建筑室内自然环境下基于生理—心理的人体热舒适研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“以人为本”、“节能减排”是当前社会与经济发展的两大主题,在热舒适领域,这两大主题就反映在人体热舒适性与建筑能耗之间的关系上。因此明确热环境变化对人体生理、心理方面的影响,确定建筑室内自然环境下人体可接受温度区间,对于真正满足人体健康舒适需求、优化建筑环境设计、减少建筑能耗起着至关重要的作用。本文以在校青年大学生为受试人群,以热舒适生理实验为主要研究手段,结合问卷调查与物理测试等方法,于2007—2009年在重庆地区全年不同季节,开展了建筑室内自然环境下基于生理、心理的人体热舒适研究。本文实验研究的主要工作与结论包括以下几个方面:
     ①人体生理参数对热环境变化的响应特征。以在校健康大学生为受试人群,在实验室内完成了自然环境下全年温度区间人体神经传导速度、皮肤温度随操作温度与停留时间变化的响应特征研究,在本文实验研究样本的基础上得出主要结论如下:
     1)得出了室内自然环境下、人体自然着装时,人体感觉神经传导速度(SCV)与皮肤温度随操作温度变化的响应特征;并初步将SCV随操作温度变化的过程分为三个温度段:低温段、中间温度段和高温段。在中间温度段,人体神经生理参数SCV可以产生自我调节来应对这种变化;在高温段和低温段,这种自我调节能力明显减弱。另外,在操作温度较低的自然环境下,停留时间对SCV与皮肤温度变化均有显著影响。其中,在操作温度为(9.5±0.4)~(21.8±0.3)℃区间,SCV随停留时间延长呈现指数衰减的响应特征。
     2)SCV可以作为室内热环境变化对人体神经生理影响的一个反映量。SCV与测点皮肤温度(Tskin(scv))存在显著线性正相关,在今后的热舒适生理实验研究中,可通过测试Tskin(scv)来获知不同热环境条件对人体神经生理参数SCV的影响。不同操作温度下,SCV随停留时间变化的趋势有显著差异,操作温度越低,SCV随停留时间延长的衰减幅度越大。另外,人体各部位皮肤温度(除背部之外)与操作温度具有显著正相关,且随操作温度变化的趋势不同,环境温度越高,各部位皮肤温度随操作温度变化趋势的差异性越小;环境温度越低,各部位皮肤温度随操作温度变化趋势的差异性越大。在温度较低的环境下,皮温差值增大是引起人体冷不舒适的重要原因。
     ②人体热舒适实验问卷调查分析。在生理实验研究基础上,同时开展人体热舒适问卷调查的实验室研究,分析了室内自然环境下人体服装调节和期望行为调节特点;探讨了人体热中性温度与室内操作温度、室外空气温度的变化关系;得出了人体各个部位的心理可接受操作温度区间;并初步提出了分析室内自然环境下人体可接受温度区间的方法。在本文实验研究样本的基础上得出主要结论如下:
     1)建筑室内自然环境下,人体自由着装对热环境变化具有一定的调节适应能力,在操作温度为(15.8±0.4)~(27.8±0.5)℃的范围内,受试者可以通过服装调节来改善自身热舒适性。通过对受试者期望行为调节能力分析认为,在操作温度较低的自然环境下,受试者选择改善自身热舒适的措施具有多样性。长期生活在自然环境下受试者对采暖设备这一措施并没有表现出明显的偏好和期望,说明受试者在心理上对所在热环境及对环境调控能力、改善措施都已产生适应性。
     2)室内自然环境下、人体自然着装时,得出了60min与120min停留时间下,受试者整体和各个部位心理上90%可接受温度区间(TSV=±0.5),其中60min与120min受试者整体心理上90%可接受操作温度区间分别为(14.1±0.4)~(27.8±0.6)℃、(15.8±0.4)~(27.8±0.6)℃。这与ASHRAE55标准中所推荐的舒适温度上限(空调环境)相比提高了2.0℃,与ISO7730标准中自由运行建筑90%可接受温度范围也有所不同。说明受试者对长期所居住的热环境会产生一定的适应性,对所在环境的可接受性与基于国外研究所建立的标准有所差异,因此热舒适研究中应采用因地制宜的研究策略。
     3)基于本文的热舒适生理实验与问卷调查研究,提出了分析建筑室内自然环境下人体可接受温度区间方法。
     ③选取路径分析与偏最小二乘法为工具,初步提出了室内自然环境下、人体自然着装时,建立基于生理、心理及行为调节的热舒适模型的思路。
"Human Orientation" and "Energy Saving" is the two major themes in the development of current society and economy. In the thermal comfort field, these two major themes are reflected in the relationship between human thermal comfort and building energy consumption. Therefore, to identify the effect of thermal environment on human physiology and psychology and determine human acceptable temperature range under naturally indoor and built environment is very important, which plays a vital role to meet human body’s real thermal comfort and health requirements, as well as optimize the built environment design and reduce building energy consumption. The studies of human thermal comfort based on physiology and psychology in naturally indoor and bulit environment were carried out with healthy college students, using physiological experiment, physical testing and questionnaires survey methods during 2007 and 2009. The main research work and conclusions based on these studies were described as the following aspects:
     ①The response characteristics of human physiological parameters to the change of thermal environment. Under the whole year temperature range in the naturally indoor and bulit environment, the response characteristics of nerve conduction velocity and skin temperature with operative temperature change and the staying time were performed. Two main conclusions are obtained as follows:
     1) Sensory Nerve Conduction Velocity (SCV) and skin temperature show good response characteristics with indoor operative temperature change, and the response of SCV to indoor operative temperature can be divided into three different temperature stages, namely low-temperature stage, middle-temperature stage and high-temperature stage. In the middle temperature stage, SCV can respond to the operative temperature change accordingly, while in the high-temperature stage and the low-temperature stage, this response is significantly weakened. While in the natural environment with low operative temperature, the length of staying time has significant effect on SCV and skin temperature. SCV present an exponential decay trend with staying time when the operative temperature between (9.5±0.4)℃and (21.8±0.4)℃.
     2) SCV can be used as a neural physiological parameter to reflect the change of indoor thermal environment. The response of SCV and Tskin (scv) to thermal environmental changes are consistent, which shows a significant linear correlationship. Under different opertive temperatures, SCV changes with staying time significantly: when the operative temperature is lower, the decaying amplitude of SCV is greater. Otherwise, skin temperature of different body parts (besides back) has significantly positive relationship with operative temperature. When the operative temperature is higher, the trend difference of skin temperature varying with the operature temperature is smaller. When the operative temperature is lower, it shows the contrary result. In the low operature temperature environment, the increased skin temperature difference is one of the important reason of body feeling uncomfortably cold.
     ②Human thermal comfort questionnaire survey. The questionnaire survey was carried out while the physiology experimental researches were going on. The features of body’s clothing regulation and behavior expectations were analysed. And the relationship of thermal neutral temperature varying with indoor and outdoor operative temperature were discussed. Meanwhile, the psychologically acceptable operative temperature range of diffenent body parts were obtained. In the end, it analysed the method that discuss the acceptable operative temperature range in naturally indoor and built environment. Three main conclusion are obtained as follows:
     1) Body’s clothing regulation has a certain adaptive capacity to thermal environment change in naturally indoor and built environment. Between (15.8±0.4)℃and (27.8±0.5)℃, people can improve theirselves thermal comfort by regulate clothing. Besides, the measure people chosen to improve their thermal comfort is various in low temperature environment. People long-term living in naturally indoor and built environment do not show clearly preference and expectation to heating equipment. It indicates that people have developed adaptation to their thermal environment, control capabilities as well as measures to improve thermal comfort psychologically. 2) The psychologically acceptable operative temperature ranges of the whole body and different body parts were analysed during 60min and 120min. The psychologically acceptable operative temperature (TSV=±0.5) for the whole body during 60min and 120min are ranged from (14.1±0.4)℃to (27.8±0.6)℃and from (15.8±0.4)℃to (27.8±0.6)℃respectively in naturally indoor and built environment and normal clothing conditions. The results are quite different from ASHRAE55-2004 and ISO7730-2005 standards, which shows that people long-term living in a certain thermal environment can develop environmental adaptability. Therefore, local conditions should be considered in thermal comfort research.
     3) Based on the studies of human thermal comfort based on physiology and psychology, it put up forward a method that to analyze the acceptable temperature range in naturally indoor and built environment.
     ③Take path analysis and PLS method as the tools, it initially explored the thought to establish thermal comfort model based on physiological, psychological and behavioral adjustment in naturally indoor and built environment and normal clothing condition.
引文
[1]中国天气网. http: //www. weather. com. cn/.
    [2] Li B Z, Liu M, Yao R M, Steermers K. Sustainable urbanization: energy and environment in the Chongqing Municipality, China[J]. Journal of Chongqing University (English Edition), 2005, 4(4): 199-207.
    [3] Thermal Comfort chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc. , Atlanta, GA, 2005. (2005 ASHRAE Handbook—Fundamentals (SI)).
    [4] Macpherson RK. The assessment of the thermal environment [J]. British Journal of Industrial medicine, 1962, 27(10): 19.
    [5] Fanger P O. Calculation of thermal comfort equation [J]. ASHARE Trans, 1967, 73(2): 5-6.
    [6] Fanger P O. Thermal Comfort. New York: McGram-Hill publishing Co, 1970.
    [7] Kanndjov M I. Thermal stability of the human body under environmental air conditions[J]. Journal of Thermal Biology, 1998, 23(2): 117-121.
    [8] Raw G J, Oseland N A. Why another thermal comfort conference? Thermal Comfort: Past, Present and Future. Proceedings of a conference held at the Building Research Establishment, Garston, 1993, 1-10.
    [9] Fanger P O, Toftum J. Extension of the PMV model to non-air-conditioned buildings in warm climates[J]. Energy and Buildings, 2002, 34: 533-536.
    [10] Li B Z. Thermal and Environmental Design to Mcot. Future Needs. Proceedings to Tall Buildings: 2000 and Beyond: Fourth world congress, Hong Kong, 1990, 366-374.
    [11]赵荣义.关于“热舒适”的讨论[J].暖通空调, 2000, 3: 25-26.
    [12] De Dear R J, Brager G S, Cooper D J. Developing an adaptive model of thermal comfort and preference-final report, ASHRAE RP-884. Sydney: MRL 1997.
    [13] Givoni B. Passive and low energy cooling of buildings[M]. New York: Van Vostrand Reinhold, 1994.
    [14] Yamtraipat N, Khedari J, Hirunlabh J. Thermal comfort standards for air conditioned buildings in hot and humid Thailand considering additional factors of acclimatization and education level [J]. Solar Energy, 2005, 78(4): 504-517.
    [15] Wong N H, Feriadi H, Lim P Y. Thermal comfort evaluation of naturally ventilated public housing in Singapore[J]. Building and Environment, 2002, 37(12): l267-l277.
    [16]夏一哉,赵荣义,江亿.北京市住宅环境热舒适研究[J].暖通空调, 1999, 29(2): 1-5.
    [17]王昭俊,方修睦,廉乐明.哈尔滨市冬季居民热舒适现场研究[J].哈尔滨工业大学学报,2002, 34(4): 500-504.
    [18]叶晓江,连之伟,文远高.上海地区适应性热舒适研究[J].建筑热能通风空调, 2007, 26(5): 86-88.
    [19]茅艳.人体热舒适气候适应性研究[D].西安:西安建筑科技大学, 2006.
    [20]李百战,刘晶,姚润明.重庆地区冬季教室热环境调查分析[J].暖通空调, 2007, 37(5): 115-117.
    [21] Yao R M, Liu J, Li B Z. Occupants’adaptive responses and perception of thermal environment in naturally conditioned university classrooms[J]. Applied Energy, 2010, 87(3): 1015-1022.
    [22]刘红.重庆地区建筑室内动态环境热舒适研究[D].重庆:重庆大学, 2009.
    [23] Hensel H. Thermoreception and temperature regulation[M], London: Academic Press, 1981.
    [24] Mallick F H. Thermal comfort and building design in the tropical climates[J]. Energy and Buildings, 1996, 23(3): 161-167.
    [25] Ivanov K P. Subject of temperature control and the main function of the thermoregulation of an organism[J]. Journal of Thermal Biology, 1999, 24(5-6): 415-421.
    [26] Bulcao C F, Frank S M, Raja S N, Tran K M, Goldstein D S. Relative contribution of core and skin temperatures to thermal comfort in humans[J]. Journal of Thermal Biology, 2000, 25(1-2): 147-150.
    [27] Zingano B W. A discussion on thermal comfort with reference to bath water temperature to deduce a midpoint of the thermal comfort temperature zone[J]. Renewable Energy, 2001, 23(1): 41-47.
    [28]张国高.高温生理与卫生[M].上海:上海科学技术出版社, 1989.
    [29]纪秀玲,王保国,刘淑艳,戴自祝.出汗状态下人体热感觉的预测及评价.暖通空调, 2004, 34(12): 10-14.
    [30]徐小林.重庆夏季室内热环境对人体生理指标及热舒适的影响研究[D].重庆:重庆大学, 2005.
    [31]罗明智.室内空气流速对人体生理指标级热舒适性影响的研究[D].重庆:重庆大学, 2005.
    [32]吴婧.室内空气流速与人体舒适及生理应激关系研究[D].重庆:重庆大学, 2005.
    [33]陈露.夏热冬冷地区室内热环境与人体热舒适及热健康的关系研究[D].重庆:重庆大学, 2006.
    [34]陈良.室内热湿环境对人体生理及热舒适影响的实验研究[D].重庆:重庆大学, 2006.
    [35]潘信峰.重庆室内热环境下人体生理和热舒适的实验比较研究[D].重庆:重庆大学, 2007.
    [36]曹晓庆.影响室内热舒适参数的理论与实验研究[D].重庆:重庆大学, 2008.
    [37]郭恒.基于体表电阻抗的热湿环境改善措施的实验研究[D].重庆:重庆大学, 2008.
    [38]曾玲玲.基于体表温度的室内热环境响应实验研究[D].重庆:重庆大学, 2008.
    [39]叶晓江.人体热舒适机理及应用研究[D].上海:上海交通大学, 2005.
    [40] Gagge A P, Fobelets A P, Berglund L G. A standard predictive index of human response to the thermal environment[J]. ASHRAE Transactions, 1986, 92(2B): 709-731.
    [41]金招芬,朱颖心等.建筑环境学.北京:中国建筑工业出版社, 2001.
    [42] Zhang H, Huizenga C, Arens E, Yu T. Considering individual physiological differences in a human thermal model[J]. Journal of Thermal Biology, 2001, 26(4-5): 401-408.
    [43] Huizenga C, Hui Z, Arens E. A model of human physiology and comfort for assessing complex thermal environments[J]. Building and Environment, 2001, 36(6): 691-699.
    [44] Taffe P. A qualitative response model of thermal comfort[J]. Building and Environment, 1997, 32(2): 115-121.
    [45] Jones B W. Capabilities and limitations of thermal models for use in thermal comfort standards[J]. Energy and Buildings, 2002, 34(6): 653-659.
    [46] Hoppe P. Different aspects of assessing indoor and outdoor thermal comfort[J]. Energy and Buildings, 2002, 34(6): 661-665.
    [47] Kumar S, Mahdavi A. Integrating thermal comfort field data analysis in a case-based building simulation environment[J]. Building and Environment, 2001, 36(6): 711-720.
    [48] Houghton F C, Yaglou C P. Determination of the comfort zone[J]. Journal of the American Society of Heating and Ventilating Engineers. 1923, 29: 515–522.
    [49] Vernon H M, Warner C G. The influence of the humidity of the air on capacity for work at high temperatures[J]. Journal of Hygiene, 1932, 32 (3): 431-62.
    [50] Yaglou C P. Thermal standards in industry. Appendix 1: Estimation of radiant heat, equivalent temperature, and effective temperature corrected for radiation[J]. American Journal of Public Health, 1950, 40(5(suppl)): 141-143.
    [51] Gagge A P, Stolwijk J A J, Nishi Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Trans. , 1971, 77(1) : 247-262.
    [52] Gagge A P, Nishi Y, Gonzalez R R. Standard Effective Temperature[J]. Symposium Thermal Comfort and Moderate Heat Stress. CIB Commission W45, Building Research Establishment, London. 1972.
    [53] Hill L, Griffith O, Flack M. The measurement of the rate of heat loss at body temperature by convection, radiation and evaporation[J]. Philosophical Transactions of the Royal Society of London, 1916, 207(B): 183-220.
    [54] Dufton A F. The equivalent temperature of a room and its measurement. Building Research Technical Paper No. 13. London, 1932, H. M. Stationery Office.
    [55] Bedford T. The warmth factor in comfort at work. Industrial Health Research Board Report. London, 1936, no. 76.
    [56] D A麦金太尔,龙惟定等译.室内气候[M].上海:科学技术出版社, 1988.
    [57] ISO7730. Ergonomics of the thermal environment–analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International standard [S]. Geneva: International Organization for Standardization, 2005.
    [58] Belding H S, Hatch T F. Index for evaluating heat stress in terms of resulting physiological[J]. Heat Piping Air Condition, 1955, 27, 129-136.
    [59] Givoni B. the influence of work and environmental condotions on the physiological responses and thermal equilibrium of man. Proceedings of UNESCO Symposium on environmental Physiology and Psychology in Arid Conditions, Lucknow, 1962, 199-204.
    [60]热环境根据WBGT指数(湿球黑球温度)对作业人员热负荷的评价-GB/T17244-1998[S].北京:中国标准出版社, 1998.
    [61] Epstein Y, Moran D S. Thermal comfort and the heat stress indices[J]. Industrial Health, 2006, 44, 388-398.
    [62]叶海.室内环境品质的综合评价指标[J].建筑热能通风空调, 2000, 19(1): 31-34.
    [63]周刚,程卫民.改进的模糊灰色关联分析法在热舒适度影响因素评定中的应用[J].安全与环境学报, 2005, 5(4): 90-93.
    [64]嵇赟喆,涂光备,王晓杰.人工神经网络在热舒适实验研究中的应用[J].天津大学学报, 2004, 37(4): 331-335.
    [65] Auliciems A. Towards a psycho-physiological model of thermal perception[J]. International Journal of Biometeorology, 1981, 25(2): 109-122.
    [66] Brager G S, de Dear R J. Thermal adaptaton in the built environment: a literature review[J]. Energy and Buildings, 1998, 27 (1): 83-96.
    [67]黑岛晨讯(日).朱世华,黄政武,方希和等译.环境生理学[M].北京:海洋出版社, 1986.
    [68] ANSI/ASHRAE55-2004, Thermal environmental conditions for human occupancy[S].
    [69]金英姿.动态热环境中人体热健康的探讨[J].黑龙江大学自然科学学报, 2003, 20(3): 89-92.
    [70]李百战,吴婧,郑洁.基于生理-心理学的热舒适和热健康探讨[J].制冷与空调, 2005,增刊. , 154-157.
    [71]叶晓江,连之伟.夜间空调舒适温度初探[J].制冷学报, 2000, (2): 36-40.
    [72]李文杰,刘红,许孟楠.热环境与热健康的分类探讨[J].制冷与空调(四川). 2009, 23(2): 17-20.
    [73]汪国雄,黄水平,赵进顺.预防医学[M].南京:东南大学出版社, 2005.
    [74]贾树队,郝兰英,崔尚陪.物理因素职业危害与预防[M].天津:天津科学技术出版社, 1993.
    [75]医学教育网, 2009. http: //www. med66. com/new/37a176a2009/2009121wangzh181124. shtml.
    [76]崔延.护理学基础[M].北京:人民卫生出版社, 2005.
    [77]汤晓芙.神经病学(第2卷)[M].北京:人民军医出版社, 2002.
    [78]陈武宁,毛晓荣,刘勇等.运动前后运动神经传导速度与体温、心率变化的相关分析[J].四川生理科学杂志, 1995, 17(2, 3): 24-26.
    [79]卢祖能,曾庆杏.实用肌电图学[M].北京:人民卫生出版社, 2000.
    [80]王庭槐.生理学[M].北京:高等教育出版社, 2004.
    [81]万子美,欧阳骅.穿[M].北京:科学普及出版社, 1989.
    [82] Kuwabara K, Mochida T, Nagano K, Shimakura K. Fundamental study of weighting factors for calculating mean skin temperature[J]. Journal of the Human-Environmental System, 2006, 9 (1-2): 35-42.
    [83] Yao Y, Lian Z W, Liu W W, Shen Q. Experimental study on physiological responses and thermal comfort under various ambient temperatures[J]. Physiology & Behavior, 2008, 93(1-2): 310–321.
    [84] ISO 7726. Thermal environment-Instruments and methods for measuring physical quantities[S]. Geneva: International Organization for Standardization, 1998.
    [85]康兹(美, Konz. S A).魏润柏译.人与室内环境[M].北京:中国建筑工业出版社, 1985.
    [86]张红兵,贾来喜,李潞. SPSS宝典[M].北京:电子工业出版社, 2007.
    [87]杨虎,刘琼荪,钟波.数理统计[M].北京:高等教育出版社, 2004.
    [88]田胜元,萧曰嵘.实验设计与数据处理[M].北京:中国建筑工业出版社, 2000.
    [89] Li B Z, Li W J, Liu H, Yao R M, Tan M L, Ma X L. Physiological expression of human thermal comfort to indoor operative temperature in the non-HVAC environment[J]. Indoor and Built Environment, 2010, 19(2): 221-229.
    [90]肖信. Origin 8. 0实用教程—科技作图与数据分析[M].北京:中国电力出版社, 2009.
    [91]周永凯,张建春.服装舒适性与评价[M].北京:北京工艺美术出版社, 2006.
    [92]夏廉博.人类生物气象学[M].北京:气象出版社, 1986.
    [93] Humphreys M A, Nicol J F, Raja IA. Field studies of indoor thermal comfort and theprogress of the adaptive approach. Journal of Advances on Building Energy Research[J], 2007, 1: 55-88.
    [94] Nicol J F, Humphreys M A. Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251[J]. Building and Environment, 2010, 45(1): 11-17.
    [95] Bouden C, Ghrab N. An adaptive thermal comfort model for the Tunisian context: a field study results[J]. Energy and Buildings, 2005, 37(9): 952-963.
    [96] Stevens J C, Marks L E, Simonson D C. Regional sensitivity and spatial summation in the warmth sense[J]. Physiology and Behavior, 1974, 13(6): 825-836.
    [97] Crawshaw L I, Nadel E R, Stolwilk J A J, Stamford B A. Effct of local cooling on sweating rate and cold sensation. Pflugers Acrhiv European Jounral of Physiology, 1975, 354(1): 19-27.
    [98] Zhang H. Human thermal sensation snd comfort in transient and non-uniform thermal environments[D]. Bekreley: University of Caliofornia at Berkeley, 2003.
    [99]李俊.个体送风特性及人体热反应研究[D].北京:清华大学, 2004.
    [100]张宇峰.局部热暴露对人体热反应的影响[D].北京:清华大学, 2005.
    [101]丁千茹,李祥立,端木琳等.局部热舒适性研究现状与展望[J].建筑科学, 2008, 24(12): 97-101.
    [102]孙宇明.基于皮肤温度的人体热感觉特性实验研究[D].大连:大连理工大学, 2009.
    [103]吴明隆. SPSS统计应用实务—问卷分析与应用统计[M].北京:科学出版社, 2003.
    [104]杨杰,吴中如.观测数据拟合分析中的多重共线性问题[J].四川大学学报(工程科学版), 2005, 37(5): 19-24.
    [105]王惠文.偏最小二乘法回归方法及其应用[M].北京:国防工业出版社, 1999.
    [106] Umetrics A B. Tutotial - SIMCA-P, SIMCA-P+. Version11, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700