人造复合原子系统中光学效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造复合系统材料是由于纳米制作技术的快速发展而出现的一种新型人工复合材料。这种人造复合原子系统中的每一个复合原子可以由两种或者更多的纳米颗粒组成。这些纳米颗粒组分可以是半导体量子点、金属纳米粒子、纳米线、磁性化合物、基因等不同的材料组成。由于集中多种组分在同一个复合原子上,人造复合原子系统材料通常具备了每种组分的物理本征特性;同时,因为组分之间的相互耦合,其每一组分的物理本征特性也会收到相邻组分的控制,进而耦合出更多新颖多样化和多元化的物理特性,具有更广泛的应用价值。
     慢光以及Kerr非线性效应等光学效应在量子信息处理,光开关等领域存在极大的应用前景,已经引起人们广泛的关注。光学Kerr效应属于三阶非线性效应,正比于三阶极化率的实部。在通常的情况下,Kerr非线性系数都是很小。过去众多理论和实验研究结果表明利用相干光调控可以实现弱光条件下获得大的Kerr非线性系数。在本文中,我们研究了人造复合原子系统中的Kerr非线性光学效应。慢光就是减慢光的传播速度。随着光通讯以及光计算的迅速发展,控制光的速度的重要性越来越突出。电磁诱导透明(Electromagnetically Induced Transparency, EIT)、相干布居数振荡(Coherent Population Oscillation, CPO)等方法是实现慢光效应的几种常用的方法。我们研究了人造复合原子系统中的慢光效应。在本文中,我们还讨论了一种类似于电磁诱导透明的光学效应-声子诱导透明(Phonon Induced Transparency, PIT)。声子诱导透明具有电磁诱导透明很多光学特性,如无吸收通过介质,并且伴随着慢光现象。声子诱导透明产生的物理机制是声子与激子的耦合。如果没有声子的辅助作用,透明效应就会消失。本文中,我们研究了人造复合原子系统中的声子诱导透明效应。量子计算受到环境影响而产生退相干,一直是很棘手的问题。在本文中,我们讨论了声子环境、失谐量等因素对量子点中由自旋与轨道驱动的相干振荡的影响。这结果对于如何有效地遏制退相干、退纠缠具有一定的指导作用。
     综上所述,本文主要对新型人工合成材料:人造复合原子系统中的慢光以及Kerr非线性效应、声子诱导透明现象进行了一些理论研究。另外,我们还研究了声子环境、失谐量等因素对量子点中由自旋与轨道驱动的相干振荡的影响。本论文的结构如下:
     (1)对慢光,Kerr非线性光学效应以及量子点中量子计算的实现等的研究背景,基本概念及研究方法做了简单的介绍,并综述了历年来人们在慢光、非线性光学效应、量子计算的研究的最新进展和成果。
     (2)对人造复合原子系统中的Kerr非线性光学效应进行详细的讨论和介绍。我们选择量子点与金属纳米球合成的复合原子系统为研究对象,通过求解布洛赫光学方程,得到量子点中的三阶非线性光学极化率表达式。以GaAs/ AlGaAs量子点与金纳米球合成的复合原子系统材料为例,引入相关的材料参数进行数值计算。结果表明,量子点与金属纳米球之间间距越小,非线性光学效应越强。另一个重要结果是某些光频率范围内,Kerr系数的增加量比非线性吸收的增加量多。这结果对于将来的理论和实验工作都是有一定的意义。我们还可以通过改变耦合光的Rabi频率,耦合光或者探索光的频率,入射光的电场极化方向都可以得到不同的非线性光学响应。
     (3)对人造复合原子系统中慢光效应进行研究和讨论。同样利用布洛赫光学方程,得到一阶光学极化率和光群速度系数公式。量子点二能级系统中,由于粒子数相干振荡物理机制,量子点系统中可以产生慢光现象。而人造复合原子系统中,金属纳米球与量子点相互作用能使量子点系统中的慢光效应明显发生变化。量子点与金属纳米球的粒子间库仑相互作用越强,系统中信号光的群速度系数就会变得越大。同时,我们也进一步考虑到现在材料工艺技术的实际情况:粒子间间距并不能确定不变的,并对此实际情况进行了相应的理论研究。结果表明,无论粒子间距R呈高斯分布还是洛仑兹分布,只要粒子间间距的分布半宽不是很大的情况下,慢光效应的实现没有受到很大影响。
     (4)对复合原子系统中的声子诱导透明效应进行研究和讨论。由于量子点中的声子与激子相互作用,量子点二能级系统中能实现电磁诱导透明现象。我们以银纳米球与量子点为例,引入相关的材料参数进行数值计算,最后利用数据结果对该系统中的声子诱导透明现象以及伴随声子诱导透明的慢光效应进行讨论。结果表明,在给定的外加光电场的极化方向的条件下,改变金属纳米球与量子点间距,系统中的光群速度系数可以变大或者变小。
     (5)我们讨论了声子场以及失谐量对量子点系统中由自旋与轨道驱动的拉比振荡的影响。研究结果发现了失谐量会打破系统本身所拥有的对称性,而且长时极限的粒子数反转不再是零。我们同时也研究了量子点尺寸、外加磁场强度、自旋与轨道耦合系数对量子点中粒子数相干振荡的影响。从数据结果得知,我们可以采用大尺寸的量子点、小的自旋与轨道耦合系数、强的外加磁场强度都可以延长粒子数相干时间。
     最后,我们总结了本论文所研究的主要内容,并列出了我们研究所发表的论文。
Due to the rapid advance of nanotechnology, a kind of artificial complex superstructure that we call it an artificial nanocrystal complex has been exploited. Each hybrid molecule in this kind of superstructure can be combined by two or more different nanoparticles. These nanoparticles may be semiCond- uctor quantum dot(SQD), metal nanoparticle, nanowire, magnetic compound,gene,ect. Because one hybrid molecule makes up of different components, such superstructure usually owes the essential physical properties of all the components. On the other hand, the essential physical properties of each components can be modulated by neighbouring components, then lots of new physical properties can be found. So such superstructure will be worthful in an further application.
     Optical effect such as slow light and Kerr nonlinearity have many potential application ,such as quantum information processing, light switch, and so on. Because that,it has attracted great attention in those fields. Kerr optical effect belongs to three-order nonlinear optical effect. The Kerr coefficient is direct proportion to the real part of three-order susceptibility. In the common case, the Kerr coefficient is very small. The result of many past theroetical and experimental researches shows that a large Kerr coefficient in a weak light will be obtained by the way of the coherent light control. Slow light means the speed of the light will be slow down. With the rapid progess of optical communication and optical computation, the control of light speed becomes more and more important. Electromagnetically Induced Transparency (EIT) and Coherent Population Oscillation (CPO) etc. are some amongs the usual ways to the generation of the slow light effect. In this thesis, we study the slow light effect in an artificial hybrid nanocrystal complex system. In this thesis, we also discuss one kind of optical effect: Phonon Induced Transparency (PIT), which is a similar to EIT. PIT owns some same optical properties of EIT, such as light passing through medium without absorption and slow light. The coupling between the phonon and the exciton is the physical mechanism of the generation of PIT. Without the phonon effect, the transparency will be dissappear. It is a very diffcult problem that the phonon surrounding leads to decoherence of the quantum computation. In this thesis, we discuss the phonon surrounding and the detuning will influence spin-orbit driven coherent oscillation in the quantum dot. Our theoretical result would shed light on how to efficiently suppress decoherence and distanglement.
     To summarize, some related theoretical investigation on slow light, Kerr nonlinearity and phonon induced transparency in an artificial hybrid nanocrystal complex are provided in this thesis and we have also studied phonon effect on the realization of quantum computation in quantum dot. Some results are listed as follows:
     (2) The research background, the fundamental conception and the method have been introduced, and the recent research achievement on slow light,nonlinear optics and quantum computation have been summarized as well.
     (2) Kerr nonlinearity in a hybrid nanocrystal complex is studied. We choose the hybrid molecule composed of quantum dot and metal particle as investigated object. By the generalized optical Bloch equations, the expression of the nonlinear susce- ptibility in a hybrid complex has been derived. We use GaAs / AlGaAs quantum dots and Au metal particles as example to find out how the Kerr nonlinearity changes. The results show that when the interparticle distance between quantum dot and metal particle is smaller, the nonlinear optical effect will be enhanced. Another important result is that the increasing quantum of Kerr coefficient is more than that of nonlinear absorption in some light frequencies. The result will be meanful in the furrther theoretical or experimental research. We also can obtain a different nonlinear optical response by altering the Rabi frequency of the control light, the frequency of the control or the proble light and the electric field polarization direction.
     (3) Slow light effect in a hybrid complex has been studied. The expression of linear optical susceptibility has been derived using the generalized optical Bloch equation too. Because of quantum coherent oscillation, slow light can be produced in a quantum dot system that has been treated as two-level energy system. When the coulomb interaction between metal particle and quantum dot is stronger, the group velocity index of signal light in hybrid complex are larger. At the same time, we also furtherly consider the factual case of the modern artificial technology: the distance between two nanoparticles cannot be constanted. The corresponding theoretical investi- gation has been carried throughed. The results show that the generation of slow light effect will not be influenced with a smaller half width of the distribution in Gaussian distribution or Lorenz distribution.
     (4) Phonon Induced Transparency in a hybrid complex is investigated. Because of the interaction between phonon and exciton, electromagnetically induced transparency can be generated in quantum dot system. We choose the hybrid molecule composed of Ag metal particle and quantum dot to find out how the phonon-induced transparency and slow light effect change. The results show that when the interparticle distance between metal particle and quantum dot is shorter, the group velocity index can be larger or smaller for choosing different electric field polarization of external light.
     (5) The effect of detunig and phonon surrounding on coherent oscillation in a single quantum dot has been studied. The results show that the detuning will break the symmetry of system and the population inversion in long- time limit will be not zero any longer. We also study the size of the quantum dot, the intensity of the magnetic field and spin-orbit constant coupling will be influence the population oscillation in the quantum dot. From the data, we know that the stronger magnetic field intensity, the smaller spin-orbit coupled coefficient, the larger size of quantum dot all can make the coherence time of population osicllation longer.
     In the last chapter, the main contents and conclusion of my dissertation have been summarized.
引文
1. P.A.Franken, A.E.Hill, C.W.Peters and Weinreich,“Generation of Optical Harmon- ics”, Phys.Rev.Lett., 1961, 7, 118.
    2.过已吉,非线性光学,西安,西北电讯工程学院出版社,1986, p1-200.
    3. H.Schmidt and A.Imamogiu,“Giant Kerr Nonlinearities Obtained by Electromagn- etically Induced Transparency”, Opt.Lett., 1996, 21, 1936.
    4. S.E.Harris and Y.Yamaoto,“Photon Switching by Quantum Interference”, Phys.Rev .Lett., 1998, 81,3611.
    5. M.Xiao, H.Wang and D.Goorskey,“Light Controlling Light with Enhanced Kerr Nonlinearity”, Optics & Photons News, 2002, September, 45.
    6. U.Fano,“Effects of Configuration Interaction on Intensities and Phase Shifts”, Phys .Rev., 1961, 124, 1866.
    7. O.A.Kocharovskaya and Y.I.Khanon,“Coherent Amplification of an ultrashort Pul- se in a Three-Level Medium without a Population Inversion”, Jetp Letters, 1988, 48, 630.
    8. S.E.Harris,“Lasers without Inversion: Interference of Lifetime-Broadened Reson- ances”, Phys.Rev.Lett., 1989, 62, 1033.
    9. M.O.Scully, S.Y.Zhu and A.Garielides,“Degerate Quantum-Beat Laser Lasing with -out Inversion and Inversion without Lasing”, Phys.Rev.Lett., 62, 2813 (1989).
    10. K.J.Boller, A.Immamoglu and S.E.Harris,“Observation of Electromagnetically Induced Transparency”, Phys.Rev.Lett., 1991, 66, 2593.
    11. J.E.Field, K.H.Hahn and S.E.Harris,“Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor”, Phys.Rev.Lett.,1991, 67, 3062.
    12. J.B.Banacloche, Y.Q.Li, S.Z.Jin and M.Xiao,“Electromagnetically Induced Trans- parency in Ladder-Type Inhomogeneously Broadened Media: Theory and Experiment”, Phys.Rev.A, 1995, 51, 576.
    13. J.Q.Li and M.Xiao,“Electromagnetically Induced Transparency in a Three-LevelΛ-Type System in Rubidium Atoms”, Phys.Rev.Lett., 1995, 51,2703.
    14. Y.Zhao, C.K.Wu, B.S.Ham, M.K.Kim and E.Awad,“Microwave Induced Transpa-rency in Ruby”, Phys.Rev.Lett., 1997, 79, 641.
    15. M.S.Bigelow, N.N.Lepeshkin and R.W.Boyd,“Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature”, Phys.Rev.Lett., 2003, 90, 11903.
    16. M.S.Bigelow, N.N.Lepeshkin and R.W.Boyd,“Superluminal and Slow Light Pro- pagation in a Room-Temperature Solid”, Science, 2003, 301, 200.
    17. P.C.Ku, F.Sedgwick and C.J.Chang-Hasnain,“Slow Light in Semiconductor Qua- ntum Wells”, Opt.Lett., 2004, 29, 2291.
    18. J.Kim, S.L.Chuang and P.C.Ku,“Slow Light Using Semicondutor Quantum Dots”, Phys: Condens Mat., 2004, 12, S3735.
    19. H.Su and S.L.Chuang,“Room-Temperature Slow Light with Semiconductor Qua- ntum-Dot Devicees”, Opt.Lett., 2006, 31, 271.
    20. G.Piredda, R.W.Boyd,“Slow Light by means of Coherent Population Oscillations: Laser Linewidth Effects”, Journal of the European Optical Society-Rapid Publications, 2007, 2, 07004.
    21. L.V.Hau, S.E.Harris, Z.Dutton and C.H.Behroozi,“Light Speed Reduction to 17 Met res per Second in Ultracold Atomic Gas”,Nature, 1999, 397, 594.
    22. S.H Lin, K.Y.Hsu and P.Yeh,“Experimental Observation of the Slowdown of Opt- ical Beams by a Volume-Index Grating in a Photorefractive LiNO3 Crystal”, Opt.Lett., 2000, 25, 1582.
    23. O.Kocharovskaya, Y.Rostortsev and M.O.Scully,“Stopping light via Hot Atoms”, Phys.Rev.Lett., 2001, 86, 628.
    24. A.V.Turukin, V.S.Sudarchanan and M.S.Shahriar,“Observation of Ultraslow and Stored Light Pulses in a Solid”, Phys.Rev.Lett., 2002, 88, 023602.
    25. R.W.Boyd, M.G.Rcymer, P.Narum and D.J.Harter,“Four-Wave Paramatric Intera- ction in a Strongly Driven Two-Level System”, Phys.Rev.A, 1981, 24, 411.
    26. R.W.Boyd and D.J.Gauther,“Slow and Fast Light in Progress in Optics”, E.Wolf, ed, 2002, 6, 497.
    27. R.W.Boyd, Nonlinear Optics, 2003, San Diego.
    28. R.W.Boyd, D.J.Gauthier and A.L.Gaeta,“Application of Slow Light in Telecomu-nications”, Optics & PhotonicsNews, 2006, 17, 18.
    29. K.Y.Song, M.G.Herraez and L.Thevenaz,“Observation of Pulse Delaying and Advancement in Optical Fibers Using Stimulated Brillouin Scattering”, Opt.Express, 2005, 13, 82.
    30. U.Weiss, Quantum Dissipative System, 1993, (World scientific, Singapore).
    31.曾谨言,量子力学导论,北京,1998,北京大学出版社(第二版).
    32. W.G.Unruh,“Maintaining Coherence in Quantum Computers”, Phys.Rev.A, 1995, 51, 992.
    33. P.W.Shor,“Scheme for Reducing Decoherence in Quantum Computer Memory”, Phys.Rev.A, 1995, 52, R2493.
    34. A.M.Steane,“Error Correcting Codes in Quantum Theory”, Phys.Rev.Lett., 1996, 77, 793.
    35. A.R.Calderbank and P.W.Shor,“Good Quantum Error-Correcting Codes Exist”, Phys.Rev.A, 1996, 54, 1098.
    36. E.Knill and R.Laflamme,“Theory of Quantum Error-Correcting Codes”, Phys. Rev.A, 1997, 55, 900.
    37. L.Duan and G.Guo,“Preserving Coherence in Quantum Computation by Pairing Quantum Bits”, Phys.Rev.Lett., 1997, 79, 1953.
    38. P.Zanardi and M.Rasetti,“Noiseless Quantum Codes”Phys.Rev.Lett., 1997, 79, 3306.
    39. D.A.Lidar, I.L.Chuang and K.B.Whaley,“Decoherence-Free Subspaces for Quant- um Computation”, Phys.Rev.Lett., 1998, 81, 2594.
    40. L.Viola and S.Lloyd,“Dynamical Suppression of Decoherence in Two-State Qua- ntum Systems”, Phys.Rev.A, 1988, 58, 2733.
    41. L.Viola, E.Knill and S.Lloyd,“Dynamical Decoupling of Open Quantum Systems”,Phys.Rev.Lett., 1999, 82, 2417.
    42. L.Viola, S.Lloyd and E.Knill,“Universal Control of Decoupled Quantum Systems”, Phys.Rev.Lett., 1999, 83, 4888.
    43. D.A.Lidar, D.Bacon and K.B.Whaley,“Concatenating Decoherence-Free Subspa- ces with Quantum Error Correcting Codes”, Phys.Rev.Lett., 1999, 82, 4556.
    44. L.Wu and D.A.Lidar,“Creating Decoherence-Free Subspaces Using strong and Fast Pulses”, Phys.Rev.Lett., 2002, 88, 207902.
    45. L.Viola,“Quantum Control via Encoded Dynanical Decoupling”, Phys.Rev.A, 2002, 66, 012307.
    46. J.I.Cirac and P.Zoller,“Bulk Spin-Resonance Quantum Computation”, Science, 1997, 275, 350.
    47. B.E.Kane,“A Silicon-Based Nuclear Spin Quantum Computer”, Nature, 1998, 393, 133.
    48. Y.Nakamura, Yu.A.Pashkin and J.S.Tsai,“Coherent Control of Macroscopic Qua- ntum States in a Single-Cooper-Pair Box”, Nature, 1999, 398, 786.
    49. N.J.Cerf, C.Adami and P.G.Kwiat,“Optical Simulation of Quantum Logic”, Phys. Rev.A, 1998,57, R1477.
    50. G.K.Brennen, C.M.Caves, P.S.Jessen and I.H.Deutsch,“Quantum Logic Gates in Optical Lattices”, Phys.Rev.Lett., 1999, 82, 1060.
    51. P.M.Platzman and M.I.Dykman,“Quantum Computing with Electrons Floating on Liquid Helium”, Science, 1999, 284, 1967.
    52. V.Privman, I.D.Vagnar and G.Kventsel,“Quantum Computation in Quantum-Hall Systems”, Phys.Lett.A, 1998, 239, 141.
    53. R.Ionicioiu, G.Amaratunga, F.Udrea,“Ballistic Single-Electron Quputer”, quant- ph/9907043, 1999.
    54. T.Sleator and H.Weinfurter,“Realizable Universal Quantum Logic Gates”, Phys. Rev.Lett., 1997, 74, 4087.
    55. D.J.Eaglesham and M.Cerullo,“Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100)”, Phys.Rev.Lett., 1990, 64, 1943.
    56. J.Z.Zhang,“Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface”, Acc.Chem.Res., 1997, 30, 423.
    57. J.Z.Zhang,“Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticle”, J.Phys.Chem.B, 2000, 104, 7239.
    58. A.M.Schwartzberg, T.Y.Olson, C.E.Talley and J.Z.Zhang,“Synthesis, Character- ization, and Tunable Optical Properties of Hollow Gold Nanospheres”, J.Phys.Chem.B, 2006, 110, 19935.
    59. T.Y.Olson, A.M.Schwartzberg, C.A.Orme, C.E.Talley, B.O.Connell and J.Z.Zhang,“Hollow Gold-Silver Double-Shell Nanospheres: Structure, Optical Absorption, and Surface-Enhanced Raman Scattering”, J.Phys.Chem.C, 2008, 112, 6319.
    60. T.Lpez-Luke, A.Wolcott, L.Xu, S.Chen, Z.Wen, J.Li, E.D.L.Rosa and J.Z.Zhang,“Nitrogen-Doped and CdSe and Quantum-Dot-Sensitized Nanocrystalline Tio Films for Solar Energy Conversion Applications”, J.Phys.Chem.C, 2008, 112, 1282.
    61. A.M.Schwartzberg, T.Y.Oshiro, J.Z.Zhang, T.Huser and C.E.Talley,“Improving Nanoprobes Using Surface-Enhanced Raman Scattering from 30-nm Hollow Gold Particles”, Anal.Chem, 2006, 78, 4732.
    62. J.Joo, H.B.Na, T.Yu, J.H.Yu, Y.W.Kim, F.Wu, J.Z.Zhang and T.Hyeon,“Generli- zedand Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals”,J.Am.Chem. Soc., 2005, 125, 11100.
    63. R.G.Xie, U.Kolb, J.X.Li, T.Basche and A.Mews,“Surface Chemistry of Semicon- ductor Nanocrystals”, J.Am.Chem.Soc., 2005, 127, 7480.
    64. Y.W.Cao and U.Banin,“Synthesis and Characterization of InAs/InP and InAs/ CdSe Core/Shell Nanocrystals”, Angew.Chem.Int.Ed, 1999, 38, 3692.
    65. H.Kim, M.Achermann, L.P.Balet, J.A.Hollingsworth andV.I.Klimov,“Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites: Bifunctional Magnetic- Optical Nanocrystals”, J.Am.Chem.Soc., 2005,127, 544.
    66. W.Lu, B.Wang, J.Zeng, X.P.Wang, S.Y.Zhang and J.G.Hou,“Synthesis of Core/ Shell Nanoparticles of Au/CdSe via Au-Cd Bialloy Precursor”, Langmuir, 2005, 21, 3684.
    1. S.Prusty, H.S.Mavi and A.K.Shukla,“Optical Nonlinearity in Silicon Nanoparticles: Effect of Size and Probing Intensity”, Phys.Rev.B, 2005, 71, 113313.
    2. H.Kishida, K.Hirota, T.Wakabayshi, B.Lee, H.Kokubo, H.Yamamoto and H.Okamo to,“Third-Order Optical Nonlinearity in Charge-Transfer-Type Conjugated Polymers”, Phys.Rev.B, 2004, 70, 115205.
    3. H.Oka, S.Takeuchi and K.Sasaki,“Optical Response of Two-level Atom with Refl- ection Geometry as A Model of A Quantum Gate”, Phys.Rev.A, 2005, 72, 013816.
    4. T.Tritschler, O.D.Mucke and M.Wegener,“Extreme Nonlinear Optics of Two-level System”, Phys.Rev.A, 2003, 68, 033404.
    5. H.Yildirim and M.Tomak,“Nonlinear Optical Properties of A Poschl-Teller Quant- um Well”, Phys.Rev.B, 2005, 72, 115340.
    6. J.R.Madureira, M.H.Degani and M.Z.Maialle,“Nonlinear Optical Absorption of Semiconductor Quantum Wires: Photoexcitation Dynamical Effects”, Phys.Rev.B, 2003 , 68, 161301.
    7. H.Wang, D.Goorskyey and M.Xiao,“Enhanced Kerr Nonlinearity via atomic Cohe- rence in A Three-level Atomic System”, Phys.Rev.Lett., 2001, 87, 073601.
    8. Y.Cui, Q.Wei, H.Park and C.M.Lieber,“Nanowire Nanosensors for Highly Sensiti- ve and Selective Dectection of Biological and Chemical Species”, Science, 2001, 293, 1289.
    9. Y.Yin and A.P.Alivisatos,“Colloidal Nanocrystal Synthesis and the Organic-inorga- ncial Interface”, Nature (London), 2005, 437, 664.
    10. E.Dulkeith, M.Ringler, T.A.Klar and J.Feldmann, A.Javier and W.J.Parak,“Gold Nanoparticles Quench Fluoresence by Phase Induced Radiative Rate Suppression”, Nano Lett., 2005, 5 , 585.
    11. J.Lee, A.O.Govorov, J.Dulka and N.A.Kotov,“Bioconjugates of CeTe Nanowires and Au Nanoparticles: Plasmon-Exciton Interaction, Luminesecence Enhancement, and Collective Effects”, Nano Lett.,2004, 4 , 2323.
    12. K.T.Shimizu, W.K.Woo, B.R.Fisher, H.J.Eisler and M.G.Bawendi,“Surface-Enha- nced Emission from Single Semiconductor Nanocrystals”, Phys.Rev.Lett., 2002, 89 ,117401.
    13. J.Lee, A.O.Govorov, J.Dulka and N.A.Kotov,“Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer”, Angew. Chem., 2005, 117, 7605.
    14. K.Ray, R.Badugu and J.R.Lakowicz,“Metal-Enhanced Fluoresence from CeTe Nanocrystals: A Single Molecule Fluorscence Study”, J.Am.Chem.Soc, 2006, 128 , 8998.
    15. W.Zhang, A.O.Govorov and G.W.Bryant,“Semiconductor-Metal Nanoparticle Molecules: Hybrid Excitons and the Nonlinear Fano Effect”, Phys.Rev.Lett., 2006, 97, 146804.
    16. A.O.Govorov, G.W.Bryant, W.Zhang, T.Skeini, Lee J, N.A.Kotov, J.M.Slocik and R.R.Naik,“Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductor-Met- al Nanoparticle Assemblies”, Nano Lett., 2006, 6 , 984.
    17. R.W.Boyd, Nonlinear Opt., 1992, (San Diego, CA: Academic) P 225.
    18. C.C.Yu, J.R.Bochinski, T.M.Kordich, T.W.Mossbery and Z.Ficek,“Driving the Driven Atom: Spectral Signatures”, Phys.Rev.A , 1997, 56, R4381.
    19. A.Yariv , Quantum Electronics, 1975, (New York: Wiley).
    20. Y.W.Jiang and K.D.Zhu,“Local Field Effects on Phonon-Induced Transparency in Quantum Dots Embeded in A Semiconductor Medium”, Appl.Phys.B, 90 , 79 (2008).
    21. G.S.Agarwal,“Electromagnetic-Field-Induced Transparency in High-Density Exc- iton System”, Phys.Rev.A , 1995, 51, R2711.
    22. B.I.Greene, J.F.Muller, J.Orenstein, D.H.Rapkine, S.Schmitt-Rink and M.Thakur,“Phonon-Mediated Optical Nonlineatity in Polydiacetylene”, Phys.Rev.Lett., 1988, 61 325.
    23. J.F.Lam, S.R.Forrest and G.Tangonan,“Optical Nonlinearities in Crystalline Orga- nic Multiple Quantum Wells”, Phys.Rev.Lett., 1991, 66, 1614.
    1. L.V.Hau, S.E.Harris, Z.Dutton and C.H.Behroozi,“Light Speed Reduction to 17 Meters per Second in An Ultracold Atomic Gas”, Nature (London), 1999, 397, 594.
    2. M.M.Kash, V.A.Sautenkov, A.S.Zibro, L.Hollberg, G.R.Welch, M.D.Lukin, Y.Rost- ovesev, E.S.Fry and M.O.Scully,“Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in A Coherently Driven Hot Atomic Gas”, Phys.Rev.Lett., 1999, 82, 5299.
    3. S.Inouye, R.F.Low, S.Gupta, T.Pfau, A.Gorlitz, T.L.Gustavson, D.E.Pritchard and W.Ketterle,“Amplification of Light and Atoms in A Bose-Einstein Condensate”, Phys.Rev.Lett., 85, 4255 (2002).
    4. M.S.Bigelow, N.N.Lepeshkin and R.W.Boyd,“Observation of Ultraslow Light Pro- pagation in A Ruby Crystal at Room Temperature”, Science, 2003, 301, 200.
    5. X.Zhao, P.Palinginis, B.Pesala, C.J.Chang-Hasnain and P.Hemmer,“Tunable Ultra- slow Light in Vertical-Cavity Surface Emitting Laser Amplifier”, Opt.Express.,2005, 13, 7899.
    6. H.Su and S.L.Chuang,“Room-Temperature Slow Light with Semiconductor Quant- um-Dot Devices”, Opt.Lett., 31, 271 (2006).
    7. F.Ohman, K.Yvind and J.Mork,“Voltage-Controlled Slow Light in An Integrated Semiconductor Structure with Net Gain”, Opt.Express., 2006, 14, 9955.
    8. Y.Cui, Q.We, H.Park and C.M.Lieber,“Nanowire Nanosensors for Highly Sensiti- ve and Selective Detection of Biological and Chemical Species’, Science,2001, 293, 1289.
    9. Y.Yin and A.Alicisatos,“Colloidal Nanocrystal Synthesis and the Organic-inorganic Interface”, Nature (London), 2005, 437, 664.
    10. E.Dulkeith, M.Ringler, T.A.Klar, J.Feldmann, A.Javier and W.J.Parak,“Gold Nan- oparticle Quench Fluoresence by Phase Induced Radiative Rate Suppression”, Nano Lett., 2005, 5, 585.
    11. D.Zanchet, C.M.Micheel, J.W.Parak, D.Gerion, S.C.Williams and A.P.Alivisatos,“Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupin-gs”, J.phys.Chem.B, 2002, 106, 11758.
    12. R.Elghanian, J.J.Storhoff, R.C.Mucic, R.L.Letsinger and C.A.Mirkin,“Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles”, Science, 1997, 277, 1078.
    13. C.A.Mirkin, R.L.Letsinger, R.C.Mucic and J.J.Storhoff,“A DNA-Based Method for Rationally Assembling Nanoparticle into Macroscopic Materials”, Nature, 1996, 382, 607.
    14. A.P.Alivisatos, K.P.Johnsson, X.Peng, T.E.Wilson, C.J.Loweth, M.P.B.Jr and P.G. Schultz,“Organization of Nanocrystal Molecules Using DNA”, Nature,1996, 382, 609.
    15. H.Imahori, S.Fukuzumi,“Porphyin Monolayer-Modified Gold Clusters as Photo- active Materials”, S.Adv.Mater., 2001, 13, 1197.
    16. K.Aslan and V.H.Perez-Luna,“Quenched Emission of Fluorescence by Ligand Functionalized Gold Nanoparticle”, Journal of Fluorescence, 2004, 14, 401.
    17. B.Dubertret, M.Calame and A.J.Libchaber,“Single-Mismatch Detection Using Gold-Quenched Flourescent Oligonucleotides”, Nature, 2001, 19, 365.
    18. D.J.Maxwell, J.R.Taylor and S.Nie,“Self-Assembled Nanoparticle Probes for Re- cognition and Detection of Biomolecules”, J.Am.Chem.Soc., 2002, 124, 9606.
    19. J.Yguerabide, E.E.Yaguerabide,“Resonance Light Scattering Particles as Ultrase- nsitive Labels for Detection of Analytes in a Wide Range of Applications”, J.Cell.Bio- chem.Suppl., 2001, 37, 71.
    20. T.Soller, M.Ringler, M.Wunderlich, T.A.Klar, J.Feldmann,“Radiative and Nonra- diative Rates of Phosphors Attached to Gold Nanoparticles”, Nano Lett.,2007, 7, 1941.
    21. J.Lee, A.O.Govorov, J.Dulka and N.A.Kotov,“Bioconjugates of CeTe Nanoparti- cle: Plasmon-Exciton Interaction, Luminscence Enhancement, and Collective Effects”, Nano Lett., 2004, 4, 2323.
    22. K.T.Shimizu, W.K.Woo, B.R.Fisher, H.J.Eisler and M.G.Bawendi,“Surface-Enha- nced Emission from Single Semiconductor Nanocrystals”, Phys.Rev.Lett., 2002, 89, 117401.
    23. J.Lee, A.O.Govorov and N.A.Kotov,“Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer”, Angew.Chem.,2005, 117 , 7605.
    24. K.Ray, R.Badugu and J.R.Lakowicz,“Metal-Ehanced Fluorscence from CeTe Nanocrystals: A Single-Molecule Fluorescence Study”, J.Am.Chem.Soc., 2006, 128, 8998.
    25. W.Zhang, O.A.Govorov and G.W.Bryant,“Semiconductor-Metal Nanoparticle Mo- lecules: Hybrid Excitons and the Nonlinear Fano Effect”, Phys.Rev.Lett., 2006, 97, 146804.
    26. A.O.Govorov, G.W.Bryant, W.Zhang, T.Skeini, Lee J, N.A.Kotov, J.M.Slocik and R.R.Naik,“Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductors-Me- tal Nanoparticle Assemblies”, Nano Lett., 2006, 6, 984.
    27. C.C.Yu, J.R.Bochinski, T.M.V.Kordich, T.W.Mossberg and Z.Ficek,“Driving the Driven Atom: Spectral Signatures”, Phys.Rev.A , 1997, 56, R4381.
    28. A.Yariv , Quantum Electronics, 1975, ( New York: Wiley).
    29. M.Pelton, J.Aizpurua and G.Bryant,“Metal-Nanoparticle Plasmonics”, Laser Pho- ton.Rev, 2008, 2, 136.
    30. Y.Yan, W.Zhang, S.Duan, X.Zhao and A.O.Govorov,“Optical Properties of Coupl- ed Metal-Semicondutor and Metal-Molecule Nanocrystal Complexes: Role of Multip- ole Effects”, Phys.Rev.B, 2008, 77, 165301.
    31. G.S.Agarwal,“Electromagnetic-Field-Induced Transparency in High-Density Exc- iton System”, Phys.Rev.A, 1999, 51, R2711.
    32. B.I.Greene, J.F.Muller, J.Orenstein, D.H.Rapkine, S.Schmitt-Rink and M.Thakur,“Phonon-Mediated Optical Nonlinearity in Polydiacetylene”, Phys.Rev.Lett.,1988, 61 , 325.
    33. J.F.Lam, S.R.Forrest and G.L.Tangonan,“Optical Nonlinearities in Crystalline Or- ganic Multiple Quantum Wells”, Phys.Rev.Lett.,1991, 66, 1614.
    34. R.W.Boyd, Nonlinear Optics, 1992 (San Diego, CA: Academic).
    35. R.S.Bennink, R.W.Boyd, C.R.Stroud and V.Wong,“Enhanced Self-Action Effects by Electromagnetically Induced Transparency in the Two-level Atom”, Phys.Rev.A, 2001, 63, 033804.
    36. S.E.Harris, J.E.Field and A.Kasapi,“Dispersive Properties of Electromagnetically Induced Transparency”, Phys.Rev.A, 1992, 46, R29.
    36. Y.Yan, W.Zhang, S.Duan and X.Zhao,“Plasmon-Enhanced Midinfrared Generat- ion from Difference Frequency in Semiconductor Quantum Dots”, J.Appl.Phys., 2008, 103 , 104314.
    37. I.C.Khoo, D.H.Werner, X.Lian and A.Diaz,“Nanosphere Dispersed liquid Cryst- als for Tunable Negative-Zero-Positive Index of Refraction in the Optical and Terahe- rtz Regimes”, Opt.Lett., 2006, 31, 2592.
    1.K.-J.Boller, A.Imamoglu, and S.E.Harris,“Observation of Electromagnetically Induced Transparency”, Phys.Rev.Lett.,1991, 66, 2593.
    2.M.D.Lukin, P.R.Hemmer, M.Loffler, and M.O.Scully,“Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence”, Phys.Rev .Lett., 1998, 81,2675.
    3.S.E.Harris, Y.Yamamoto,“Photon Switching by Quantum Interference”, Phys.Rev. Lett.,1998, 81,3611.
    4.A.S.Zibrov, M.D.Lukin, L.Hollberg, and M.O.Scully,“Efficient Frequency Up- -Conversion in Resonant Coherent Media”, Phys.Rev.A,2002, 65, 051801( R ).
    2. L.Deng, M.Kozuma, E.W.Hagley, and M.G.Payne,“Opening Optical four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves”, Phys.Rev. Lett.,2002, 88,143902.
    3. L.Deng, and M.G.Payne,“Inhibiting the Onset of the Three-Photon Desteuctive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency”, Phys.Rev.Lett.,2003, 91, 243902.
    4. S.E.Harris,“Lasers without Inversion: Interference of Lifetime-Brodened Resona- nces”, Phys.Rev.Lett., 1989, 62,1033.
    8. E.Paspalakis, S.-Q.Gong and P.L.Knight,“Spontaneous Emission-Induced Coher- ent Effects in Absorption and Dispersion of A V-Type Three-level Atom”, Opt. Com- mun, 1998, 152, 293.
    9. K.Hakuta, L.Marmet and B.P.Stoicheff,“Electric-Field-Induced Second-Harmonic Generation wih Reduced Absorption in Atomic Hydrogen”, Phys.Rev.Lett., 1991, 66, 596.
    10. R.R.Moseley, S.Shahriar, and P.R.Hemmer,“Electromagnetically-Induced Fous- ing”, Phys.Rev.A, 1996, 53, 408.
    11. L.V.Hau, S.E.Harris, Z.Dutton, and C.H.Behroozi,“Light Speed Reduc- tion to 17 Metres per Second in An Ultracold Atomic Gas”, Nature, 1999, 397, 594.
    12. B.S.Ham, E.S.Shahriar and P.R.Hemmer,“Electromagnetically Induced Transpar-ency over Spectral Hole-Burning Temperature in A Rare-Earth-Doped Solid”, J.Opt. Soc.Am.B, 1999, 16,801.
    13. C.C.Phillips, E.Paspalakis, G.B.Serapiglia, C.Sirtori and K.L.VodopyAnov,“Observation of Electromagnetically Induced Transparency and Measuremets of Subband Dynamics in A Semiconductor Quantum Well”, Physica E, 2000, 7,166.
    14. M.Phillips, H.Wang,“Spin Coherence and Electromagnetically Induced Transpa- rency via Exciton Correlations”, Phys.Rev.lett.,2002, 89, 186401.
    15. B.S.Ham, P.R.Hemmer, and M.S.Shahriar,“Efficient Electromagnetically Induced Transparency in A Rare-Earth Doped Crystal”, Opt.Commun., 1997, 144, 277.
    16. K.Zhu and W.Li,“Electromagnetically Induced Transparency Due to Exciton- Phonon Interaction in An Organci Quantum Well”, J.Phys.B:at.Mol.Opt.Phys., 2001, 34, L679.
    17. W.Zhang, A.O.Govorov and G.W.Bryant,“Semiconducotr-Metal Nanoparticle Molecules: Hybrid Excitons and the Nonlinear Fano Effect”,Phys.Rev.Lett., 2006, 97,146804.
    18. A.O.Govorov, G.W.Bryant, W.Zhang, T.Skeini and J.Lee,“Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductor-Metal Nanoparticle Assemblies”, Nano Lett., 2005, 5, 585.
    19. E.Dulkeith, M.Ringler, T.A.Klar, J.Feldmann, A.M.Javier and W.J.Parak,“Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression”, Nano Lett., 2005, 5, 585.
    20. Z.Gueroui and A.Libachaber,“Single-Molecule Measurements of Gold-Quenched Quantum Dots”, Phys.Rev.Lett.,2004, 93, 166108.
    21. J.Lee, A.O.Govorov, J.Dulka, and N.A.Kotov,“Bioconjugates of CeTe Nanowires and Au nanoparticles: Plasmon-Exciton Interaction, Luminscence Enhancement, and Collective Effects”, Nano Lett., 2004, 4, 2323.
    22. J.Lee, A.O.Govorov, J.Dulka and N.A.Kotov,“Bioconjugated Superstructures of CeTe Nanowires and Nanoparticles: Multistep Cascade Forster Resonance Energy Transfer and Energy Channeling”,Nano Lett., 2005, 5, 2063.
    23. Y.Jiang and K.Zhu,“Local Field Effects on Phonon-Induced Transparency inQuantum Dots Embedded in A Semiconductor Medium”, Appl.Phys.B, 2008, 90, 79.
    24. M.Bayer, A.Kuther, A.Forchel, A.Gorbunov, V.B.Timofeev,F.Schafer, J.P.Reithmaier, T.L.Reinecke and S.N.Walck,“Electron and Hole g Factors and Exchange Interaction form Studies of the Exciton Fine Structure in In0.60Ga0.40As Quantum Dots”, Phys.Rev.Lett., 1999, 82, 1748.
    25. A.Yariv, Quantum Electronics, 1975 (Wiley, New York).
    26. G.S.Agarwal,“Electromagnetic-Field-Induced Transparency in Highly-Density Exciton Systems”, Phys.Rev.A, 1995, 51, R2711.
    27. B.I.Greene, J.F.Muller, J.Orenstein, D.H.Rapkine,S.Schmitt-Rink and M.Thakur,“Phonon-Mediated Optical Nonlinearity in Polydiacetylene”, Phys.Rev.Lett., 1988, 61, 325.
    28. J.F.Lam, S.R.Forrest, and G.L.Tangonan,“Optical Nonlinearities in Crystalline Organci Multiple Quantum Well”, Phys.Rev.Lett., 1991, 66, 1614.
    29. R.W.Boyd, Nonlinear Optics, 1992 (Academic, San Diego, California) p225.
    30. R.Heitz, M.Veit, N.N.Ledentsov, A.Hoffmann, D.Bimberg, V.M.Ustinov, P.S. Kopev and Zh.I.Alferov,“Energy Relaxation by Multiphonon Processed in InAs/GaAs quantum dots”, Phys.Rev.B, 1997, 56, 10435.
    31. J.Yan, W.Zhang, S.Duan, X.Zhao and A.O.Govorov,“Optical Properties of Coupled Metal-Semiconductor and Metal-Molecule Nanocrystal Complexes: Role of Multipole Effects”, Phys.Rev.B, 2008, 77, 165301.
    32. M.Cheng, S.Liu, H.Zhou, Z.Hao, and Q.Wang,“Coherent Exciton-Plasmon Interaction in the Hybrid Semiconductor Quantum Dot and Metal Nanoparticle Complex”, Opt.Lett., 2007, 32, 2125.
    33. E.D.Palik, Handbook of Optical Constants of Solids, 1985 (Academic, New York).
    1. M.A.Nielsen and I.L.Chuang, Quantum Computation and Quantum Information, ,2000 (Cambridge University Press, United Kingdom).
    2. C.Monroe,“Quantum Information Processing with Atoms and Photons”,Nature, 2000, 416, 238.
    3. B.E.Kane,“A Silicon-Based Nuclear Spin Quantum Computer”, Nature, 1998, 393, 133.
    4.Y.Nakamura, Yu.A.Pashkin and J.S.Tsai,“Coherent Control of Macroscopic Quantum States in a Single-Cooper-Pair Box”, Nature, 1999, 398, 786.
    5. S.A.Wolf, D.D.Awschalom, R.A.Buhrman, et al.,“Spintronics: A Spin-Based Electronics Vision for the Future”, Science, 2001, 294, 1488.
    6. Y.Ohno,“Making Nonmagnetic Semiconductors Ferromagnetic”, Science, 1998, 281, 951.
    7. G.A.Prinz,“Magnetoelectronics”, Science, 1998, 282, 1660.
    8. P.Ball,“Meet the Spin Doctors”, Nature, 2000, 404, 918.
    9. D.Loss and D.P.DiVincenzo,“Quantum Computation with Quantum Dots”, Phys. Rev. A, 1998, 57, 120.
    10. A.Zrenner, E.Beham, S.Stufler, F.Findeis, M.Bichler and G.Abstreiter,“Coherent Properties of a Two-Level System Based on a Quantum-Dot Photodiode”, Nature, 2002, 418, 612.
    11. S.Bandyopadhyay,“Self-assembled nanoelectronic quantum computer based on the Rashba effect in quantum dots”, Phys. Rev.B, 2000, 61, 13813.
    12. J.C.Egues, G.Burkard and D.Loss,“Rashba Spin-Orbit Interaction and Shot Noise for Spin-Polarized and Entangled Electrons”, Phys. Rev. Lett., 2002, 89, 176401.
    13. E.I.Rashba and AI.L.Efros,“Orbital Mechanisms of Electron-Spin Manipulat- ion by an Electric Field”, Phys. Rev. Lett., 2003, 91, 126405.
    14. Y.Kato, R.C.Myers, D.C.Driscoll, A.C.Gossard, J.Levy and D.D.Awschalm,“Gigahertz Electron Spin Manipulation Using Voltage-Controlled g-Tensor Modula- tion”, Science, 2003, 299, 1201.
    15. S.Debald and C.Emary,“Spin-Orbit-Driven Coherent Oscillations in a Few- Electron Quantum Dot”, Phys. Rev. Lett., 2005, 94, 226803.
    16. K.D.Zhu, Z.J.Wu, X.Z.Yuan and H.Zheng,“Excitonic Dynamics in a Single Quantum Dot within a Microcavity”, Phys. Rev. B, 2005, 71, 235312.
    17. J.Nitta, T.Akazaki, H.Takayanagi and T.Enoki,“Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure”, Phys.Rev.Lett. , 1997, 78,1335.
    18. D.Grundler,“Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers”, Phys. Rev. Lett., 2000, 84, 6074.
    19. T.Koga, J.Nitta, T.Akazaki and H.Takayanagi,“Rashba Spin-Orbit Coupling Probed by the Weak Antilocalization Analysis in InAlAs/InGaAs/InAlAs Quantum Wells as a Function of Quantum Well Asymmetry”, Phys. Rev. Lett., 2002, 89, 046801.
    20. Yu.A.Buchkov and E.I.Rashba,“Oscillatory effects and the magnetic susceptibili- ty of carriers in inversion layers”, J. Phys. C, 1984, 17, 6039.
    21. A.J.Leggett, S.Chakravarty, A.T.Dorsey, M.P.A.Fisher, A.Garg and W.Zwerger,“Dynamics of the Dissipative Two-state System”, Rev.Mod.Phys, 1987, 59, 1.
    22. L.Allen and J.H.Eberly, Optical Resonance and Twolevel Atoms,1975, (Wiley, New York).
    23. T.Takagahara,“Theory of Exciton Depahsing in Semiconductor Quantum Dots”, Phys.Rev.B, 1999, 60,2638.
    24. A.Vagov, V.M.Axt, and T.Kuhn,“Electron-Phonon Dynamics in Optically Excit- ed Quantum Dots: Exact Solution for Multiple Ultrashort Laser Pulse”, Phys.Rev.B, 2002, 66, 165312.
    25. B.Krummheuer, V.M.Axt, and T.Kuhn,“Theory of Pure Dephasing and Result- ing Absorption Line Shape in Semiconductor Quantum Dots”, Phys.Rev.B, 2002, 65, 195313.
    26. L. Besombes, K. Kheng, L.Marsal, and H.Mariette,“Acoustic Phonon Broadening Mechanism in Single Quantum Dot Emission”, Phys.Rev.B, 2001, 63, 155307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700