枳菊解郁汤对抑郁模型小鼠行为学的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用多因素慢性不可预知应激源(电击足底、拥挤、拥挤+热刺激、冷水刺激、禁水、禁食、通宵照明,21天),建立抑郁动物模型,并给予动物不同剂量中药复方枳菊解郁汤处理。将健康昆明品系小白鼠随机分为对照组,模型组,阳性药物(氟西汀)组,枳菊解郁汤低、中、高剂量组。采用开场实验、悬尾实验和Morris水迷宫实验,检测小鼠自发活动和探究行为、情绪行为变化以及空间学习记忆能力的变化;检测小鼠海马及前脑皮层SOD活性和MDA含量的改变;应用HE染色法从形态学角度观察小鼠海马和前脑皮层神经元的改变;采用免疫组化法检测c-fos在小鼠海马各区和前脑皮层的表达情况,旨在探讨慢性应激对小鼠行为学的影响以及中药复方枳菊解郁汤的抗抑郁作用及其机制。研究结果:
     1.与对照组小鼠相比,模型组小鼠穿越格数、直立次数、修饰次数均显著减少,中央格停留时间明显延长,排便粒数显著增多。与模型组小鼠相比,氟西汀组、枳菊解郁汤中剂量小鼠开场行为有显著性差异,高剂量组穿越格数、直立次数、中央格停留时间均有明显差异。
     2.与对照组小鼠相比,模型组小鼠悬尾行为中第一次静止不动时间(不动潜伏期)和后4分钟累积不动时间均显著增加。与模型组小鼠相比,氟西汀组小鼠第一次静止不动时间和后4分钟累积不动时间均显著减少,各药物组小鼠的第一次静止不动时间亦都显著减少,中剂量组小鼠后4分钟累积不动时间显著减少。
     3.与对照组小鼠相比,模型组小鼠在定位航行实验中寻找平台的逃避潜伏期明显延长,在空间搜索实验中,模型组小鼠在目标象限停留时间明显缩短。与模型组相比,在定位航行实验中氟西汀组、中药中剂量组小鼠的逃避潜伏期均显著缩短,在空间搜索实验中各药物组小鼠在目标象限停留的时间明显延长,在中药复方中剂量组小鼠尤为明显。
     4.与对照组小鼠相比,模型组小鼠脑组织SOD活性显著降低、MDA的含量显著增加;与模型组小鼠相比,各药物组小鼠脑内SOD活性明显升高,MDA的含量明显减少。
     5.对照组、氟西汀组和枳菊解郁汤中、高剂量组小鼠海马CA1、CA3与DG区神经元数量多,细胞完整,排列整齐,层次紧密,边缘清晰,细胞核染色较深,位于细胞中央。前脑皮层神经元形态规整,染色清晰均一。枳菊解郁汤低剂量组小鼠细胞排列稀疏、松散,数量有所减少,有少量三角形及梭形细胞,细胞间隙大,且染色较浅。
     模型组小鼠海马与前脑皮层神经元变形,有的出现萎缩现象,胞核固缩,且细胞数量减少,细胞间隙大,形态不规则,可见较多的三角形及梭形细胞,排列疏松不齐,有中断现象,且细胞淡染,着色不匀。
     6.与对照组小鼠相比,模型组小鼠脑海马及前脑皮层c-fos阳性细胞数明显减少,平均目标灰度值明显增大;与模型组小鼠相比,枳菊解郁汤中剂量和高剂量组小鼠海马及前脑皮层c-fos阳性细胞数明显增加,平均目标灰度值明显降低。
     研究结论:
     1.枳菊解郁汤可明显改善慢性应激致抑郁模型小鼠行为学的改变,表现出一定的抗抑郁作用。
     2.枳菊解郁汤可提高慢性应激致抑郁模型小鼠脑内SOD的活性并降低MDA的含量,通过对抗脑组织的脂质过氧化,清除体内超氧自由基,减轻其对神经细胞的损伤而实现抗抑郁效应。
     3.枳菊解郁汤可对抗慢性应激致抑郁模型小鼠海马各区和前脑皮层神经元c-fos表达的减少,降低各脑区神经元损伤。枳菊解郁汤具有一定的抗抑郁作用,其机制可能与引起海马和前脑皮层神经元c-fos的表达上调有关。
This study using depression model mice induced by multivariate chronic unpredictable stressors (foot shock, crowding, crowding+hot stimulation, cold water stimulation, water deprivation, food deprivation and all-night lighting, unexpectedly given to mice, one method each day in 21 days), and give the animal different doses of Chinese Medical prescription of Zhijujieyu-tang. Healthy Kunming mice were randomly divided into six groups:the control group, the model group, the positive control (fluoxetine) group, the low, medium and high concentration of Zhijujieyu-tang groups. We examined the spontaneous activity, emotional behavior change and spatial learning memory ability changes in mice by using Open-field、Tail-suspension and Morris water maze tests, and examined the changes of SOD activity and MDA content in hippocampus (HP) and prefrontal cortex (PFC). The changes of morphological structure in HP and PFC of mice brain were observed by HE dye. The expression of c-fos in HP and PFC of mice brain were examined using immunohistochemical method. This study aims to investigate the effects of chronic stress on the behavior in mice and the mechanism of Chinese Medical prescription of Zhijujieyu-tang.
     The results of this study are as follows:
     1. Compared with the control group mice, the square crossing, rearing and grooming of the model group mice were remarkably decreased, and the central cell residence time and defecation were significantly increased in model group mice. Compared with the model group mice, the behavior of Open-field test in the fluoxetine and medium concentration of Zhijujieyu-tang group mice existed remarkable difference, and the square crossing, rearing and the central cell residence time in the high concentration of Zhijujieyu-tang group mice existed significant variation.
     2. Compared with the control group mice, the latency immobility (first immobile time) and immobility time (latter 4 minutes immobile time) of Tail-suspension test were significantly increased in model group mice. Compared with the model group mice, the latency immobility and immobility time were remarkably decreased in fluoxetine group and medium concentration group mice, and the latency immobility were remarkably decreased in the low and high concentration group mice,
     3. Compared with the control group mice, the escape latency to find platform of the model group mice were markedly increased, and the resident time in target quadrant remarkable decreased in the model group mice. Compared with the model group mice, the escape latency to find platform of the fluoxetine, medium concentration group of Zhijujieyu-tang mice were remarkably decreased, and the resident time in target quadrant remarkable increased in the different medicinal dosages group mice, the medium concentration group of Zhijujieyu-tang mice was very remarkably.
     4. Compared with the control group mice, the SOD activity were significantly decreased, and MDA content were markedly increased in the brain tissue of model group mice. Compared with the model group mice, the SOD activity were markedly increased, and MDA content were significantly decreased in the different medicinal dosages group mice.
     5. In the control, fluoxetine, medium and high concentration groups mice of Zhijujieyu-tang, there are lots of neurons in CA1, CA3 areas and Dentate gyrus(DG) area of HP, they arrange tidily, administrative levels is compact. Cell nucleus was dyed deep colour, and located at the center of cells. The neurons in PFC have tidy shape, they arranged orderly, and they are dyed even. In low concentration group mice of Zhijujieyu-tang, the morphological results showed that cells arrange still less, and its number has decreased, they are dyed lightly. Their shape is untidy.
     In the model group mice of Zhijujieyu-tang, the nerve cell are irregular in shape, and arrange untidily and laxly in in HP and PFC. The layers decreased obviously. Some cells show putrescence, some swollen. They are dyed uneven.
     6. Compared with the control group mice, the number of c-fos positive cells in HP and PFC of the model group mice brain were remarkably decreased, and the average target gray value were significantly increased. Compared with the model group mice, the number of c-fos positive cells in HP and PFC of the medium, high concentration group mice of Zhijujieyu-tang were markedly increased, and the average target gray value were markedly decreased.
     Conclusions are as follows:
     1. Zhijujieyu-tang could markedly improve the changes of behavior induced by chronic stress in mice. It suggested that it have a certain effects of anti-depression.
     2. Zhijujieyu-tang could increase the SOD activity, and decrease MDA content in chronic stress induced-depression model mice brain. With the inhibition of lipid peroxidation and the scavenging of superoxide free radical, so that lighten damage of nerve cell, that may be the one of possible mechanisms of the anti-depression of Zhijujieyu-tang.
     3. Zhijujieyu-tang could resist the decrease of c-fos neurons in HP and PFC of depressive model mice brain, and reduce the damage of neuron in different areas of mice brain. The mechanism of antidepressant-like effects of Zhijujieyu-tan may be closely related to the up-regulation of c-fos expression in HP and PFC.
引文
[1]沈渔邦主编.精神病学[M],第四版.北京:人民卫生出版社.1999年,433页.
    [2]阵瑶,韩婷,芮耀诚,等.积雪草总苷对实验性抑郁症大鼠血清皮质酮和单胺类神经递质的影响[J].中药材,2005,28:493-496.
    [3]Invernizzi RW, Gatsyyini S. Role of presynaptic alpha2-adrenoceptors in antidepressant action:recent findings from microdialysis studies[J]. Prog Neuropsychopharmacol Biol Psychiatry,2004,28:819-827.
    [4]Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, et al. Werotonins 5-HTIA,1-HTIB, and 5-HT2A receptor Mrna expression in suanjicets with major depression,bi-polar disorder and schizophrenia[J].Biolpsychiatry,2004,55:225-233.
    [5]Neumeister A. Tryptophan depletion, serotonin and depression:where do we stand?[J]. Psychopharmacology Bulletin,2003,37:99-115.
    [6]Magarinos AM, MeEwen BS, Gabriele F lugge et al. Chronic psyechosocial stress causes apical dendritic atropy of hippocampal CA3 pyramidal neurons in subordinate tree shrews[J]. J Neuroscience,1996,16:3534-3540.
    [7]Gould E, McEwin BS, Tanapat P, Galea LAM, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation[J]. J neurosci,1997,17:2492-2498.
    [8]Duman RS, Nakagama S, Malberg J. Regulation of adult neurogenesis by Antidepressant treatment[J]. Neuro Psychopharmacology,2001,25:836-844.
    [9]Jacobs BL.Adult brain neurogenesis and Depression [J]. Brain Behavior and Immunity,2002, 16:602-609.
    [10]Anisman H, Matheson.Stress K, depression, and anhedonia:caveats concerning animal models[J]. Neurosci Biobehav Rev,2005,29:525-546
    [11]江文庆,杜亚松.抑郁症病理生理机制的神经可塑性假说[J].上海精神医学,2006,18:117-119.
    [12]Mesulam MM. Neuroplasticity failure in Alzheimer's disease:Bridging the gap betwween plaques and tangles[J]. Neuron,1999,24:521-529.
    [13]Rossi C, Angelucci A, et al.Brain-derived neurotrophic factor(BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment [J].Eur J Neurosci,2006,24:1850-6.
    [14]Santarelli L, Saxe M, et al. Requirement of Hippocampal neurogenesis for the Behavioral Effects of Antidepressants [J]. Science,2003,301:805-809.
    [15]Bilici M, Efe H, Koroglu MA, et al.Antioxidative enzyme activities and lipid peroxidation in major depression:Alterations by antidepressant treatments[J]. J Affective Disorders, 2001,64:43-51.
    [16]D'Sa C, Duman RS.Antidepressants and neuroplasticity[J].Bipolar Disord,2002,4:183-194.
    [17]张心华,徐路,陶尚敏等.抑郁症及焦虑症病人血浆SOD活性和MDA含量的变化[J].康复及疗养杂志,1997,12(4):157-158.
    [18]秦晓松.一氧化氮与抑郁症的脑损害[J].国外医学·精神病学分册,2002,29:150-152.
    [19]Coskun O, Ocakci A, Bayraktaroglu T, et al.Exercise training prevents and streptozotocin-induced oxidative stress and β-cell damage in rat pancreas[J].Tohoku J ExpMed,2004, 203:145-154.
    [20]黄周忠,陈小维,吴小南等.情感性精神障碍患者脂质过氧化物,超氧化物歧化酶及谷胱甘肽过氧化物酶的观察[J].中华精神科杂志,1999,32:191.
    [21]Li XM,ChlarrFourney J, Juorio AV,et al.Antidepressants upregulate messenger RNA levels of the neuroprotective enzyme superoxide dismutase(SOD1)[J].Psychiatrv Neurosci,2000, 25:2-7.
    [22]Morgan JI, Curran T. Stimulus transcription coupling in the nervous system involvement of the inducible proto-oncogenes fos and jun[J]. Annu Rev Neurosci,1991,14:421-424.
    [23]Morgan JI, Curran T. Stimulus transcription coupling in neurons:role of cellular immediate-early genes[J]. TIPS,1989,12:459-462.
    [24]Tanaka K, Hori K, Wada-Tanaka N, FK506 amelioratea the discrimination learning impairment due to preventing the rare-faction of white matter induced by chronic cerebral hypoperfusion in rats[J]. Brain Research,2000,906:184-189.
    [25]Melia KR, Ryabinin AE, Schroeder R, Bloom FE, Wilson MC.Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress[J]. Neurosci,1994,14:5929-5938.
    [26]Sagar SM, Sharp FR and curran T. Expression of c-fos protein in brain:Metabolic mapping at the celular level[J]. Science,1988,240:1328.
    [27]钱忠明,肖德生,徐斌c-fos表达与心理应激脑机制的研究[J].生理科学进展,1997,26:52-54.
    [28]Kempermann G.Regulation of adult hippocampal neurogenesis-implica-tions for novel theories of major depression [J]. Bipolar Disord,2002,4:17-33.
    [29]路翠艳,潘芳.应激反应中HPA轴的中枢调控和免疫调节[J].中国行为医学科学,2003,12:353-355.
    [30]Quintero L, Cuesta MC, Silva J A,et al. Repeated swim stress increases pain-induced expression of c-Fos in the rat lumbar cord [J]. Brain Res,2003,965:259-268.
    [31]蓝妮,谢启文,王淑芬.大鼠应激时垂体c-fos和催乳素基因表达关系的研究[J].中国医科 大学学报,2000,29:244-246.
    [32]Tan Z, Nagata S. PVN c-fos expression,HPA axis response and immune cell distribution during restraint stress[J].Juoeh,2002,24:131-149.
    [33]Martinez M, Calvo-Torrent A, Herbert J.Mapping brain response to social stress in rodents with c-fos expression:a review[J].Stress,2002,5:3-13.
    [34]陆林,黄明生,李国君.万拉法新对强迫游泳大鼠下丘脑c-fos和c-jun蛋白表达的影响.临床精神医学杂志,1999,9:257-259.
    [35]孙纪超,叶广俊.尼古丁对小鼠海马结构c-fos蛋白表达的影响,中国预防医学杂志,1997,31:75-77.
    [36]Alexander N,West H, Dennis S. Depression and the Hippocampus[J].Am J Psychiatry,2005, 162:1057.
    [37]McKernan DP, Dinan TG, Cryan JF."Killing the Blues":A role for cellular suicide (Apoptosis) in Depression and the Antidepressant esponse? [J].Prog. Neurobiol,2009,88: 246-263.
    [38]Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure[J].Am J Pathol,2001,158:453-468.
    [39]朱兴族,罗质璞.神经药理学新论[M].北京:人民卫生出版社,2004:1-20.
    [40]Sahay A Hen R. Adult hippocampal neurogenesis in depression[J]. Nature Neuroscienee, 2007,10:1110-1115.
    [41]Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety [J]. Nature Neuroscience,2007,10:1089-1093.
    [42]沈政,林庶芝.颞叶皮层的认知功能[J].生理科学进展,1993,24:49-52.
    [43]Kalska H, Punamak RL, Makinen-Pelli T, et al. Memory and metamemory functionging among depressed patients[J].Applied Neuropsychology,1999,6:96-107.
    [44]Bremner JD, Marayan M, Anderson ER, et al.Hippocampal volume reduction in major depression[J].Am J Psychiatry,2000,57:115-117.
    [45]Sheline YI, Wang PW, Gado MH, et al. Hippocampal atrophy in recurrent major depression[J]. Proc Natl Acad Sci,1996,93:3908-3913.
    [46]Kim JJ, Diamond DM. The stressed hippocampus, synap tic plasticity and lostmemories[J]. Nat Rev Neurosei,2002,3:453-462.
    [47]张艳美.慢性应激、大脑损害与抑郁症[J].国外医学精神病学分册,2001,28,105-109.
    [48]Peters J, Thoma P, Koch B, et al. Impairment of verbal recollection following is chemic damage to the right anterior hippocampus [J]. Cortex,2009,5:592-601.
    [49]Sarah B, Martin D, Jeff C, et al. Human experience seeking correlates with hippocampus volume:Convergent evidence from manual tracing and voxel-based morphometry[J]. Neuropsychologia,2007,45:2874-2881
    [50]Miehael CG, Kronenberg M, Deuschle K, et al. Hippocampal volume reduction and HPA system activity in major depression[J].J Psychiatric Research,2007,41:553-560.
    [51]Mueller SG, Stables L, Du Al, et al.Measurement of hippocampal sub fields and age-related changes with high resolution MRI at 4T[J]. Neurobiol Aging,2007,28:719-726.
    [52]Janssen J, Hulshoffpol HE, de Leeuw FE, et al. Hippocampal volume and Subcortical white matter lesions in late life depression:comparison of early and late onset depression [J].J Neurology, Neurosurgery and Psyehiatry,2007,78:638-640.
    [53]Takashima A. Declarative memory consolidation in humans:a prospective Functional magnetic resonance imaging study[J]. Proc Natl Acad Sci USA,2006,103:756-761.
    [54]Bowley MP, Drevets WC, OngurD, et al. Low glial numbers in the amygdala in major depressive disorder [J]. Biol Psychiatry,2002,52:404-412.
    [55]MinneurYS, Belzung C, et al. Functional implications of decreases in neurogenesis following chronic mild stress in mice [J]. Neuroscience,2007,150:251-259.
    [56]Lee KJ, Kim SJ, Kim SW, Cho SH, Shin YC, et al. Chronic mild stress decreases survival, but not proliferation, of new-born cells in adult rat hippocampus[J].ExP Mol Med,2006, 38:44-54.
    [57]Nestler EJ, Barrot M. Neurobiology of depression[J]. Neuron,2002,34:13-25.
    [58]Goldapple K,Segal Z,Garson C,et al. Modulation of cortical-limbic pathways in major depression;treatment-specific effects of cognitive behavior therapy[J].Arch Gen Psychiatry, 2004,61:34-41.
    [59]Biagini G, Pich EM, Carani C, et al. Indole-pyruvic acid, a tryptophan ketoanalogue, antagonizes the endocrine but not the behavioral effects of repeated stress in a model of depression[J]. Biol Psychiatry,1993,33:712-719.
    [60]Taylor WD, Macfall JR, Payne ME, et al. Orbitofrontal cortex volume in late life depression:influence of hyperintense lesions and genetic polymorphisms [J]. Psychological medicine,2007,37:1763-1773.
    [61]Lee SH, Payne ME, Steffens DC, et al. Subcortical lesion severity and orbitofrontal cortex volume in geriatric depression [J]. Biol Psychiatry,2003,54:529-533.
    [62]Froger N, Palazzo E,Boni C. Neurochemical and Behavioral Alterations in Glucocorticoid Receptor-impaired Transgenic Mice after Chronic Mild Stress[J]. Neurosci,2004,24: 2787-2796.
    [63]Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment[J]. Biol Psychiatry,1999,46:1181-1191.
    [64]Duman RS, Heninger GR,Nestler EJ, et al.A molecular and cellular theoy of depression. [J] Aich Gen Psychiatry,1997,54:597-606.
    [65]Kessler RC.The effects of stressful life events on depression[J]. Annu Rev Psychol, 1997,48:191-214.
    [66]Tafet GE, Bernardini R. Psychoneuroendocrinological links between chronic stress and depression [J]. Prog Neuro-psychopharmacol Biol Psychiatry,2003,27:893-903.
    [67]McEwen BS. Protective and damaging effects of stress mediators:central role of the brain [J]. Dialogues Clin Neurosci,2006,8:367-381.
    [68]李云峰,罗质璞.应激诱发抑郁症机制的研究进展[J].生理科学进展,2002,33:142-144
    [69]Garcia R.Stress metaplasticity and antidepressants[J].Curr Mol Med,2002,2:629-638.
    [70]Lee AL, Ogle WO,Sapolsky RM. Stress and depression:possible links to neuron death in the hippocampus[J].Bipolar disord,2002,4:117-128.
    [71]Sapolsky RM, Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders[J]. Arch Gen Psychiatry,2000,57:925-354.
    [72]Mcedwen BS, Magarinos AM. Stress and hippocanpal plasticity:Implications for the pathophysiology of affective disorders[J].Hum Psychopharmacol,2001,16:17-19.
    [73]Bannaga M. New born neurons search for meaning[J].Science,2003,299:32-34.
    [74]McEwen BS. Stress and hippocampus plasticity[J]. Ann Rev Nerosci,1999,22:105-122.
    [75]Katz RJ. Animal models and human depressive disorders J. Neurosci Biobehav. Rev,1981, 5:231-246.
    [76]Willner P. Validity, reliability and utility of the chronic mild stress model of depression:a ten-year review and evaluation [J]. Psychopharmacology(Ber1),1997,134:319-329.
    [77]许晶,李晓秋.慢性应激抑郁模型的建立及其评价[J].中国行为医学科,2003,12:14-17.
    [78]Naranjoa CA, Tremblaye LK, Bustob UE. The role of the brain reward system in depression [J].Neuro-Psychophar.& Bio. Psychiatry,2001,25:781-823.
    [79]Guo JY, Li CY, Ge WH. Resent progress in the research of depressive animal model [J]. Chinese J Rehabilitation,2004,8:1932-1933.
    [80]Hennessy MB, Deak T,Schim L,Webb PA. Stress-induced sickness behaviors:an alternative hypothesis for responses during maternal separation[J]. Dev Psychobial,2001,39:79-83.
    [81]Porsolt RD, Lepiehon M, Jalfre M. Depression:A new animal model sensitive to antidepressant treatment[J]. Nature,1977,226:730-732.
    [82]吴俊芳,刘态.神经科学研究方法[M].北京:中国协和医科大学出版社,2006,972-982.
    [83]Redei EE, Ahmadiyeh N, Baum AE, et al. Novel animal models of affective disorders[J]. Semin Clin Neuropsychiatry,2001,6:43-67.
    [84]Matthews K, Forbes N, Reid IC. Sucrose consumption as an hedonic measure following chlonic unpredietable mild stress[J]. Physiol.Behav,1995,57:241-248.
    [85]Glaser EM, Vander. LH. Analysis of thick brain sections by obverse-reverse computer microscopy:application of a new, high clarity Golgi-Nissl stain[J]. J Neurosci Meth,1981, 4:117-125.
    [86]Vaugeois JM, EI Yacoubi M, Costention J. Comments on an animal model of depression[J]. Ann Pharm Fr,2004,62:332-342.
    [87]Contreras CM, Chacon L, Rodriguez-Landa JF, et al. Spontaneous firing rate of lateral septal neurons decreases after forced swimming test in Wistar rat[J]. Prog Neuropsycho phar Biol Psychiatry,2004,28:343-348.
    [88]张顺国,陈敏玲,唐跃年.抑郁症的药物治疗进展[J].医药导报,2000,19:331.
    [89]Ducottet C, Ggriebel G, Belzung C. Effects of the selective nonpeptide cortico-Tropin-releas-sing factor receptor antagonist antalamin in the chronic mild stress mold of depression in mice[J].Pro Neuropsychopharmacol Biol Psychiatry,2003,27:625631.
    [90]Maberg J,Eisch AJ, Nestler EJ,et al.Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus[J].J Neurosci,2000,20:9104-9110.
    [91]Berman, Capplello A, Anend A, et al. An depressant effects of ketamine in depressed patients[J]. Biol Psychiatry,2000,47:351-354.
    [92]Li X,Tissano JP,Griffe YK,et al.Antidepressant-like action of an AMPA receptor potentiat-or (LY392098) [J].Neurophar mocology,2001,40:1028-1033.
    [93]Manji HK, Quiroz JA, Sporn J,et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved the therapeutics for difficult to treat depression[J]. Biol Psychiatry, 2003,53:707-742.
    [94]Mcewen BS, Chattarji S. Molecular mechanisms of neuroplasticity and pharmacological limplications:the example of tianeptine[J]. Eur Neuropsychopharmacol,2004,14:497-502.
    [95]尤松鑫,王义烈等.简明中医内科学(汉英对照)[M].南京:江苏科学技术出版社,2004.599.
    [96]李明亚,陈红梅.石菖蒲对行为绝望动物抑郁模型的抗抑郁作用[J].中药材,2001,24:40.
    [97]Yu ZF, Kong LD,Chen Y. Antidepressant activity of aqueous extracts of curcuma longa in mice[J]. J Ethnopharmacol,2002,83:161-165.
    [98]秦晓松,金魁.丁宝坤.银杏叶提取物联合盐酸文拉法辛对抑郁大鼠海马NOS蛋白表达及NO水平的影响[J].中国心理卫生杂志,2003,17:828-83.
    [99]张中启,袁莉,赵楠,等.巴戟天醇提物的抗抑郁作用[J].中国药学杂志,2000,35:739.
    [100]冯文林.抑郁症的中医药试验研究概况[J],浙江中医杂志,2002,111:502-503.
    [101]翁黄念慈.中药复方治疗抑郁状态的述评[J].四川中医,2005,23:40-42.
    [102]杨进,谢忠礼.葛欢1号对大鼠抑郁症模型脑内单胺类神经递质的影响[J].南京中医 药大学学报,2001,17:294.
    [103]杨士友,黄世福,孙备.解百忧日服液对抑郁漠型大鼠行为及中枢神经递质的影响[J].中国中医基础医学杂志,2000,6:56.
    [104]中泽孝浩等.半夏厚朴汤的抗抑郁作用[J].国外医学:中医中药分册,2003,25:246.
    [105]Luo, L, Wang, JN, Kong, LD, et al.Antjdepressant effects of Banxia Houpu decoction, atraditional Chinese medicinal empirical formula[J]. J Ethnopharmacology,2000,73:277-281.
    [106]Zhang zhang-jin.Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders[J].Life Sciences,2004,75:1659-99.
    [107]Kim SH,Han J,Seog DH,et al.Antidepressant effect of Chaihu-Shugan-San extract and its constituents in rat models of epression[J].Life Sciences,2005,76:1297-306.
    [108]HarkinA HoulihanDD, KellyJP. Reduetion in Preefrence for saccharin by repeated Unpredictable stress in mice and its prevention by imiPramine[J]. J Psyehophamracol,2002, 16:115-123.
    [109]Harro J.Chronic variable stress and partial 5-HT denervation by parachloroam phetamine treatment in the rat:effects on behavior and monoamine neurochemistry[J].Brain Res,2001, 899:227-239.
    [110]Rybkin I, Zhou Y, Volautova J, et al. Effect of restraint stress on food intake and body weight is determined by time of day[J]. Am J Physiol,1997,273:1612-1622.
    [111]Hu Y, Gursoy E. Biological effects of single and repeated swimming stress in male rats: beneficial effects of glucocorticoids [J].Endocrine,2000,13:123-129.
    [112]Lipkind D, Sakov A, Kafkafi N, et al. New replicable anxiety-related measures of wall vs. center behavior of mice in the open field [J]. Appl Physiol,2004,97:347-359.
    [113]Vaugeous JM, Passsera G, Zuccaro F,et al. Individual differences in response to imipramine in the mouse tail suspention test[J].Psychopharmacology,1997,34:387-391.
    [114]胡旺平,李雪梅等.慢性应激对大鼠学习记忆及海马乙酰胆碱含量和胆碱乙酰转移酶活性的影响[J].中国行为医学科学,2002,11:320.
    [115]Nishinura J,Yutaka E, Kimura F. A Long-term stress exposure impairs maze learning performance in rats[J].Neuroscilett,1999,273:125.
    [116]Veena J, Srikumar BN, Mahati K, et al. Enriched environment re-stores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats[J]. J NeurosciRes, 2009,87:831-843.
    [117]单德红,柴纪严,王德山.定志小丸对抑郁模型大鼠齿状回神经干细胞和学习记忆能力的影响.中医药学刊,2005,23:1426-1427.
    [118]沈悦娣,陈炜.慢性应激抑郁模型有效性评价[J].中华中医药刊,2008,26:164-173.
    [119]段绍瑾.氧化应激.见:方允中,郑荣梁,主编.自由基生物学的理论与应用[M].北京:科学出版社,2002.465-494.
    [120]Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression:impact of antidepressant treatment[J]. Arch Med,2007,38:247-252.
    [121]Madrigal JL, Olivenza R, Moro M A,et al.Glutathione depletion,lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain[J]. Neuro psychophannacology,2001,24:420-429.
    [122]Ozcan ME, Mukaddes G, Elif Ozerol, et al. Ozcan Antioxidant enzyme activities and oxidative stress in affective disorders[J]. Inter clinical psychophannacology,2004,19: 89-95.
    [123]Wang GH, Dong HY,Dong WG,et al,Protective effect of Radix Acanthopanacis Senticosi capsule on colon of rat depression model[J].World J Gastroenterol,2005,11:1373-1377.
    [124]Wrynn AS, Mac Sweeney CP, Franconi F,et al.An invivo magnetic resonance imaging study of the olfactory bulbectmized rat model of depression[J].Brain Res,2000,879:193-199.
    [125]李婷,朱婉儿,姜乾金.心理应激的生物学机制研究进展[J].中国行为医学科学,2005,14:862-864.
    [126]郑晖,杨权.慢性应激对海马结构和功能的影响[J].国外医学精神病分册,2001,28:162-165.
    [127]Belluardo N, Mudo G, Dell'Albani P, et al. NMDA receptor-dependent a n d-independent immediate early gene expression induced by focal mechanical brain injury[J]. Neurochem Int,1995,26:443-453.
    [128]宋倩,孔宏,王玉其等.急性应激对小鼠空间学习记忆功能及海马和前脑皮层c-Fos表达的影响[J].曲阜师范大学学报,2009,35:89-92.
    [129]孔宏,宋倩,王玉其等.枳菊解郁汤对抑郁模型小鼠学习记忆能力及海马和前脑皮层BDNF表达的影响[J].曲阜师范大学学报,2010,36:113-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700