matthews K.R., et al. Regulation of marA, soxS,rob, acrAB and micF in Salmonella enterica serovar Typhimurium [J]. Microbiologyand immunology2008,52(12):565-574.
    24. Ruiz C., Levy S.B. Many chromosomal genes modulate MarA-mediated multidrugresistance in Escherichia coli [J]. Antimicrob Agents Chemother2010,54(5):2125-2134.
    25. Stavri M., Piddock L.J., Gibbons S. Bacterial efflux pump inhibitors from naturalsources [J]. J Antimicrob Chemother2007,59(6):1247-1260.
    26. Garvey M.I., Rahman M.M., Gibbons S., Piddock L.J. Medicinal plant extracts withefflux inhibitory activity against Gram-negative bacteria [J]. International journal ofantimicrobial agents2011,37(2):145-151.
    27. Lomovskaya O., Warren M.S., Lee A., Galazzo J., et al. Identification andcharacterization of inhibitors of multidrug resistance efflux pumps in Pseudomonasaeruginosa: novel agents for combination therapy [J]. Antimicrob Agents Chemother2001,45(1):105-116.
    28. Bohnert J.A., Kern W.V. Selected arylpiperazines are capable of reversing multidrugresistance in Escherichia coli overexpressing RND efflux pumps [J]. Antimicrob AgentsChemother2005,49(2):849-852.
    29. Moellering R.C., Jr. Discovering new antimicrobial agents [J]. International journal ofantimicrobial agents2011,37(1):2-9.
    30. Seeger M.A., Diederichs K., Eicher T., Brandstatter L., et al. The AcrB efflux pump:conformational cycling and peristalsis lead to multidrug resistance [J]. Curr DrugTargets2008,9(9):729-749.
    31. Li B., Yao Q., Pan X.C., Wang N., et al. Artesunate enhances the antibacterial effect of{beta}-lactam antibiotics against Escherichia coli by increasing antibiotic accumulationvia inhibition of the multidrug efflux pump system AcrAB-TolC [J]. J AntimicrobChemother2011,66(4):769-777.
    32. Murakami S., Nakashima R., Yamashita E., Yamaguchi A. Crystal structure of bacterialmultidrug efflux transporter AcrB [J]. Nature2002,419(6907):587-593.
    33. Piddock L.J. Multidrug-resistance efflux pumps-not just for resistance [J]. Nat RevMicrobiol2006,4(8):629-636.
    34. Sato T., Yokota S., Okubo T., Ishihara K., et al. Contribution of the AcrAB-TolC effluxpump to high-level fluoroquinolone resistance in Escherichia coli isolated from dogsand humans [J]. J Vet Med Sci2013,75(4):407-414.
    35. de Cristobal R.E., Vincent P.A., Salomon R.A. Multidrug resistance pump AcrAB-TolCis required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli [J].J Antimicrob Chemother2006,58(1):31-36.
    36. Stojanovic V., Milosevic B.[Resistence of Escherichia coli, the most frequent cause ofurinary tract infection in children, to antibiotics][J]. Med Pregl2010,63(1-2):109-112.
    37. Petrovici C.G., Dorobat C., Matei M., Teodor A., et al.[Aspects of the antimicrobialresistence profile in infections with Escherichia coli and Klebsiella pneumoniae indiabetic patients][J]. Rev Med Chir Soc Med Nat Iasi2011,115(3):769-775.
    38. Yu E.W., Aires J.R., Nikaido H. AcrB multidrug efflux pump of Escherichia coli:composite substrate-binding cavity of exceptional flexibility generates its extremelywide substrate specificity [J]. J Bacteriol2003,185(19):5657-5664.
    39. Mager T., Rimon A., Padan E., Fendler K. Transport mechanism and pH regulation ofthe Na+/H+antiporter NhaA from Escherichia coli: an electrophysiological study [J].The Journal of biological chemistry2011,286(26):23570-23581.
    40. Winiwarter S., Hilgendorf C. Modeling of drug-transporter interactions using structuralinformation [J]. Current opinion in drug discovery&development2008,11(1):95-103.
    41. Rhee S.Y., Taylor J., Fessel W.J., Kaufman D., et al. HIV-1protease mutations andprotease inhibitor cross-resistance [J]. Antimicrob Agents Chemother2010,54(10):4253-4261.
    42. Gill J., Feinberg J. Saquinavir soft gelatin capsule: a comparative safety review [J].Drug safety: an international journal of medical toxicology and drug experience2001,24(3):223-232.
    43. Samson M., Pizzorno A., Abed Y., Boivin G. Influenza virus resistance to neuraminidaseinhibitors [J]. Antiviral research2013,98(2):174-185.
    44. Chairat K., Tarning J., White N.J., Lindegardh N. Pharmacokinetic properties of anti-influenza neuraminidase inhibitors [J]. Journal of clinical pharmacology2013,53(2):119-139.
    45. Robles N.R., Cerezo I., Hernandez-Gallego R. Renin-Angiotensin System BlockingDrugs [J]. Journal of cardiovascular pharmacology and therapeutics2013.
    46. Quintas-Cardama A., Cortes J. Kinase inhibitors in chronic myelogenous leukemia [J].Clinical advances in hematology&oncology: H&O2006,4(5):365-374.
    47. Jhawer M., Rosen L., Dancey J., Hochster H., et al. Phase II trial of nolatrexeddihydrochloride [Thymitaq, AG337] in patients with advanced hepatocellularcarcinoma [J]. Investigational new drugs2007,25(1):85-94.
    48. Ford B.M., Eid A.A., Gooz M., Barnes J.L., et al. ADAM17mediates Nox4expressionand NADPH oxidase activity in the kidney cortex of OVE26mice [J]. American journalof physiology Renal physiology2013,305(3):F323-332.
    49. Botelho M.G. Fractional inhibitory concentration index of combinations of antibacterialagents against cariogenic organisms [J]. J Dent2000,28(8):565-570.
    50. Mackay M.L., Milne K., Gould I.M. Comparison of methods for assessing synergicantibiotic interactions [J]. International journal of antimicrobial agents2000,15(2):125-129.
    51. Odds F.C. Synergy, antagonism, and what the chequerboard puts between them [J]. JAntimicrob Chemother2003,52(1):1.
    52. Wu C., Liu J., Pan X., Xian W., et al. Design, synthesis and evaluation of theantibacterial enhancement activities of amino dihydroartemisinin derivatives [J].Molecules2013,18(6):6866-6882.
    53. Pan X., Yue J., Ding G., Li B., et al. Leucine-rich repeat11of Toll-like receptor9cantightly bind to CpG-containing oligodeoxynucleotides, and the positively chargedresidues are critical for the high affinity [J]. The Journal of biological chemistry2012,287(36):30596-30609.
    54. Liu X., Zheng X., Wang N., Cao H., et al. Kukoamine B, a novel dual inhibitor of LPSand CpG DNA, is a potential candidate for sepsis treatment [J]. British journal ofpharmacology2011,162(6):1274-1290.
    55. CDC publishes report on antibiotic resistance threats in the United States for the firsttime [J]. Euro Surveill2013,18(38).
    56. Lynch A.S. Efflux systems in bacterial pathogens: an opportunity for therapeuticintervention? An industry view [J]. Biochemical pharmacology2006,71(7):949-956.
    57. Murakami S. Multidrug efflux transporter, AcrB--the pumping mechanism [J]. CurrOpin Struct Biol2008,18(4):459-465.
    58. Eswaran J., Koronakis E., Higgins M.K., Hughes C., et al. Three's company: componentstructures bring a closer view of tripartite drug efflux pumps [J]. Curr Opin Struct Biol2004,14(6):741-747.
    59. Poole K. Efflux-mediated multiresistance in Gram-negative bacteria [J]. Clin MicrobiolInfect2004,10(1):12-26.
    60. Poole K. Efflux-mediated antimicrobial resistance [J]. J Antimicrob Chemother2005,56(1):20-51.
    61. Higgins C.F. Multiple molecular mechanisms for multidrug resistance transporters [J].Nature2007,446(7137):749-757.
    62. Nishino K., Yamaguchi A. Analysis of a complete library of putative drug transportergenes in Escherichia coli [J]. J Bacteriol2001,183(20):5803-5812.
    63. Borges-Walmsley M.I., McKeegan K.S., Walmsley A.R. Structure and function ofefflux pumps that confer resistance to drugs [J]. Biochem J2003,376(Pt2):313-338.
    64. Grkovic S., Brown M.H., Skurray R.A. Regulation of bacterial drug export systems [J].Microbiol Mol Biol Rev2002,66(4):671-701, table of contents.
    65. Nishino K., Yamada J., Hirakawa H., Hirata T., et al. Roles of TolC-dependentmultidrug transporters of Escherichia coli in resistance to beta-lactams [J]. AntimicrobAgents Chemother2003,47(9):3030-3033.
    66. Fujihira E., Tamura N., Yamaguchi A. Membrane topology of a multidrug effluxtransporter, AcrB, in Escherichia coli [J]. J Biochem2002,131(1):145-151.
    67. Koronakis V., Sharff A., Koronakis E., Luisi B., et al. Crystal structure of the bacterialmembrane protein TolC central to multidrug efflux and protein export [J]. Nature2000,405(6789):914-919.
    68. Nakashima R., Sakurai K., Yamasaki S., Nishino K., et al. Structures of the multidrugexporter AcrB reveal a proximal multisite drug-binding pocket [J]. Nature2011,480(7378):565-569.
    69. Lu W., Chai Q., Zhong M., Yu L., et al. Assembling of AcrB Trimer in Cell Membrane[J]. J Mol Biol2012.
    70. Manchester J.I., Buurman E.T., Bisacchi G.S., McLaughlin R.E. Molecular determinantsof AcrB-mediated bacterial efflux implications for drug discovery [J]. J Med Chem2012,55(6):2532-2537.
    71. Muller R.H., Hoffmann D. Uptake kinetics of2,4-dichlorophenoxyacetate by Delftiaacidovorans MC1and derivative strains: complex characteristics in response to pH andgrowth substrate [J]. Bioscience, biotechnology, and biochemistry2006,70(7):1642-1654.
    72. Markham P.N. Inhibition of the emergence of ciprofloxacin resistance in Streptococcuspneumoniae by the multidrug efflux inhibitor reserpine [J]. Antimicrob AgentsChemother1999,43(4):988-989.
    73. Stermitz F.R., Tawara-Matsuda J., Lorenz P., Mueller P., et al.5'-Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growthinhibition of resistant Staphylococcus aureus [J]. Journal of natural products2000,63(8):1146-1149.
    74. Musumeci R., Speciale A., Costanzo R., Annino A., et al. Berberis aetnensis C. Presl.extracts: antimicrobial properties and interaction with ciprofloxacin [J]. Internationaljournal of antimicrobial agents2003,22(1):48-53.
    75. Mesaros N., Glupczynski Y., Avrain L., Caceres N.E., et al. A combined phenotypic andgenotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa [J].J Antimicrob Chemother2007,59(3):378-386.
    76. Maira-Litran T., Allison D.G., Gilbert P. An evaluation of the potential of the multipleantibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderateresistance towards ciprofloxacin in Escherichia coli biofilms [J]. J AntimicrobChemother2000,45(6):789-795.
    77. Warner D.M., Levy S.B. Different effects of transcriptional regulators MarA, SoxS andRob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs):Rob-dependent CAMP induction of the marRAB operon [J]. Microbiology2010,156(Pt2):570-578.
    78. Grkovic S., Brown M.H., Skurray R.A. Transcriptional regulation of multidrug effluxpumps in bacteria [J]. Semin Cell Dev Biol2001,12(3):225-237.
    79. Fang J., Yu L., Wu M., Wei Y. Dissecting the function of a protruding loop in AcrBtrimerization [J]. J Biomol Struct Dyn2012.
    80. Li M., Gu R., Su C.C., Routh M.D., et al. Crystal structure of the transcriptionalregulator AcrR from Escherichia coli [J]. J Mol Biol2007,374(3):591-603.
    81. Watanabe R., Doukyu N. Contributions of mutations in acrR and marR genes to organicsolvent tolerance in Escherichia coli [J]. AMB Express2012,2(1):58.
    82. Swick M.C., Morgan-Linnell S.K., Carlson K.M., Zechiedrich L. Expression ofmultidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinicalisolates as a function of fluoroquinolone and multidrug resistance [J]. AntimicrobAgents Chemother2011,55(2):921-924.
    83. Trampuz A., Jereb M., Muzlovic I., Prabhu R.M. Clinical review: Severe malaria [J].Critical care2003,7(4):315-323.
    84.Ansari M.T., Saify Z.S., Sultana N., Ahmad I., et al. Malaria and artemisinin derivatives:an updated review [J]. Mini reviews in medicinal chemistry2013.
    85. Aldieri E., Atragene D., Bergandi L., Riganti C., et al. Artemisinin inhibits induciblenitric oxide synthase and nuclear factor NF-kB activation [J]. FEBS Lett2003,552(2-3):141-144.
    86. Efferth T. Molecular pharmacology and pharmacogenomics of artemisinin and itsderivatives in cancer cells [J]. Curr Drug Targets2006,7(4):407-421.
    87.金慧玲,张汝芝,高玉祥,唐素兰.青蒿琥酯抗真菌、抗细菌的实验研究[J].中国微生态学杂志2003,01):29-30.
    88. Hoppe H.C., van Schalkwyk D.A., Wiehart U.I., Meredith S.A., et al. Antimalarialquinolines and artemisinin inhibit endocytosis in Plasmodium falciparum [J].Antimicrob Agents Chemother2004,48(7):2370-2378.
    1. Hasdemir U. The role of cell wall organization and active efflux pump systems inmultidrug resistance of bacteria [J]. Mikrobiyol Bul,2007,41(2):309-327.
    2. Vila J, Martínez JL. Clinical impact of the over-expression of efflux pump in non-fermentative Gram-negative bacilli, development of efflux pump inhibitors[J]. CurrDrug Targets.2008;9:797-807.
    3. Poole K. Efflux-mediated antimicrobial resistance[J]. J Antimicrob Chemother.2005;56:20-51.
    4. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance effluxpumps in bacteria[J]. Clin Microbiol Rev.2006;19:382-402
    5. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited[J].Microbiol Mol Biol Rev.2003;67:593-656.
    6. Page JM. Role of bacterial porins in antibiotic susceptibility of Gram-negative bacteria.In: Benz R. ed. Bacterial and Eukaryotic Porins[J]. Chichester: Wiley-VCH,2004;41-59.
    7. Van-Bambeke F,Balzi E,Tulkens PM. Antibiotic effluxpumps [J]. Biochem P harmacol,2000,60(4):457-470.
    8. Paulsen IT,Brown MH,Skurray RA. Proton-dependent multidrug efflux systems [J].Microbiol Rev,1996,60(4):575-608.
    9. Ayush K, Herbert P S. Bacterial resistance to antibiotics: Active efflux and reduceduptake [J]. Advan Drug Deli Rev,2005,57:1486-1513.
    10. Hasdemir U. The role of cell wall organization and active efflux pump systems inmultidrug resistance of bacteria [J]. Mikrobiyol Bul,2007,41(2):309-327.
    11. Ma D, Cook D N, Hearst J E, et al. Efflux pumps and drug resistance in gram-negativebacteria [J]. Trends Microbiol,1994,2:489-491.
    12. Nikaido, H. and Y. Takatsuka (2009)."Mechanisms of RND multidrug efflux pumps."Biochim Biophys Acta1794(5):769-781.
    13. Poole K. Efflux-mediated resistance to fluoroquinolonesin Gram-negative bacteria [J].Antimicrob Agents Chem ther,2000,44(9):2233-2241.
    14.张小林,李家泰.大肠杆菌临床分离株多重耐药过程中的主动外排机制[J].中华医学杂志,2000,80(8):614-617.
    15. Ramos JL,Mart′nez-Bueno M,Molina-Henares AJ,et al.The TetR family oftranscriptional repressors [J]. Microbiol Mol Biol Rev,2005,69(2):326-356
    16. Li M,Gu R,Su CC,et al. Crystal structure of the transcriptionalregulator AcrR fromEscherichia coli [J]. J MolBiol,2007,373:591-603.
    17. Li H,Park JT. The periplasm icmurein peptide-binding protein MppA is a negativeregulator of multiple antibiotic resistance in Escherichia coli [J]. J Bacterial,1999,181(16):4842-4847.
    18. Bina X, Perreten V, Levy SB. The periplasmic protein MppA requires an additionalmutated locus to repress marA expression in Escherichia coli [J]. J Bacteriol2003;185:1465-1469.
    19. Grkovic S,Brow nM H,Skurray R A. Regulat ion ofbacterial drug export systems [J].Microbiol Mol Biol Rev,2002,66(4):671-701.
    20. Steve Grkovic,Ronald A. Skurray Regulation of bacterial drug export systemmicrobiology and Microbiol Mol BiolR ev,Dec.2002,p.671–701
    21. Chou JH,Greenberg JT,Demple B. Post transcriptional repression of Escherichia coliOmpF protein in response to redox stress: positive control of the micF antisense RNAby the soxRS locus [J]. J Bacteriol,1993,175(4):1026-1031.
    22. Rosenberg EY,Bertenthal D,Nilles ML,et al. Bilesalts and fatty acids induce theexpression of Escherichiacoli AcrAB multidrug efflux pump through their interactionwith Rob rgulatory protein [J]. Mol Microbiol,2003,48(6):1609-1619
    23. Tanaka T,Horii T,Shibayama K,et al. RobA-induced multiple antibiotic resistancelargely depends on the activation of the AcrAB efflux [J]. Microbiol Immunol,1997,41(9):697-702.
    24. Grkovic S,Brown MH,Skurray RA. Regulation of bacterial drug export systems [J]. Microbiol MolBiolR ev,2002,66(4):671-701.
    25. Rahmati S,Yang S,Davidson AL,et al. Control of the AcrAB multidrug efflux pump byquorum-sensing regulator SdiA [J]. M olMicrobiol,2002,43(3):677-685.
    26.王芝敏.大肠埃希菌多药外排泵AcrAB-TolC系统的研究进展[J].福建医科大学学报,2005,39(8):13-15.
    27.陈晓玲,范昕建,吕晓菊.肠杆菌科细菌多药外排系统AcrAB的研究进展[J].中华微生物学与免疫学,2003,23(11):916-918.
    28. Yang S,Lopez CR,Zechiedrich EL. Quorum sensing and multidrug transporters inEscherichia coli [J]. Proc Natl Acad Sci USA,2006,103(7):2386-2391.
    29. Ma D,Cook DN,Lberti M,et al. Genes acrA and acrB encode a stress-induced effluxsystem of Escherichia coli [J]. Mol Microbiol,1995,16(1):45-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700