基于布里渊散射的可调光纤延迟线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可调光纤延迟线不仅是未来全光网络中的关键器件,而且在光信号处理和微波光子学等领域有着极其重要的用途。基于布里渊散射效应实现可调光纤延迟线是近年来发展起来的一门新兴的可调光延迟技术,它具有泵浦光功率阈值低、工作波长可调谐、室温下工作以及与光纤通信系统兼容性好等优点,已经成为了可调光延迟技术中的研究热点。本论文以布里渊慢光和基于声波存储的光缓存为研究对象,围绕减小信号失真和提高延迟-带宽积等丞待解决的问题开展了大量研究工作,论文的主要内容可概括如下:
     1.介绍和对比了现有的各种可调光纤延迟线技术;总结和分析了布里渊慢光可调光纤延迟线的研究现状和应用前景;
     2.给出了光纤中布里渊散射的物理图像和数学描述;考虑光纤中光波和声波横向分布的差异性,完善了受激布里渊散射的光波-声波耦合方程组;以单色光泵浦的布里渊慢光为例,论述了布里渊慢光的本质,并对布里渊慢光在小信号增益以及增益饱和情况下的延迟特性进行了讨论,指出了在增益饱和区,增益谱烧孔引入的反常色散对布里渊增益引入的正常色散的补偿甚至过补偿是导致延迟量饱和、减小甚至出现脉冲超前的根本原因;
     3.研究了基于双谱线结构泵浦光的受激布里渊散射特性;进而分析了宽带光泵浦的受激布里渊散射特性,得出了频域内斯托克斯光复振幅包络的传输方程;对高斯谱宽带光泵浦的布里渊慢光延迟特性进行了讨论,结果表明:二阶增益不均衡是引起信号失真的主要物理因素,它制约了延迟-带宽积的提高;
     4.提出利用具有平坦增益谱的宽带布里渊慢光来减小二阶增益不均衡引起的信号失真;建立数学模型得出了频域内斯托克斯光复振幅包络的传输关系,并推导出了延迟量、增益、脉冲展宽因子以及高斯型脉冲在延迟后的振幅包络解析表达式;对单级和级联系统的延迟特性进行了理论分析,结果表明:具有平坦增益谱的宽带布里渊慢光大大减小了二阶增益不均衡引起的信号失真,延迟-带宽积的进一步提高受限于正的三阶色散引起的信号失真;根据理论推导结果分析了一个单级布里渊慢光系统的延迟特性,并将理论计算结果与实验数据进行了对比,验证了理论分析的正确性;基于该理论模型,数值仿真了RZ-OOK、NRZ-OOK以及RZ-DPSK数据流经过具有平坦增益谱的宽带布里渊慢光系统后的延迟效果,并与高斯谱宽带光泵浦的布里渊慢光延迟效果进行了对比,结果表明:前者在减小信号失真方面具有明显优势;
     5.对基于双吸收峰的透明宽带布里渊慢光进行了详细理论分析,得出了延迟量、增益、脉冲展宽因子以及高斯型脉冲在延迟后的振幅包络解析表达式,可以为透明宽带布里渊慢光的设计提供指导和参考;研究了透明宽带布里渊慢光的限制因素,结果表明:它不存在增益饱和问题,但是布里渊阈值限制了延迟量的提高,同时,两个吸收峰对应的强烈反常色散区限制了信号光的带宽,并且会导致延迟量的减小以及信号的严重畸变;
     6.介绍了基于声波存储的光缓存原理,建立了数学模型;详细讨论了最大缓存时间、带宽、“读”“写”效率、输出信噪比等系统性能与存储光纤和控制脉冲参数之间的关系,提出利用单模As2Se3光纤和啁啾控制光脉冲提高基于声波存储的光缓存性能,并仿真了单个信号脉冲的光缓存性能;分析了系统的存储能力,并仿真了速率为2.5 Gb/s的NRZ-OOK和RZ-DPSK数据流基于声波存储的光缓存效果,当控制光脉冲能量约为0.34μJ、延迟量小于15 ns时,输出信噪比和读出效率分别大于15 dB和30%。
Tunable fiber-optic delay line is a key component for future all-optical network. Furthermore, it is also very useful in applications such as optical signal processing and microwave photonics. Tunable fiber-optic delay line based on stimulated Brillouin scattering is a novel tunable optical delay technology originated in recent years. It has already been one of the hottest topics in tunable optical delay technology owing to its prominent advantages such as a low control power requirement, flexibility of wavelength, room-temperature operation, and seamless integration with fiber-optic systems. In this dissertation, Brilllouin slow light and optical buffer based on acoustic storage are researched, where special attentions are paid to the problems demanding prompt solution, such as reducing signal distortion and enhancing delay-bandwidth product. The main contents of the dissertation are given as follows:
     1. Various tunable fiber-optic delay line technologies are summarized and compared. Current research status and application prospect of the tunable fiber-optic delay line based on Brillouin slow light are also summarized and analyzed.
     2. Physical image and mathematical model of the Brillouin scattering in an optical fiber are given. A set of improved coupled amplitude equations involving optical and acoustic waves for stimulated Brillouin scattering is presented by considering the difference of the transverse distribution between the optical wave and the acoustic wave in an optical fiber. Moreover, the principle of the Brillouin slow light is introduced, and the delay performance both in the undepleted pump regime and in the depleted pump regime are also analyzed when the pump light is monochromatic. The results show that the compensation and overcompensation for the normal dispersion through the anomalous dispersion introduced by the hole-burning effect in the gain specrum is responsible for the delay saturation, reduction, and even pulse advance.
     3. Stimulated-Brillouin-scattering characteristic of a pump light involving two spectral lines is discussed. Special focus is put on the stimulated-Brillouin-scattering characteristic of a broadband pump light, where transmission equation for the complex amplitude of the Stokes light in the frequency domain is deduced. The delay performance of the Brillouin slow light using a broadband pump light with a Gaussian spectrum is discussed. The results show that the second-order gain nonuniformity is mainly responsible for the signal distortion, and it confines the enhancement of the delay-bandwidth product.
     4. The method of using broadband Brillouin slow light with a flat-top gain spectrum to reduce signal distortion induced by the second-order gain nonuniformity is proposed. Transmission relationship for the complex amplitude of the Stokes light in the frequency domain is deduced. Furthermore, analytical expressions of the delay, the gain, the pulsewidth broadening ratio, and the delayed Gaussian pulse amplitude are derived. The delay performance of both single-stage and cascaded Brillouin slow-light systems are also theoretically analyzed. The results show that signal distortion induced by the second-order gain nonuniformity can be greatly reduced in the broadband Brillouin slow light with a flat-top gain spectrum and the further enhancement of the delay-bandwidth product is constrained due to the signal distortion introduced by the positive third-order dipersion. The calculating results are then compared with the experimental ones for a single-stage Brillouin slow-light system with a flat-top gain spectrum, where the results show a good agreement between them. Finally, the simulated delay performance for the RZ-OOK, NRZ-OOK and RZ-DPSK bit streams in the broadband Brillouin slow light with a flat-top gain spectrum and a Gaussian gain spetrum are compared. The results indicate that broadband Brillouin slow light with a flat-top gain spectrum is favourable for reducing signal distortion.
     5. Transparent broadband Brillouin slow light utilizing two absorption peak is studied. Analytical expressions of the delay, the gain, the pulsewidth broadening ratio, and the delayed Gaussian pulse amplitude are derived, which can be used as a reference for designing transparent broadband Brillouin slow-light system. The limiting factor for the transparent broadband Brillouin slow light is also discussed. The results show that there is no gain saturation problem in the transparent Brillouin slow light, but the enhancement of the delay is confined by the Brillouin threshold. Moreover, strong anomalous dispersion in the two absorption peak put a limit to the signal bandwidth, which can also reduce the delay and introduce serious signal distortion.
     6. The operation principle of the optical buffer based on acoustic storage is introduced, and the mathematical model is also established. The relationship between the system performances, such as maximum storage time, bandwidth,“Write”/“Read”efficiency, and output signal-to-noise ratio, and the system parameters, such as fiber parameters and control pulse parameters, is discussed. Then, the method of using chirped control pulses and a single-mode As2Se3 fiber to improve the buffer performance is proposed. Buffer performance for a single signal pulse is simulated. Furthermore, the buffer capability is analyzed, and the buffer performance for 2.5 Gb/s NRZ-OOK and RZ-DPSK bit streams are simulated. The results show that the output signal-to-noise ratio and the readout efficiency are larger than 15 dB and 30%, respectively, when the control pulse energy is about 0.34μJ and the storage time is smaller than 15 ns.
引文
[1] K. J. Backer, A. Benner, R. Hoare, et al.. On the fleasibililty of optical circuit switching for high performance computing systems [C]. Proceedings of the 2005 ACM/IEEE Conference on Supercomputing: 16-16.
    [2] M. J. O’. Mahony, D. Simeonidou, D. K. Hunter, et al.. The application of optical packet switching in future communication networks [J]. IEEE Communications Magazine, 2001, 39(3): 128-135.
    [3] C. Qiao and M. Yoo. Optical burst switching (OBS)–a new paradigm for an optical internet [J]. Journal of High Speed Networks, 1999, 8(1): 69-84.
    [4] A. H. Gnauck and P. J. Winzer. Optical phase-shift-keyed transmission [J]. J. Lightwave Technol., 2005, 23(1): 115-130.
    [5] B. Meagher, G. K. Chang, G. Ellinas, et al.. Design and Implementation of ultra-low latency optical label switching for packet-switched WDM networks [J]. J. Lightwave Technol., 2000, 18(12): 1978-1987.
    [6] A. J. Poustie, K. J. Blow, A. E. Kelly, et al.. All-optical parity checker with bit-differential delay [J]. Opt. Commun., 1999, 162(1-3): 37-43.
    [7] H. G. Weber, R. Ludwig, S. Ferber, et al.. Ultrahigh-speed OTDM-transmission technology [J]. J. Lightwave Technol., 2006, 24(12): 4616-4627.
    [8] B. Zhang, L. Zhang, L. S. Yan, et al.. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line [J]. Opt. Exp., 2007, 15(13): 8317-8322.
    [9] B. E. Olsson, L. Rau, D. J. Blumenthal, et al.. WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter [J]. IEEE Photon. Technol. Lett., 2001, 13(9): 1005-1007.
    [10] M. Hayashi, H. Tanaka, K. Ohara, et al.. OTDM transmitter using WDM-TDM conversion with an electroabsorption wavelength converter [J]. J. Lightwave Technol., 2002, 20(2): 236-242.
    [11] E. J. M. Verdurmen, G. D. Khoe, A. M. J. Koonen, et al.. All-optical data format conversion from WDM to OTDM based on FWM [J]. Microwave and Optical Technology Letters, 2006, 48(5): 992-994.
    [12] A. J. Seeds and K. J. Williams. Microwave photonics [J]. J. Lightwave Technol., 2006, 24(12): 4628-4641.
    [13] J. Capmany, B. Ortega, and D. Pastor. A tutorial on microwave photonic filters [J]. J. Lightwave Technol., 2006, 24(1): 201-229.
    [14] Y. Q. Liu, J. L. Yang, and J. P. Yao. Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line [J]. IEEE Photon. Technol. Lett., 2002, 14(8): 1172-1174.
    [15] A. Rader and B. L. Anderson. Demonstration of a linear optical true-time delay device by use of a microelectromechanical mirror array [J]. Appl. Opt., 2003, 42(8): 1409-1416.
    [16] J. P. Yao, J. L. Yang, and Y. Q. Liu. Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source [J]. IEEE Photon. Technol. Lett., 2002, 14(5): 687-689.
    [17] Y. H. Chen and R. T. Chen. A fully packaged true time delay module for a K-band phased array antenna system demonstration [J]. IEEE Photon. Technol. Lett., 2002, 14(8): 1175-1177.
    [18] Y. Q. Liu, J. P. Yao, and J. L, Yang. Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism [J]. Opt. Commun., 2002, 207(1-6): 177-187.
    [19] L. Li, S. D. Scott, and J. S. Deogun. A novel fiber delay line buffering architecture for optical packet switching [C]. Proceedings of the IEEE 2003 Global Communications Conference: 2809-2813.
    [20] J. D. LeGrange, J. E. Simsarian, P. Bernasconi, et al.. Demonstration of an integrated buffer for an all-optical packet router [J]. IEEE Photon. Technol. Lett., 2009, 21(12): 781-783.
    [21] X. M. Lu and B. L. Mark. Performance modeling of optical-burst switching with fiber delay lines [J]. IEEE Transactions on Communications, 2004, 52(12): 2175-2183.
    [22] S. N. Fu, P. Shum, N. Q. Ngo, et al.. An enhanced SOA-based double-loop optical buffer for storage of variable-length packet [J]. J. Lightwave Technol., 2008, 26(4): 425-431.
    [23] C. Y. Tian, C. Q. Wu, Z. Y. Li, et al.. Dual-wavelength packets buffering in dual-loop optical buffer [J]. IEEE Photon. Technol. Lett., 2008, 20(8): 578-580.
    [24] R. Geldenbuys, Z. Wang, N. Chi, et al.. Multiple recirculations through Crosspoint switch fabric for recirculating optical buffering [J]. Electronics Letters, 2005, 41(20): 1136-1138.
    [25] Z. F. Hu, J. Q. Sun, L, Liu, et al.. All-optical tunable delay line based on wavelength conversion and fiber dispersion [C]. Proc. of SPIE, 2007, 6838: 68380N.
    [26] Z. F. Hu, J. Q. Sun, J. Wang, et al.. Numerical study of all-optical delay line based on wavelength conversion in SOA and dispersion in DCF [C]. Proc. of SPIE, 2007, 6781: 67812O.
    [27] Y. Wang, C. Y. Yu, L. S. Yan, et al.. 44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator [J]. IEEE Photon. Technol. Lett., 2007, 19(11): 861-863.
    [28] Y. Okawachi, M. A. Foster, X. P, Chen, et al.. Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides [J]. Opt. Exp., 2008, 16(14): 10349-10357.
    [29] I. Fazal, O. Yilmaz, S. Nuccio, et al.. Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion [J]. Opt. Exp., 2007, 15(17): 10492-10497.
    [30] E. Myslivets, N. Alic, S. Moro, et al.. 1.56-μs continuously tunable parametric delay line for a 40-Gb/s signal [J]. Opt. Exp., 2009, 17(14): 11958-11964.
    [31] J. E. Sharping, Y. Okawachi, J. V. Howe, et al.. All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion [J]. Opt. Exp., 2005, 13(20): 7872-7877.
    [32] E. Myslivets, N. Alic, J. R. Windmiller, et al.. 400-ns continuously tunable delay of 10-Gb/s intensity modulated optical signal [J]. IEEE Photon. Technol. Lett., 2009, 21(4): 251-253.
    [33] T. Kurosu and S. Namiki. Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner [J]. Opt. Lett., 2009, 34(9): 1441-1443.
    [34] S. R. Nuccio, O. F. Yilmaz, S. Khaleghi, et al.. Tunable 503 ns optical delay of 40 Gbit/s RZ-OOK and RZ-DPSK using a wavelength scheme for phase conjugation to reduce residual dispersion and increase delay [J]. Opt. Lett., 2009, 34(12): 1903-1905.
    [35] M. P. Fok and C. Shu. Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear Bismuth-Oxide fiber and group velocity dispersion [J]. J. Lightwave Technol., 2008, 26(5): 499-504.
    [36] M. C. Chan, P. C. Peng, Y. Lai, et al.. Continuously tunable large-dynamic-range radio-frequency phase shifter via a soliton self-frequency-shifted source and a dispersive fiber [J]. IEEE Photon. Technol. Lett., 2009, 21(5): 313-315.
    [37] S. Oda and A. Maruta. All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation [J]. Opt. Exp., 2006, 14(17): 7895-7902.
    [38] Y. Okawachi, J. E. Sharping, C. Xu, et al.. Large tunable optical delays via self-phase modulation and dispersion [J]. Opt. Exp., 2006, 14(25): 12022-12027.
    [39] S. E. Harris, J. E. Field, and A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency [J]. Phys. Rev. Lett., 1990, 64(10): 1107-1110.
    [40] S. E. Harris, J. E. Field, and A. Kasapi. Dispersive properties of electromagnetically induced transparency [J]. Phys. Rev. A, 1992, 46(1): 29-32.
    [41] M. D. Lukin and A. Imamoglu. Controlling photons using electromagnetically induced transparency [J]. Nature, 2001, 413: 273-276.
    [42] M. D. Eisaman, A. André, F. Massou, et al.. Electromagnetically induced transparency with tunable single-photon pulses [J]. Nature, 2005, 438: 837-841.
    [43] Q. Q. Sun, Y. V. Rostovtsev, J. P. Dowling, et al.. Optically controlled delays for broadband pulses [J]. Phys. Rev. A, 2005, 72(3): 031802.
    [44] R. M. Camacho, M. V. Pack, and J. C. Howell. Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium Vapor [J]. Phys. Rev. Lett., 2007, 98(15): 153601.
    [45] R. M. Camacho, C. J. Broadbent, I. Ali-Khan, et al.. All-optical delay of images using slow light [J]. Phys. Rev. Lett., 2007, 98(4): 043902.
    [46] W. G. A. Brown, R. Mclean, A. Sidorov, et al.. Anormalous dispersion and negative group velocity in a coherence-free cold atomic medium [J]. J. Opt. Soc. Am. B, 2008, 25(12): C82-C86.
    [47] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, et al.. Ultraslow group velocity and enhanced nonlinear optical effects in a conherently driven hot atomic gas [J]. Phys. Rev. Lett., 1999, 82(26): 5229-5232.
    [48] D. Budker, D. F. Kimball, S. M. Rochester, et al.. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation [J]. Phys. Rev. Lett., 1999, 83(9): 1767-1770.
    [49] A. K. Patnaik, J. Q. Liang, and K. Hakuta. Slow light propagation in a thin optical fiber via electromagnetically induced transparency [J]. Phys. Rev. A, 2002, 66(6): 063808.
    [50] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd. Observation of ultraslow light propagation in a Ruby crystal at room temperature [J]. Phys. Rev. Lett., 2003, 90(11): 113903.
    [51] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd. Superluminal and slow light propagation in a room-temperature solid [J]. Science, 2003, 301: 200-202.
    [52] J. Kim, S. L. Chuang, P. C. Ku, et al.. Slow light using semiconductor quantum dots [J]. J. Phys.: Condens. Matter, 2004, 16(35): S3727-S3735.
    [53] H. Su and S. L. Chuang. Room-temperature slow light with semiconductor quantum-dot devices [J]. Opt. Lett., 2006, 31(2): 271-273.
    [54] P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, et al.. Slow light in semiconductor quantum well [J]. Opt. Lett., 2004, 29(19): 2291-2293.
    [55] H. Y. Tseng, J, Huang, and A. Adibi. Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconducors [J]. Appl. Phys. B, 2006, 85(4): 493-501.
    [56] A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, et al.. Observation of superluminal and slow light propagation in erbium-doped optical fiber [J]. Europhys. Lett., 2006, 73(2): 218-224.
    [57] M. A. Antón, F. Carre?o,ó. G. Calderón, et al.. Phase-controlled slow and fast light in current-modulated semiconductor optical amplifiers [J]. J. Phys. B: At. Mol. Opt. Phys., 2009, 42(9): 095403.
    [58] J. E. Heebner and R. W. Boyd.‘Slow’and‘fast’light in resonator-coupled waveguide [J]. Journal of Modern Optics, 2002, 49(14/15): 2629-2636.
    [59] Q. F. Xu, P. Dong, and M. Lipson. Breaking the delay-bandwidth limit in a photonic structure [J]. Nature Physics, 2007, 3: 406-410.
    [60] F. Morichetti, A. Melloni, C. Ferrari, et al.. Error-free continuously-tunable delay at 10Gbit/s in a reconfigurable on-chip delay-line [J]. Opt. Exp., 2008, 16(12): 8395-8405.
    [61] A. W. Elshaari, A. Abdelsalam, and S. F. Preble. Conrolled storage of light in silicon cavities [J]. Opt. Exp., 2010, 18(3): 3014-3022.
    [62] M. D. Sette, R. J. P. Engelen, M. Salib, et al.. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth [J]. Opt. Exp., 2007, 15(1): 219-226.
    [63] T. Baba. Slow light in photonic crystals [J]. Nature Photonics, 2008, 2: 465-473.
    [64] D. Dahan and G. Eisenstein. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffer [J]. Opt. Exp., 2005, 13(6): 6234-6249.
    [65] E. Shumakher, A. Willinger, R. Blit, et al.. Large tunable delay with low distortion of 10Gbit/s data in a slow light system based on narrow band fiber parametric amplification [J]. Opt. Exp., 2006, 14(19): 8540-8545.
    [66] L. L. Yi, W. S. Hu, Y. K. Su, et al.. Design and system demonstration of a tunable slow-light delay line based on fiber parametric process [J]. IEEE Photon. Technol. Lett., 2006, 18(24): 2575-2577.
    [67] Z. Y. Hu and D. J. Blumenthal. Comparing Slow-Light Properties of 10Gbps RZ Data in Dispersion Shifted Fibers and Highly Nonlinear Fibers Based on Raman-Assisted Optical Parametric Amplification [C]. Proc. of SPIE, 2007, 6838: 64820I.
    [68] J. E. Sharping, Y. Okawachi, and A. L. Gaeta. Wide bandwidth slow light using a Raman fiber amplifier [J]. Opt. Exp., 2005, 13(16): 6092-6098.
    [69] S. Blair and K. Zheng. Intensity-tunable group delay using stimulated Raman scattering in silicon slow-light waveguides [J]. Opt. Exp., 2006, 14(3): 1064-1069.
    [70] Y. Okawachi, M. A. Foster, J. E. Sharping, et al.. All-optical slow-light on a photonic chip [J]. Opt. Exp., 2006, 14(6): 2317-2322.
    [71] A. E. Willner, B. Zhang, L. Zhang, et al.. Optical signal processing using tunable delay elements based on slow light [J]. IEEE J. Sel. Topics Quantum Electron., 2008, 14(3): 691-705.
    [72] R. W. Boyd and D. J. Gauthier.“Slow”and“fast”light [C]. Progress in Optics, 2002, 436: 497-530.
    [73] K. Y. Song, M. G. Herráez, and L. Thévenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering [J]. Opt. Exp., 2005, 13(1): 82-88.
    [74] M. G. Herráez, K. Y. Song, and L. Thévenaz. Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering [J]. Appl. Phys. Lett., 2005, 87(8): 081113.
    [75] Y. Okawachi, M. S. Bigelow, J. E. Sharping, et al.. Tunable all-optical delays via Brillouin slow light in an optical fiber [J]. Phys. Rev. Lett., 2005, 94(15): 153902.
    [76] Z. M. Zhu, D. J. Gauthier, Y. Okawachi, et al.. Numercial study of of all-optical slow-light delays via stimulated Brillouin scattering [J]. J. Opt. Soc. Am. B, 2005, 22(11): 2378-2384.
    [77] K. Y. Song, M. G. Herráez, and L. Thévenaz. Long optically controlled delays in optical fibers [J]. Opt. Lett., 2005, 30(14): 1782-1784.
    [78] M. D. Stenner, M. A. Neifeld, Z. M. Zhu, et al.. Distortion management in slow-light pulse delay [J]. Opt. Exp., 2005, 13(25): 9995-10002.
    [79] M. G. Herráez, K. Y. Song, and L. Thévenaz. Arbitrary-bandwidth Brillouin slow light in optical fibers [J]. Opt. Exp., 2006, 14(4): 1395-1400.
    [80] A. Minardo, R. Bernini, and L. Zeni. Low distortion Brillouin slow light in optical fibers using AM modulation [J]. Opt. Exp., 2006, 14(13): 5866-5876.
    [81] E. Shumakher, N. Orbach, A. Nevet, et al.. On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers [J]. Opt. Exp., 2006, 14(13): 5877-5884.
    [82] Z. M. Zhu and D. J. Gauthier. Nearly transparent SBS slow light in an optical fiber [J]. Opt. Exp., 2006, 14(16): 7238-7245.
    [83] A. Zadok, A. Eyal, and M. Tur. Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump [J]. Opt. Exp., 2006, 14(19): 8498-8505.
    [84] T. Schneider, M. Junker, K. U. Lauterbach, et al.. Distortion reduction in cascaded slow light delays [J]. Electron. Lett., 2006, 42(19): 1110-1111
    [85] S. Chin, M. G. Herráez, and L. Thévenaz. Zero-gain slow & fast light propagation in an optical fiber [J]. Opt. Exp., 2006, 14(22): 10684-10692.
    [86] T. Schneider, M. Junker, and K. U. Lauterbach. Potential ultra wide slow-light bandwidth enhancement [J]. Opt. Exp., 2006, 14(23): 11082-11087.
    [87] V. P. Kalosha, L, Chen, and X. Y. Bao. Slow and fast light via SBS in optical fibers for short pulses and broadband pump [J]. Opt. Exp., 2006, 14(26): 12693-12703.
    [88] Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, et al.. Broadband SBS slow light in an optical fiber [J]. J. Lightwave Technol., 2007, 25(1): 201-206.
    [89] C. Y. Yu, T. Luo, L. Zhang, et al.. Data pulse distortion induced by a slow-light tunable delay line in optical fiber [J]. Opt. Lett., 2007, 32(1): 20-22.
    [90] B. Zhang, L. S. Yan, I. Fazal, et al.. Slow light on Gbit/s differential-phase-shift-keying signals [J]. Opt. Exp., 2007, 15(4): 1878-1883.
    [91] K. Y. Song and K. Hotate. 25 GHz bandwidth Brillouin slow light in optical fibers [J]. Opt. Lett., 2007, 32(3): 217-219.
    [92] A. Zadok, O. Raz, A. Eyal, et al.. Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers [J]. IEEE Photon. Technol. Lett., 2007, 19(7): 462-464.
    [93] B. Zhang, L. Zhang, L. S. Yan, et al.. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line [J]. Opt. Exp., 2007, 15(13): 8317-8322.
    [94] B. Zhang, L. S. Yan, J. Y. Yang, et al.. A single slow-light element for independent delay control and synchronization on multiple Gb/s data channel [J]. IEEE Photon. Technol. Lett., 2007, 19(14): 1081-1083.
    [95] Z. M. Shi, R. Pant, Z. M. Zhu, et al.. Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity [J]. Opt. Lett., 2007, 32(14): 1986-1988.
    [96] T. Schneider, R. Henker, K. U. Lauterbach, et al.. Comparison of delay enhancement mechanisms for SBS-based slow light systems [J]. Opt. Exp., 2007, 15(15): 9606-9613.
    [97] R. Pant, M. D. Stenner, M. A. Neifeld, et al.. Maximizing the opening of eye diagrams for slow-light systems [J]. Appl. Opt., 2007, 46(26): 6513-6519.
    [98] R. Pant, M. D. Stenner, M. A. Neifeld, et al.. Optimal pump profile designs for broadband SBS slow-light systems [J]. Opt. Exp., 2008, 16(4): 2764-2777.
    [99] T. Sakamoto, T. Yamamoto, K. Shiraki, et al.. Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb [J]. Opt. Exp., 2008, 16(11): 8026-8032.
    [100] T. Schneider, R. Henker, K. U. Lauterbach, et al.. Distortion reduction in slow light systems based on stimulated Brillouin scattering [J]. Opt. Exp., 2008, 16(11): 8280-8285.
    [101] T. Schneider, A. Wiatreck, and R. Henker. Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays [J]. Opt. Exp., 2008, 16(20): 15617-15622.
    [102] E. C. Granado, O. G. Calderón, S. Melle, et al.. Observation of large 10-Gb/s SBS slow light delay with low distortion using an optimized gain profile [J]. Opt. Exp., 2008, 16(20): 16032-16042.
    [103] M. A. Neifeld and M. Lee. Information theoretical framework for the analysis of a slow-light delay device [J]. J. Opt. Soc. Am. B, 2008, 25(12): C31-C37.
    [104] A. Wiatreck, R. Henker, S. PreuΒler, et al.. Zero-broadening measurement in Brillouin based slow-light delays [J]. Opt. Exp., 2009, 17(2): 797-802.
    [105] A. Wiatreck, R. Henker, S. PreuΒler, et al.. Pulse broadening cancellation in cascaded slow-light delays [J]. Opt. Exp., 2009, 17(9): 7586-7591.
    [106] R. Henker, A. Wiatreck, S. Preussler, et al.. Gain enhancement in multiple-pump-line Brillouin-based slow light systems by using fiber segments and filter stages [J]. Appl. Opt., 2009, 48(29): 5583-5588.
    [107] A. Ghosh, D. Venkitesh, and R. Vijaya. Study of Brillouin amplifier characteristics toward optimized conditions for slow light generation [J]. Appl. Opt., 2009, 48(31): G48-G52.
    [108] B. Zhang, L. S. Yan, L. Zhang, et al.. Multichannel SBS slow light using spectrally sliced incohenrent pumping [J]. J. Lightwave Technol., 2008, 26(23): 3763-3769.
    [109] J. G. Liu, T. H. Cheng, Y. K. Yeo, et al.. Stimulated Brillouin scattering based broadband tunable slow-light conversion in a highly nonlinear photonic crystal fiber [J]. J. Lightwave Technol., 2009, 27(10): 1279-1285.
    [110] J. B. Khurgin. Performance limits of delay lines based on optical amplifiers [J]. Opt. Lett., 2006, 31(7): 948-950.
    [111] T. Schneider. Time delay limits of stimulated-Brillouin-scattering-based slow light systems [J]. Opt. Lett., 2008, 33(13): 1398-1400.
    [112] A. Zadok, S. Chin, L. Thévenaz, et al.. Polarization-induced distortion in stimulated Brillouin scattering slow-light systems [J]. Opt. Lett., 2009, 34(16): 2530-2532.
    [113] A. Zadok, O. Raz, and M. Tur. Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering [J]. J. Lightwave Technol., 2007, 25(8): 2168-2174.
    [114] K. Y. Song, K. S. Abedin, K. Hotate, et al.. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber [J]. Opt. Exp., 2006, 14(13): 5860-5865.
    [115] K. S. Abedin. Stimulated Brillouin scattering in single-mode tellurite glass fiber [J]. Opt. Exp., 2006, 14(24): 11766-11772.
    [116] C. Florea, M. Bashkansky, Z. Dutton, et al.. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers [J]. Opt. Exp., 2006, 14(25): 12063-12070.
    [117] K. S. Abedin, G. W. Lu, and T. Miyazaki. Slow light generation in singlemode Er-doped tellurite fibre [J]. Electron. Lett., 2008, 44(1): 16-17.
    [118] G. S. Qin, H. Sotobayashi, M. Tsuchiya, et al.. Stimulated Brilouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation [J]. J. Lightwave Technol., 2008, 26(5): 492-498.
    [119] C. Y. Tian, C. Q. Wu, P. Shum, et al.. Stimulated Brillouin scattering of various specialty fibers and its application in slow light [C]. Proceedings of the 2008 International Conference on Advanced Infocomm Technology.
    [120] C. Jáuregui, P. Petropoulos, and D. J. Richardson. Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects [J]. Opt. Exp., 2007, 15(8): 5126-5135.
    [121] M. Lee, R. Pant, and M. A. Neifeld. Improved slow-light perdormance of a broadband stimulated Brillouin scattering system using fiber Bragg gratings [J]. Appl. Opt., 2008, 47(34): 6404-6415.
    [122] K. Y. Song, M. G. Herráez, and L. Thévenaz. Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers [J]. Opt. Exp., 2005, 13(24): 9758-9765.
    [123] S. Chin, M. G. Herráez, and L. Thévenaz. Simple technique to achieve fast light in gain regime using Brillouin scattering [J]. Opt. Exp., 2007, 15(17): 10814-10821.
    [124] K. Y. Song, K. S. Abedin, and K. Hotate. Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering [J]. Opt. Exp., 2008, 16(1): 225-230.
    [125] S. Chin, M. G. Herráez, and L. Thévenaz. Self-advanced fast light propagation in an optical fiber based on Brillouin scattering [J]. Opt. Exp., 2008, 16(16): 12181-12189.
    [126] L. L. Yi, L. Zhan, W. S. Hu, et al.. Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump [J]. IEEE Photon. Technol. Lett., 2007, 19(8): 619-621.
    [127] L. Xing, L. Zhan, L. L. Yi, et al.. Storage capacity of slow-light tunable optical buffers based on fiber Brillouin amplifiers for real signal bit streams [J]. Opt. Exp., 2007, 15(16): 10189-10195.
    [128] L. L. Yi, Y. Jaou?n, W. S. Hu, et al.. Simultaneous demodulation and slow light of differential phase-shift keying signals using stimulated-Brillouin-scattering-based optical filters in fiber [J]. Opt. Lett., 2007, 32(21): 3182-3184.
    [129] L. L. Yi, Y. Jaou?n, W. S. Hu, et al.. Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS [J]. Opt. Exp., 2007, 15(25): 16972-16979.
    [130] L. Xing, L. Zhan, S. Y. Luo, et al.. High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer [J]. IEEE J. Quantum. Electron., 2008, 44(12): 1133-1138.
    [131] Z. W. Lu, Y. K. Dong, and Q. Li. Slow light in multi-line Brillouin gain spectrum [J]. Opt. Exp., 2007, 15(4): 1871-1877.
    [132] Y. K. Dong, Z. W. Lu, Q. Li, et al.. Long optical delay lines enhanced by ring configuration in optical fibers [J]. Chin. Phys. Lett., 2007, 24(6): 1586-1588.
    [133] Y. K. Dong, Z. W. Lu, Q. Li, et al.. Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers [J]. J. Opt. Soc. Am. B, 2008, 25(12): C109-C115.
    [134] Z. Y. Zhang, X. J. Zhou, R. Liang, et al.. Influence of third-order dispersion on delay performance in broadband Brillouin slow light [J]. J. Opt. Soc. Am. B, 2009, 26(12): 2211-2217.
    [135]张旨遥,周晓军,石胜辉等.矩形谱宽带光泵浦的布里渊慢光中脉冲失真的分析[J].物理学报,2010,59(7): 4694-4700.
    [136]张旨遥,周晓军,梁锐等.矩形谱宽带光抽运的布里渊慢光理论研究[J].光学学报,2010,30(5): 1254-1260.
    [137] L. Y. Ren and Y. Tomita. Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser [J]. J. Opt. Soc. Am. B, 2008, 25(5): 741-746.
    [138] S. H. Wang, L. Y. Ren, Y, Liu, et al.. Zero-broadening SBS slow-light propagation in an optical fiber using two broadband pump beams [J]. Opt. Exp., 2008, 16(11): 8067-8076.
    [139]刘宇,任立勇,王士鹤.光纤中双宽带抽运SBS慢光及其脉冲展宽减小的理论研究[J].光学学报,2008,28(11): 2077-2082.
    [140]王士鹤,任立勇,刘宇.光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究[J].物理学报,2009,58(6): 3943-3948.
    [141] L. Y. Ren and Y. Tomita. Transient and nonlinear analysis of slow-light pulse propagation in an optical fiber via stimulated Brillouin scattering [J]. J. Opt. Soc. Am. B, 2009, 26(7): 1281-1288.
    [142] R. Y. Chiao, C. H. Townes, and B. P. Stoicheff. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves [J]. Phys. Rev. Lett., 1964, 12(21): 592-595.
    [143]程乃平,江修富,邵定蓉.声光信号处理及应用[M].北京:国防工业出版社,2004.
    [144] S. W. Harun, S. N. Aziz, N. Tamchek, et al.. Brillouin fiber laser with 20m-long photonic crystal fibre [J]. Electron. Lett., 2008, 44(18): 1065-1066.
    [145] C. Heras, J. Subías, J. Pelayo, et al.. High resolution light intensity spectrum analyzer (LISA) based on Brillouin optical filter [J]. Opt. Exp., 2007, 15(7): 3708-3714.
    [146] B. Vidal, M. A. Piqueras, and J. Marti. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering [J]. Opt. Lett., 2007, 32(1): 23-25.
    [147] F. Wang, X. Y. Bao, L. Chen, et al.. Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor [J]. Opt. Lett., 2008, 33(22): 2707-2709.
    [148] W. W. Zou, Z. Y. He, and K. Hotate. Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber [J]. IEEE Photon. Technol. Lett., 2010, 22(8): 526-528.
    [149] G. P. Agrawal. Nonlinear fiber optics (4th edition) [M]. San Diego: Academic Press, 2007.
    [150]陆金普,关治.偏微分方程数值解法(第二版)[M].北京:清华大学出版社,2004.
    [151] R. G. Smith. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering [J]. Appl. Opt., 1972, 11(11): 2489-2494.
    [152] K. Mochizuki, N. Edagawa, and Y. Iwamoto. Amplified spontaneous Raman scattering in fiber Raman amplifiers [J]. J. Lightwave Technol., 1986, LT-4(9): 1328-1333.
    [153] R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier. Performance of a WDM network based on stimulated Brillouin scattering [J]. IEEE Photon. Technol. Lett., 1989, 1(5): 111-113.
    [154] Z. M. Zhu, D. J. Gauthier, and R. W. Boyd. Stored light in an optical fiber via stimulated Brillouin scattering [J]. Science, 2008, 318: 1748-1750.
    [155] K. S. Abedin. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber [J]. Opt. Exp., 2005, 13(25): 10266-10271.
    [156] L. S. Yan, D. Zheng, W. Pan, et al.. Numerical study on SBS slow light systems using a super-Gaussian filtered incoherent pump [J]. Opt. Commun., 2009, 282(22): 4431-4435.
    [157] D. Zheng, W. Pan, L. S. Yan, et al.. Numerical investigation and optimization of SBS-based slow-light using filtered incoherent pump [J]. Chin. Phys. Lett., 2009, 26(12): 124202.
    [158] Y. Wang, W. Zhang, Y. D. Huang, et al.. Stimulated Brillouin scattering slow light in high nonlinearity silica microstructure fiber [J]. Optical Fiber Technology, 2009, 15(1): 1-4.
    [159] T. Schneider. Nonlinear optics in telecommunications [M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700