低阈值高效率光子晶体激射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体低阈值激射在高灵敏荧光检测和全光通信中具有重要的应用前景。在众多研究中,实现低阈值、高效率光子晶体激射仍然是现阶段科学研究的重要目标。本论文通过设计特殊色散能带的一维双周期光子晶体结构来实现低阈值、高效率光子晶体激射,并从实验和理论上研究在双周期光子晶体激射新现象和新机制。主要内容包括:
     1.研究激发条件对光子晶体激射阈值和激发效率的影响。首先基于重铬酸盐明胶(DCG)和全息方法制备了一维(1D)光子晶体结构,并对其掺杂荧光染料若丹明6G(Rh6G),实现光泵浦光子晶体带边激射。通过改变泵浦光的激发角度来调整激发条件,我们发现光子晶体带边激射的激射阈值和激发效率对泵浦光的激发角度十分敏感。我们还从理论上采用传输矩阵法(TMM)计算了在不同激发角度下光子晶体的有效增益,与实验结果吻合较好。
     2.设计并制备一维双周期光子晶体,在光子禁带中引入具有平坦色散的子能带,并证实子能带激射效应明显优于带边和缺陷模式。我们介绍两种1D双周期光子晶体的全息制备方法:四束光干涉法和二次曝光法。实验和数值结果表明子能带具有低群速度、低二阶色散和长距离电场增强。通过计算电场在单周期和Moire双周期光子晶体中的空间分布,我们得到子能带模式的电场强度是带边的3倍。由于双周期光子晶体子能带具有低群速度、高光子态密度,长距离电场增强等优异性能,在荧光增强和低闽值激射等方面具有潜在的重要研究价值。
     3.在掺杂Rh6G的1D Moire双周期光子晶体结构中实现了低阈值、高效率的子能带激射,激射强度达到裸眼可视。双周期光子晶体子能带具有平坦色散和长距离电场局域增强,可产生较高的光子转换效率。相比与未曝光的明胶薄膜,双周期光子晶体实现了荧光增强达660倍以上。与单周期带边激射相比,双周期子能带的阈值降低到了1/6,激发效率提高了8倍。
     4.从实验和理论两个方面研究了在一维双周期光子晶体中观察到的新颖的彩色多环锥形激射现象。根据实验结果,我们提出了能带耦合模型,从理论上解释锥形激射的产生机制,获得了与实验结果相符的理论分析结果。我们从理论上论证了光子晶体中杂质引起的散射可以使两个平坦色散能带在特定的角度产生耦合。接着通过分析锥形激射不同角度的荧光光谱,我们证实了能带耦合的存在。根据样品的透射光谱和能带耦合模型,我们数值计算了双周期彩色多环锥形激射波长和对应的激射角度,理论结果与实验数据相符。由此可知锥形激射的激射光斑由光子晶体的能带结构决定,直接反映出光子晶体能带的重要特征。
     综上,我们制备了一维双周期光子晶体,获得了具有优异平坦色散子能带,并进一步实现子能带激射,证实了子能带激射在多个方面明显优于光子晶体带边激射和缺陷激射。我们还在一维双周期光子晶体中观察到新颖的彩色多环锥形激射现象,并据此提出能带耦合模型解释锥形激射的产生机制,获得了与实验结果相符的理论分析结果。
Low-threshold photonic crystal (PC) lasing has been widely studied for its application in all-optical communication and high sensitive fluorescence detection. Among the studies of PC lasing, reduction of the lasing threshold and improvement of the lasing efficiency are of special interest. In this dissertation, we focus on realization of low-threshold and high-efficiency PC lasing by designing a one-dimensional (ID) dual-periodic PC. We also study the novel lasing emission from dual-periodic PC both experimentally and theoretically. The details are descripted as follows:
     1. We demonstrated the influences of excitation conditions on the PC lasing threshold and excitation efficiency were studied. Optically pumped band edge lasing was obtained from Rhodamine6G (Rh6G)-doped1D PC fabricated by holography in dichromated gelatin (DCG). Results show that the lasing threshold and excitation efficiency are sensitive to the excitation condition, which can be altered by tuning the pump angle. Numerical calculation of effective gain in the PC with different excitation angles were performed by transfer matrix method (TMM), which matched well with experimental results.
     2. Extremely flat minibands were induced in the stop band by dual periodicity in a1D PC. Two holographic fabrication methods of1D dual-periodic PC were proposed:four-beam interference holography and double-exposure holography. The experimental and numerical results show that the minibands have slow group velocity, weak second order dispersion and large spatial region for electric field enhancement. We also calculated the electric field distribution at miniband mode, whose intensity is about3times of that at band edge mode. Since the minibands have low group velocity, high density of optical states and large spatial region for light-matter interaction, they have potential applications in fluorescence enhancement and low-threshold lasing.
     3. Low-threshold and high-efficiency miniband lasing was achieved in Rh6G-doped1D Moire dual-periodic PC. The lasing intensity was strong enough to be naked-eye observable. Compared with the dye-doped film in un-exposed region, an enhancement of fluorescence emission by a factor of up to660was achieved in Moire dual-periodic PC. We also presented that the lasing efficiency was dramatically enhanced about eight times and meanwhile the threshold was decreased to about1/6of that of the band-edge lasing in the single-periodic PC. This high optical conversion efficiency can be attributed to the extremely flat dispersion and large mode volume of the miniband induced by dual-periodicity. This finding provides potential applications in ultra-sensitive fluorescence detection and PC laser system.
     4. The multiple and colorful cone-shaped lasing emission from a1D dual-periodic PC was investigated both experimentally and theoretically. Based on the experimental results, we proposed a band-coupling model, which well explained the mechanism of cone-shaped lasing. We demonstrated that the unavoidable scattering of imperfect structure and the Bragg diffraction of periodic structure would lead to a coupling effect between flat bands along a special direction. This was verified by the angular fluorescence spectra from a dye-doped1D PC. We also perform a numerical simulation based on the band-coupling model to estimate lasing wavelengths and emission-cone angles from dual-periodic PC, which match well with those from experimental results. This result indicated that the lasing pattern, which is determined by the photonic band structure, may give a direct visualization of the PC band structure.
     In summary, we have realized extremely flat dispersion minibands in a1D dual-periodic photonic crystal and have obtained low-threshold and high-efficiency miniband lasing. We also observed a novel multiple and colorful cone-shaped lasing was in a1D dual-periodic PC. A band-coupling model was proposed to explain the mechanism of cone-shaped lasing, which well matched with experimental data.
引文
[1]Baba T. Slow light in photonic crystals [J]. Nature Photonics,2008,2(8):465-473
    [2]Joannopoulos J, Villeneuve. P, Fan S. Photonic crystals putting a new twist on light [J]. Nature, 1997,386(2):143-149
    [3]Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals:molding the flow of light [M]. US:Princeton University Press,2008:3-6,44-58
    [4]Almeida V, Barrios C, Panepucci R, et al. All-optical control of light on a silicon chip [J]. Nature,2004,431(12):1081-1084
    [5]Cunin F, Schmedake TA, Link JR., et al. Biomolecular screening with encoded porous-silicon photonic crystals [J]. Nature Material,2002,1(7):39-41
    [6]KurosakaY, Iwahashi S, Liang Y, et al. On chip beam-steering photonic crystal laser [J]. Nature Photonics,2012,4(7):447-450
    [7]Colodrero S, Mihi A, Haggman L, et al. Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells [J]. Advanced Material,2009, 21(7):764-770
    [8]Noda S, Photonic crystal lasers—ultimate nanolasers and broad-area [J]. J. Opt. Soc. Am. B. 2010,27(11):B1-B8.
    [9]Freedman B, Bartal G, Segev M, et al. Wave and defect dynamics in nonlinear photonic quasicrystals [J]. Nature,2006,440(5):1166-1169
    [10]Panoiu NC, Osgood RM, Zhang S, et al. Zero-n bandgap in photonic crystal superlattices. 2006, J. Opt. Soc. Am. B.23(12):506-513
    [11]周炳琨,高以智.激光原理[M].北京:国防工业出版社,2004:42-58
    [12]汪志诚.热力学与统计物理[M].北京:高等教育出版社,2008:84-92
    [13]Yablonovitch E. Inhibited spontaneous emission in solide state physics and eldctronics [J]. Phys. Rev. Lett.,1987,58(20):2059-2062.
    [14]John S. Strong localization of photons in certain dsordered dielectric superlattices [J]. Phys. Rev. Lett.,1987,58(23):2486-2489.
    [15]Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J]. Phys. Rev. Lett.,2004,95(1): 013904
    [16]Ganesh N, Zhang W, Mathias PC, et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface [J]. Nature Nanotechnology,2007,2(8):515-520
    [17]Sakoda K. Optical properties of photonic crystals [M]. US:Springer,2005:187-193, 211-235.
    [18]Sukhoivanov I A, Guryev I V. Photonic crystals:Physics and Practical modeling [M]. US: Springer,2009:3-12,41-66.
    [19]Yoshino K, Lee S B, Tatsuhara S, et al. Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal [J]. Appl. Phys. Lett.,1998,73(24):3506-3508.
    [20]Yoshino K, Tatsuhara S, Kawagishi Y, et al. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals [J]. Appl. Phys. Lett., 1999,74(18):2590-2592.
    [21]Schmidtke J, Stille W, Finkelmann H. Defect Mode Emission of a Dye Doped Cholesteric Polymer Network [J]. Phys. Rev. Lett.,2003,90(8):083902.
    [22]Jin F, Song Y, Dong X-Z, et al. Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals [J]. Appl. Phys. Lett.,2007,91(3):031109.
    [23]Viasnoff-Schwoob E, Weisbuch C, Benisty H, et al. Spontaneous emission enhancement at a photonic wire miniband edge [J]. Opt. Lett.,2005,30(16):2113-2115.
    [24]Baert K, Song K, Valle R A L, et al. Spectral narrowing of emission in self-assembled colloidal photonic superlattices [J]. Journal of Appl. Phys.,2006,100(12):118112.
    [25]Rengarajan R, Jiang P, Larrabee D, et al. Colloidal photonic superlattices [J]. Phys. Rev. B, 2001,64(20):205103.
    [26]Kuroda K, Sawada T, Kuroda T, et al. Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies [J]. Opt. Express,2009, 17(15):13168-13177.
    [27]Bermel P, Lidorikis E, Fink Y, et al. Active materials embedded in photonic crystals and coupled to electromagnetic radiation [J]. Phys. Rev. B,2006,73(16):165125.
    [28]Barth M, Gruber a., Cichos F. Spectral and angular redistribution of photoluminescence near a photonic stop band [J]. Phys. Rev. B,2005,72(8):085129.
    [29]Koenderink a., Vos W. Light Exiting from Real Photonic Band Gap Crystals is Diffuse and Strongly Directional [J]. Phys. Rev. Lett.,2003,91(21):213902.
    [30]Nikolaev I, Lodahl P, Vos W. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals [J]. Phys. Rev. A,2005,71(5):053813.
    [31]Liu J-F, Jiang H-X, Gan Z-S, et al. Lifetime distribution of spontaneous emission from emitter(s) in three-dimensional woodpile photonic crystals [J]. Opt. Express,2011,19(12): 11623-11630.
    [32]Zhang Y-Q, Wang J-X, Ji Z-Y, et al. Solid-state fluorescence enhancement of organic dyes by photonic crystals [J]. Journal of Materials Chemistry,2007,17(1):90-94.
    [33]Soboleva I V., Descrovi E, Summonte C, et al. Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals [J]. Appl. Phys. Lett.,2009, 94(23):231117.
    [34]Descrovi E, Sfez T, Dominici L, et al. Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals [J]. Physics,2008,16(8):630-638.
    [35]Bulu I, Caglayan H, Ozbay E. Beaming of light and enhanced transmission via surface modes of photonic crystals [J]. Opt. Lett.,2005,30(22):3078-80.
    [36]Ye J Y, Ishikawa M. Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration [J]. Opt. Lett.,2008,33(15):1729-1731.
    [37]Descrovi E, Giorgis F, Dominici L, et al. Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal [J]. Opt. Lett.,2008,33(3):243-245.
    [38]Pokhriyal a, Lu M, Huang C S, et al. Multicolor fluorescence enhancement from a photonics crystal surface [J]. Appl. Phys. Lett.,2010,97(12):121108.
    [39]Pokhriyal A, Lu M, Chaudhery V, et al. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection [J]. Opt. Express,2010,18(24):24793-24808.
    [40]Ballarini M, Frascella F, De Leo N, et al. A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation [J]. Opt. Express,2012,20(6):6703-6711.
    [41]Gao J, Sarangan A M, Zhan Q. Polarization multiplexed fluorescence enhancer using a pixelated one-dimensional photonic band gap structure [J]. Opt. Lett.,2012,37(13): 2640-2642.
    [42]Zhang H, Zhu H, Qian L, et al. Analysis of leaky modes of photonic crystal slabs with deeply patterned lattice [J]. Journal of Optics A:Pure and Applied Optics,2006,8(5):483-488.
    [43]Ganesh N, Block I D, Mathias P C, et al. Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors [J]. Opt. Express,2008,16(26): 21626-21640.
    [44]Rakuljic G a, Leyva V. Volume holographic narrow-band optical filter:erratum [J]. Opt. Lett.,1993,18(9):753-755.
    [45]Gu L, Chen X, Shi Z, et al. Bandwidth-enhanced volume grating for dense wavelength-division multiplexer using a phase-compensation scheme [J]. Appl. Phys. Lett., 2005,86(18):181103.
    [46]Chen J-H, Hsieh P-J, Su D-C, et al. Multi-port polarization-independent optical quasi-circulators by using a pair of holographic spatial-and polarization-modules [J]. Opt. Express,2004,12(4):601-608.
    [47]Soljacic M, Joannopoulos J D. Enhancement of nonlinear effects using photonic crystals [J]. Nature materials,2004,3(4):211-219.
    [48]Chen S, Zang W, Schulzgen A, et al. Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials [J]. Opt. Lett.,2009,34(23):3665-3667.
    [49]Mihi -A, Miguez H. Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells [J]. The journal of physical chemistry. B,2005,109(33):15968-15976.
    [50]Ellis B, Mayer M A, Shambat G, et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser [J]. Nature Photonics,2011,5(5):297-300.
    [51]Painter O, Lee R K, Scherer A, et al. Two-dimensional photonic band-gap defect mode laser [J]. Science,1999,284(5421):1819-1821.
    [52]Dowling J P, Scalora M, Bloemer M J, et al. The photonic band edge laser:A new approach to gain enhancement [J]. Journal of Appl. Phys.,1994,75(4):1896-1899.
    [53]Kopp V I, Fan B, Vithana H K, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Opt. Lett.,1998,23(21):1707-1709.
    [54]Morris S M, Ford a. D, Pivnenko M N, et al. Enhanced emission from liquid-crystal lasers [J]. Journal of Appl. Phys.,2005,97:023103.
    [55]Matsuhisa Y, Huang Y, Zhou Y, et al. Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal [J]. Appl. Phys. Lett.,2007,90(2): 091114.
    [56]Luo D, Sun X W, Dai H T, et al. Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals [J]. Appl. Phys. Lett.,2010,97(8):081101.
    [57]Huang Y, Wu S-T. Multi-wavelength laser from dye-doped cholesteric polymer films [J]. Opt. Express,2010,18(26):27697-27702.
    [58]Lin S-H, Lee C-R. Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance [J]. Opt. Express, 2011,19(19):18199-18206.
    [59]Lee C-R, Lin S-H, Ku H-S, et al. Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant [J]. Opt. Lett., 2010,35(9):1398-1400.
    [60]Lee C-R, Lin S-H, Ku H-S, et al. Optically band-tunable color cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant [J]. Appl. Phys. Lett.,2010,96(11):111105.
    [61]Lee C-R, Lin S-H, Yeh H-C, et al. Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient [J]. Opt. Express,2009,17(25):22616-22623.
    [62]Lee C-R, Lin S-H, Yeh H-C, et al. Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch [J]. Opt. Express,2009,17(15):12910-12921.
    [63]Jin F, Li C-F, Dong X-Z, et al. Laser emission from dye-doped polymer film in opal photonic crystal cavity [J]. Appl. Phys. Lett,2006,89(24):241101.
    [64]Takanishi Y, Ohtsuka Y, Suzaki G, et al. Low threshold lasing from dye-doped cholesteric liquid crystal multi-layered structures [J]. Opt. Express,2010,18(12):12909-12914.
    [65]Matsuhisa Y, Huang Y, Zhou Y, et al. Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation [J]. Opt. Express,2007,15(2):616-622.
    [66]Khader M. Lasing characteristics of Rhodamine B and Rhodamine 6G as a sensitizer in sol-gel silica [J]. Optics & Laser Technology,2008,40(3):442-455.
    [67]Kok M H, Lu W, Lee J C W, et al. Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions [J]. Appl. Phys. Lett.,2008,92(15):151108.
    [68]Wang X, Kok M H, Lu W, et al. Visible range lasing in dye-doped doubly periodic layered structures in dichromate gelatin emulsions [J]. Journal of Optics,2012,14(14):015104.
    [69]Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 130 of energy consumed per bit transmitted [J]. Nature Photonics, 2010,4(2):648-654.
    [70]Schilke A, Zimmermann C, Courteille P W, et al. Optical parametric oscillation with distributed feedback in cold atoms [J]. Nature Photonics,2011,6(11):101-104.
    [71]Kurosaka Y, Iwahashi S, Liang Y, et al. On-chip beam-steering photonic-crystal lasers [J]. Nature Photonics,2010,4(7):447-450.
    [72]Kitahara H, Kawaguchi T, Miyashita J, et al. Strongly Localized Singular Bloch Modes Created in Dual-Periodic Microstrip Lines [J]. Journal of the Physics Society Japan,2004, 73(2):296-299.
    [73]Balci S, Karabiyik M, Kocabas A, et al. Coupled Plasmonic Cavities on Moire Surfaces [J]. Plasmonics,2010,5(4):429-436.
    [74]Kocabas A, Senlik S, Aydinli A. Slowing Down Surface Plasmons on a Moire Surface [J]. Phys. Rev. Lett.,2009,102(6):063901.
    [75]Ru E C Le, Etchegion P G. Principles of surface enhanced raman spectroscopy and related plasmonic effcts [M]. Netherland:Elsevier,2009:537-572
    [76]仁毅志.电动力学简明教程.天津:南开大学出版社,2003:72-84
    [77]Coles H, Morris S. Liquid-crystal lasers [J]. Nature Photonics, Nature Publishing Group, 2010,4(11):676-685.
    [78]Maune B, Londar M, Witzens J, et al. Liquid-crystal electric tuning of a photonic crystal laser [J]. Appl. Phys. Lett.,2004,85(3):91125.
    [79]Ozaki M, Kasano M, Kitasho T, et al. Electro-tunable liquid-crystal laser [J]. Advanced Materials,2003,15(12):974-977.
    [80]Takanishi Y, Ohtsuka Y, Suzaki G, et al. Low threshold lasing from dye-doped cholesteric liquid crystal multi-layered structures [J]. Opt. Express,2010,18(12):12909-14.
    [81]Kok M H, Lu W, Tam W Y, et al. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions [J]. Opt. Express,2009,17(9):7275-7284.
    [82]Chen S J, Zhou Y, Zhai T R, et al. Different emission properties of a band edge laser pumped by picosecond and nanosecond pulses [J]. Laser Phys. Lett.,2012,9(8):570-574.
    [83]Shankoff T A. Phase holograms in dichromated gelatin [J]. Appl. Opt.,1968,7(10): 2101-2105.
    [84]于美文.光全息学及应用[M].北京:北京理工大学出版社,1996:249-254
    [85]Chang B J, Leonard C D. Dichromated gelatin for the fabrication of holographic optical elements [J]. Appl. Opt.,1979,18(14):2407-2417.
    [86]Ren Z, Wang Z, Zhai T, et al. Complex diamond lattice with wide band gaps in the visible range prepared by holography using a material with a low index of refraction [J]. Phys. Rev. B,2007,76(3):035120.
    [87]Ren Z, Zhai T, Wang Z, et al. Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material [J]. Advanced Materials,2008,20(12):2337-2340.
    [88]Hung J, Kok M H, Tam W Y. Complete photonic bandgaps in the visible range from spherical layer structures in dichromate gelatin emulsions [J]. Appl. Phys. Lett.,2009,94(1): 014102.
    [89]Yau S M, Kok M H, Tam W Y. Manipulation of light using slanted layer photonic crystals in holographic gelatin emulsions [J]. Journal of Optics A:Pure and Applied Optics,2008,10(1): 015201.
    [90]Hung J, Chan P S, Sun C, et al. Doubly slanted layer structures in holographic gelatin emulsions:solar concentrators [J]. Journal of Optics,2010,12(4):045104.
    [91]Cui L, Gao H, Dong P, et al. Diffraction from angular multiplexing slanted volume hologram gratings [J]. Optik-International Journal for Light and Electron Optics,2005,116(3): 118-117.
    [92]Boj P G, Crespo J, Quintana J A. Broadband reflection holograms in dichromated gelatin [J]. Appl. Opt.,1992,31(17):3302-3305.
    [93]Ma R, Xu J, Tam W Y. Wide band gap photonic structures in dichromate gelatin emulsions [J]. Appl. Phys. Lett.,2006,89(8):081116.
    [94]Li W, Zhang X, Wang Z, et al. Observation of modulated spontaneous emission of Rhodamine 6G in low refractive index contrast 1D-periodic gelatin film [J]. Science China Physics, Mechanics and Astronomy,2010,53(1):54-58.
    [95]陈磊.重铬酸盐明胶滤波器的研制及应用.[M].天津:南开大学,2004:20-34
    [96]Ying C-F, Zhou W-Y, Ye Q, et al. Band-edge lasing in Rh6G-doped dichromated gelatin at different excitations [J]. Journal of Optics,2010,12(11):115101.
    [97]方容川.固体光谱学[M].安徽:中国科技大学出版社,2000:107-123
    [98]Yeh P, Yariv A, Hong C, et al. Electromagnetic propagation in periodic stratified media [J]. I. General theory. J. Opt. Soc. Am. B,1977,67(1976):423-438.
    [99]Tran P. Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect [J]. J. Opt. Soc. Am. B,1997,14(10):2589-2595.
    [100]Russel P S J. Optical superlattice for modulation and deflection of light [J]. Journal of Appl. Phys.,1986,59(17):3344.
    [101]Qin Q, Lu H, Zhu S N, et al. Resonance transmission modes in dual-periodical dielectric multilayer films [J]. Appl. Phys. Lett.,2003,82(26):4654-4656.
    [102]Janner D, Galzerano G, Valle G, et al. Slow light in periodic superstructure Bragg gratings [J]. Phys. Rev. E,2005,72(5):1-8.
    [103]Yamilov A, Herrera M. Dual-Periodic Photonic Crystal Structures [J]. Recent Optical and Photonic Technologies,2010,450(1):1-12.
    [104]Yamilov A G, Herrera M R, Bertino M F. Slow-light effect in dual-periodic photonic lattice [J]. J. Opt. Soc. Am. B,2008,25(4):599-608.
    [105]Yamilov A G, Bertino M F. Disorder-immune coupled resonator optical waveguide [J]. Opt. Lett.,2007,32(3):283-285.
    [106]Ying C-F, Zhou W-Y, Ye Q, et al. Mini-band states in graded periodic 1D photonic superstructure [J]. Appl. Phys. B,2012,107(2):369-374.
    [107]Ren Z, Zhai T, Wang Z, et al. Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material [J]. Advanced Materials,2008,20(12):2337-2340.
    [108]Ying C-F, Zhou W-Y, Li Y, et al. Band-edge lasing and miniband lasing in 1D dual-periodic photonic crystal [J]. Proc. SPIE,2012,8425(25):84251E
    [109]Ying C-F, Zhou W-Y, Li Y, et al. Miniband lasing in a 1D dual-periodic photonic crystal [J]. Laser Phys. Lett.2013,10(5):056001.
    [110]Miller D A B. Device Requirements for Optical Interconnects to Silicon Chips [J]. Proceeding IEEE,2009 97(2):1166.
    [111]Srinivasan K, Borselli M, Painter O, et al. Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots [J]. Opt. Express,2006, 14(3):1094-1105.
    [112]Chen Y-H, Wu Y-K, Guo L J. Photonic crystal microdisk lasers [J]. Appl. Phys. Lett.,2011, 98(13):131109.
    [113]Baba T. Low-threshold lasing and Purcell effect in microdisk lasers at room temperature [J]. Quantum Electronics, IEEE Journal of,2003,9(5):1340-1346.
    [114]Lu T, Chiu L, Lin P, et al. One-dimensional photonic crystal nanobeam lasers on a flexible substrate.2011,99(7):071101.
    [115]Zhang Y, Khan M, Huang Y, et al. Photonic crystal nanobeam lasers. Appl. Phys. Lett., 2010,97(5):051104.
    [116]Kim S, Ahn B-H, Kim J-Y, et al. Nanobeam photonic bandedge lasers [J]. Opt. Express, 2011,19:24055-24060.
    [117]Imada M, Noda S, Chutinan A, et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure [J]. Appl. Phys. Lett., 1999,75(3):316-318.
    [118]Ohnishi D, Okano T, Imada M, et al. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser [J]. Opt. Express,2004,12(8): 1562-1568.
    [119]Baert K, Kolaric B, Libaers W, et al. Angular Dependence of Fluorescence Emission from Quantum Dots inside a Photonic Crystal [J]. Research Letters in Nanotechnology,2008, 2008(3):974072.
    [120]Lee C-R, Lin S-H, Yeh H-C, et al. Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch [J]. Opt. Express,2009,17(15):12910-12921.
    [121]Luo D, Du Q G, Dai H T, et al. Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals [J]. Scientific reports,2012,2(627):1-6.
    [122]Ying C-F, Zhou W-Y, Li Y, et al. Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal [J]. AIP Advances,2013,3(2):022125.
    [123]Kopp V, Genack A, Zhang Z-Q. Large Coherence Area Thin-Film Photonic Stop-Band Lasers [J]. Phys. Rev. Lett.,2001,86(9):1753-1756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700