慢性不可预见性应激大鼠海马NMDA受体与kalirin和NOS表达的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症是由各种原因所引起的以心境低落,思维迟钝,语言行动减少为主要特征的心境障碍或情感性障碍。随着日常压力增大,抑郁症发病率也呈逐年上升的趋势,且具有高发病率、高复发率、发病年龄逐年降低等特点。抑郁症的发生与社会环境、心理、神经生化和遗传等多方面因素有关,但抑郁症确切的病因及病理机制尚不清楚。海马是目前抑郁症研究中涉及最多的脑区。最近的研究表明兴奋性氨基酸与抑郁症的发病过程有着密切的关系,海马谷氨酸及其受体介导的兴奋性毒性在许多精神心理障碍的发生中发挥关键作用。我们的研究通过慢性不可预见性温和应激(chronic unexpected mild stress,CUMS)抑郁模型,探讨应激性抑郁发生与NMDA受体,以及NMDA受体与神经可塑性改变的关系,实验选取成年雄性SD大鼠,建立慢性不可预见性应激抑郁模型,并通过海马微量注射相关药物(MK-801和N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)),采用体重测量(Body weight measurement)、糖水偏爱测试(Scurose preference test,SPT)、强迫游泳(Forced swimming test,FST)及敞箱实验(Open field test,OFT)等方法检测动物行为,运用免疫组织化学方法检测海马内一氧化氮合酶(nitric oxide synthase,NOS)包括神经元型NOS与诱导型NOS,和kalirin的表达变化,探索抑郁症的发生机制。研究结果如下:
     1.CUMS组大鼠表现出抑郁样行为变化:21天实验阶段中,对照组大鼠体重变化呈明显上升趋势,而CUMS组体重增长不明显,与对照组相比,体重变化率在第7、14、21天均有极显著性差异(p<0.01);经过慢性不可预见性应激的大鼠糖水消耗量明显低于应激前(p<0.01),对糖水的偏爱也显著低于对照组(p<0.05);CUMS组敞箱实验的水平运动和垂直运动得分都明显低于对照组(p<0.01),修饰得分也显著低于对照组(p<0.05);进行了21天的CUMS后大鼠的FST不动时间明显高于对照组(p<0.05)。
     2.海马微量注射NMDA,动物行为学表现与CUMS组相似,与对照组相比,也出现体重增长缓慢,糖水消耗降低,敞箱得分降低和FST不动时间增高的现象;海马微量注射非竞争性NMDA受体拮抗剂MK-801能明显改善应激引起的抑郁样行为表现,各项行为测试结果都有向正常水平恢复的趋势。
     3.慢性不可预见性温和应激模型大鼠海马nNOS与iNOS的表达与对照组相比均有极显著性升高(p<0.01),而kalirin在海马的表达出现极显著下降(p<0.01)。MK-801+CUMS组与CUMS组相比海马齿状回与CA3区nNOS的表达均有极显著性下降(p<0.01),CA3区iNOS的表达显著下降(p<0.05),kalirin表达显著上升(p<0.01);NMDA组海马齿状回nNOS表达与对照组相比显著升高(p<0.05),iNOS在海马的表达与对照组相比有极显著性升高(p<0.01),而kalirin表达有极显著的降低(p<0.01)。
     由以上结果可以看出,CUMS能够引起大鼠抑郁样行为特征,即动物快感缺乏,兴趣丧失,体重降低,生理活动迟缓及行为绝望等表现。CUMS能够引起大鼠抑郁样行为特征,并引起大鼠海马NOS高表达,而kalirin表达下降。海马注射NMDA受体激动剂能够有效的产生与CUMS相似的抑郁样行为症状,且引起与应激相似的NOS的高表达,kalirin表达下降。而CUMS导致的抑郁样行为表现又可以通过海马微量注射NMDA受体的阻断剂来改善,起到了抗抑郁样作用,同时,微量注射NMDA受体的阻断剂使得海马NOS表达下降,kalirin表达升高。由此可见,慢性不可预见性应激引起海马NMDA受体过度激活,海马kalirin表达下降,NOS高表达,产生过量的NO,造成海马神经元损伤,可能是导致抑郁样行为发生的重要机制之一。
Depression is associated with significant morbidity and functional disability, and it is thus important to reveal the mechanism of depression. The hippocampus has recently attracted tremendous attention for the study of depression. A variety of studies suggest an involvement of glutamic acid (Glu)and N-methyl-D-aspartic acid (NMDA) receptor in the pathophysiological mechanism of depression development. Since accumulated evidence indicates a role of nitric oxide (NO) in brain impairment produced by chronic stress. Chronic stress can increase expression of nitric oxide synthase (NOS) in hippocampus, and stimulate NO release may be involved in development of depression. It is unknown, however, whether the relationship of NMDA receptor and NOS also makes contributions to the mechanism of Chronic Stress-induced depression, and the behavioural ability of the rodents. Kalirin is necessary for maintenance of dendritic spines and dendritic branches. Previous research revealed that the atrophy of dendrities could be induced by chronic stress or ovariectomy, but that whether Kalirin is involved in the pathology of chronic stress-induced depression through influencing the changes of dendrities, and the relationship between NMDAR and kalirin is not known until recently.
     This study show that intra-hippocampal injections of the NMDA receptor agonist (N-methyl-D-aspartic acid), and antagonist MK-801 during chronic unexpected mild stress (CUMS) affect behavioral changes including body weight, sucrose preference, locomotor activity, rearing and grooming in open field test, and duration of immobility in forced swimming test. The expression of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and kalirin in rat hippocampus also were observed by immunohistochemistry.
     Rats receiving CUMS for 21 days display a variety of behavioral measures of depression, including a significant reduction in body weight, sucrose preference, and locomotion, rearing and grooming in open field test, and a significant increase in immobility time in forced swimming test, and the expression of nNOS and iNOS increased and expression of kalirin decreased in hippocampus. The behavioral ability of the intra-hippocampal injections of NMDA receptor agonist rats dramatically depressed and the expression of nNOS in dental gyrus (DG) increased, the expression of iNOS increased in both DG and CA3 area of hippocampus, the expression of kalirin significantly reduction. Intra-hippocampal injection of noncompetitive NMDA antagonist MK-801 significantly prevent CUMS-induced depression-like behavioral changes, decreased the expression of nNOS in both DG and CA3 area and the expression of iNOS in CA3 area, and significant increase in that of kalirin-IR cells in hippocampus.
     Both CUMS and intra-hippocampal injections of NMDA receptor agonist can induce depression-like behavioral changes, increased the expression of NOS and reduction in the expression of kalirin in hippocampus. NMDA receptor antagonist decreased the expression of NOS, suppressed CUMS-induced depression-like behavioral changes. This study provide the evidence suggesting that CUMS which results in development of depression may induce neurotoxicity in hippocampal neurons by stimulating Glu release, inducing excessively activation of NMDA receptor, reducing expression of kalirin, increasing expression of NOS, and influence the neural plasticity in CNS.
引文
[1]Schechter LE,Ring RH,Beyer CE,et al.Innovative approaches for the development of antidepressant drugs:current and future strategies[J].NeuroRx,2005,2(4):590-611.
    [2]Frank E.Natural history and preventive treatment of recurrent mood disorders[J].Annu Rev Med,1999,50:453-468.
    [3]Schloss P,Henn FA.New insights into the mechanisms of antidepressant therapy[J].Pharmacology & Therapeutics,2004,102:47-60.
    [4]Nestler E J,Barrot M,Dilenonei RJ,et al.Neurobiology of depression[J].Neuron,2002,34:13-25.
    [5]李婷,朱婉儿,姜乾金.心理应激的生物学机制研究进展[J].中国行为医学科学,2005,14:862-864.
    [6]郑晖,杨权.慢性应激对海马结构和功能的影响[J].国外医学精神病分册,2001,28:162-165.
    [7]Marianne B,M(u|¨)ller,Florian H.Mice with Mutations in the HPA-System as Models for Symptoms of Depression[J].Biol Psychiatry,2006,59:1104-1115.
    [8]Herman JP,Cullinan WE.Neurocircuitry of stress:central control of the hypothalam -pituitary-adrenocortical axis[J].Trends Neurosci,1997,20:78-84.
    [9]Barr AM,Brotto LA,Phillips AG.Chronic corticosterone enhances the rewarding effects of hypothalamic self-stimulation in rats[J].Brain Res,2000,875:196-201.
    [10]Beck KD,Luine VN.Sex differences in behavioral and neurochemical profiles after chronic stress:role of housing conditions[J].Physiol Behav,2002,75:661-673.
    [11]Jo(e|¨)ls M,de Kloet ER.Mineralocorticoid and glucocorticoid receptors in the brain.Implications for ion permeability and transmitter systems[J].Prog Neurobiol,1994,43(1):1-36.
    [12]Bowman RE,Beck KD,Luine VN.Chronic stress effects on memory:sex differences in performance and monoaminergic activity[J].Horm Behav,2003,43:48-59.
    [13]Sapolsky RM,Krey LC,Mcewen BS.Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response[J].Proc Natl Acad Sci,1984,81:6174-6177.
    [14]Sapolsky RM.,Krey LC,Mcewen BS.Prolonged glucocorticoid exposure reduces hippocampal neuron number:implications for aging[J].J Neurosci,1985,5:1222-1227.
    [15]Vyas A,Bernal S,Chattarji S.Effects of chronic stress on dendritic arborization in the central and extended amygdale[J].Brain Res,2003,965:290-294.
    [16]Moghaddam B,BolinaoML,Stein2BehrensB et al.Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate[J].Brain Res,1994,655:251-254.
    [17]Arborelius L,OwensMJ,Plotsky PM et al.The role of corticotrop-in-releasing factor in depression and anxiety disorders[J].J Endocrinol,1999,160:1-12.
    [18]Kim JJ,Diamond DM.The stressed hippocampus,synap tic plasticity and lostmemories[J].Nat Rev Neurosei,2002,3:453-462.
    [19]张艳美.慢性应激、大脑损害与抑郁症[J].国外医学精神病学分册,2001,28.105-109.
    [20]Zamani MR,Levy WB,Desmond NL.Estradiol increases delayed N-methyl-D-aspartate receptor-mediated excitation in the hippocampal CA1 region [J].Neuroscience,2004,129:243-254.
    [21]杨来启,吴兴曲,胡淑芳等。慢性应激大鼠脑边缘系统病理应激效应研究[J].中国行为医学科学,2002,11(5):490-491.
    [22]Watanabe Y,Gould E,McEwen BS.Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons[J].Brain Research,1992,588(2):341-345.
    [23]Duman RS,Malberg J,Thomer J.Neural plasticity to stress and antidepressant treatment[J].Biological Psychiatry,1999,46(9):1181-1191.
    [24]Rajkoska G.Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells[J].Biological Psychiatry,2000,48(8):766-777.
    [25]Barinaga M.Newborn neurons search for meaning[J].Science,2003,299:32-34.
    [26]Jacobs BL.Adult brain neurogenesis and depression[J].Brain Behav Immun,2002,16:602-609.
    [27]朱兴族,罗质璞.神经药理学新论[M].北京:人民卫生出版社,2004:1-20.
    [28]李云峰,刘艳芹,张有志等.抗抑郁剂对慢性应激小鼠海马神经元再生的影响[J].中国药理学通报,2004,20:385-388.
    [29]Duman RS,Malerg JE,Nakagawa S,et al.Regulation of adult neurogenesis by psychotropic drugs and stress[J].J Pharmacol Exp Ther,2001,299:401-407.
    [30]Stockmeier CA.Neurobiology of serotonin in depression and suicide[J].Annals of the New York Academy of Sciences,1997,836(1):220-232.
    [31]Coppen A,Abou-Saleh MT,Wood KM,et al.Treatment of bipolar affective illness with zimeldine,a 5-HT uptake inhibitor[J].J Affect Disord,1984,7(3-4):339-342.
    [32]Lucki I.The spectrum of behaviors influenced by serotonin[J].Biol Psychiatry,1998,44:151-162.
    [33]Neumeister A.Tryptophan depletion,serotonin,and depression:where do we stand?[J].Psychopharmacol Bull,2003,37(4):99-115.
    [34]Jay TM,Rocher C,Hotle M,et al.Plasticity at hippocampal to prefrontal cortex synapses is in paired by loss of dopamine and stress in portance for psychiatric diseases[J].Neurotox Res,2004,6(3):233-244.
    [35]王艳芬,邱家荣.抑郁症神经生化机制研究进展[J].广州医药,2008,39(6):9-11.
    [36]代英杰,范骏,孟昭义.抑郁症的神经生化特征及进展[J].中国临床康复,2003,7(30):4126-4127.
    [37]de Montigny C,Chaput Y,Blier P.Modification of serotonergic neuron properties by long-term treatment with serotonin reuptake blockers[J].J Clin Psychiatry,1990,51:4-8.
    [38]Sulser F.Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression:molecular approaches to an understanding of affective disorders[J].Pharmakopsychiatr Neuropsychopharmakol,1978,11(1):43-52.
    [39]Ebstein RP,Lerer B,Shapira B,et al.Cyclic AMP second-messenger signal amplification in depression[J].Br J Psychiatry,1988,152:665-669.
    [40]Wang HY,Friedman E.Enhanced protein kinase C activity and translocation in bipolar affective disorder brains[J].Biol Psychiatry,1996,40(7):568-575.
    [41]Coyle JT,Duman RS.Finding the intracellular signaling pathways affected by mood disorder treatments[J].Neuron,2003,38(2):157-160.
    [42]Conti AC,Blendy JA.Regulation of antidepressant activity by cAMP response element binding proteins[J].Mol Neurobiol,2004,30(2):143-155.
    [43]Bliss TV,Collingridge GL.A synaptic model of memory:long-term potentiation in the hippocampus[J].Nature,1993,361(6407):31-39.
    [44]Nacher J,Pham K,Gil-Fernandez V,et al.Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex[J].Neuroscience,2004,126,503-509.
    [45]Luine V,Villegas M,Martinez C,McEwen BS.Repeated stress causes reversible impairments of spatial memory performance[J].Brain Research,1994,639(1):167-170.
    [46]Xu L,Anwyl R,Rowan MJ Behavioural stress facilitates the induction of long-term depression in the hippocampus[J].Nature,1997,387(6632):497-500.
    [47]Aydemir C,Yalcin ES,Aksaray S,et al.Brain-derived neurotrophic factor(BDNF)changes in the serum of depressed women[J].Prog Neuropsychopharmacol Biol Psychiatry,2006,30(7):1256-1260.
    [48]Malberg JE,Eisch A J,Nestler E J,et al.Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus[J].J Neurosci,2000,20(24):9104-9110.
    [49]Olive JP,Silva CE,Macher JP.Neuroplasticity:a new approach to the pathophysiology of depression[J].Current Medicine Group,2005.
    [50]Qiong Liu,Jin Yu,Gen-cheng Wu.Neurogenesis in the adult brain and depression [J].Neuroscience Bulletin,2005,21(6):436-440.
    [51]Duman RS,Malberg J,Nakagawa S,et al.Neuronal plasticity and survival in mood disorders[J].Biol Psychiatry,2000,48(8):732-739.
    [52]Klein RC,Castellino FJ.Activators and inhibitors of the ion channel of the NMDA receptor.Curr Drug Targets,2001,2(3):323-329.
    [53]Millan MJ.N-methyl-D-aspartate receptor-coupled glycineB receptors in the pathogenesis and treatment of schizophrenia:a critical review[J].Curr Drug Targets CNS Neurol Disord,2002,1(2):191-213.
    [54]罗建红.配体门控离子通道[M]//魏尔清.药理学前沿-信号、蛋白因子、基因与现代药理.北京:科学出版社,1999:120-136.
    [55]Kuriyama I,Asano N,Kato I,et al.Dipeptide alcohol-based inhibitors of eukaryotic DNA polymerase alpha[J].Bioorg Med Chem,2005,13(6):2187-2196.
    [56]祝卫国,陈学敏.甲基汞对大鼠脑突触体谷氨酸摄取的抑制作用[J].卫生研究,1999,28(4):196-197.
    [57]张本忠,吴德生.铝盐对大鼠脑突触小体摄取谷氨酸功能的影响[J].现代预防医学,1999,26(4):464-465.
    [58]Law A J,Deakin JF.Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses[J].Neuroreport,2001,12(13):2971-2974.
    [59]严进,王春安,叶阿莉等.应激对大鼠行为和部分脑区谷氨酸含量的影响[J].心理学报,1995,27(4):422-427.
    [60]Maeng S,Zarate CA Jr,Du J,et al.Cellular Mechanisms Underlying the Antidepressant Effects of Ketamine:Role of α-Amino-3-ttydroxy-5-Methylisoxazole-4-Propionic Acid Receptors[J].Biological Psychiatry,2008,63(4):349-352.
    [61]Weiland NG,Orchinik M,Tanapat P.Chronic corticosterone treatment induces parallel changes in N-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the hippocampus[J].Neuroscience,1997,78(3):653-662.
    [62]李晓泓,韩毳.张露芳等.艾灸大椎穴对慢性应激大鼠神经营养因子的影响[J].中医药学报,2002,30,51-54.
    [63]Franke L,Schewe H.-J,Uebelhack R,et al.High platelet-5-HT uptake activity is associated with a rapid response in depressed patients treated with amitriptyline[J].Neuroscience Letters,2003,345,105-108.
    [64]王敏建,况利.脑海马结构与抑郁障碍的关系[J].中国临床康复,2005,9,116-119.
    [65]Bolanos JP,Almeida A.Roles of nitric oxide in brain hypoxia-ischemia[J].Biochim Biophys Acta,1999,1411(2-3):415-436.
    [66]Kone BC,Kuncewicz T,Zhang WZ,et al.Protein interactions with nitric oxide synthases:controlling the right time,the right place,and the right amount of nitric oxide[J].Am J Physiol Renal Physiol,2003,285,F178-F190.
    [67]秦晓松.一氧化氮与抑郁症的脑损害[J].国外医学精神病学分册,2002,29,150-152.
    [68]Wang D,An SC,Zhang X.Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor[J].Neuroscience Letters,2008a,43,59-64.
    [69]Wang D,An SC.Role of brain-derived neurotrophic factor and neuronal nitric oxide synthase in stress-induced depression[J].Neural Regeneration Research,2008b,3,384-389.
    [70]Finkel MS,Laghrissi TF,Pollock BG.,et al.Paroxetine is a novel nitric oxide synthase inhibitor[J].Psychopharmaclo Bull,1996,32,653-658.
    [71]Wegener G, Volke V, Harvey BH, et al. Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity [J]. Brain Research, 2003, 959, 128-134.
    [72]Luo L, Tan RX. Fluoxetine inhibits dentric atrophy of hippocampal neurons by decreasing nitric oxide synthase expression in rat depression model [J]. Acta pharmacologica sinica, 2001, 22:865-870.
    [73]Luo L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity[J]. Annu Rev Cell Dev Biol, 2002, 18:601-635.
    [74]Quilliam LA, Rebhun JF, Castro AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Rasfamily GTPases[J]. Prog Nucleic Acid Res Mol Biol, 2002, 71: 391-444.
    [75]Olenik C, Barth H, Just I, et al. Gene expression of the small GTP-binding proteins RhoA, RhoB, Rac1, and Cdc42 in adult rat brain[J]. Brain Res Mol Brain Res, 1997,52:263-269.
    [76]Nakayama AY, Harms MB, Luo L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons [J]. J Neurosci, 2000, 20: 5329-5338.
    [77]Alam MR, Caldwell BD, Johnson RC, et al. Novel proteins that interact with the COOH-terminal cytosolic routing determinants of an integral membrane peptide-processing enzyme[J]. J Biol Chem, 1996, 271: 28636-28640.
    [78]Ma XM, Huang JP, Wang YP, et al. Kalirin, a Multifunctional Rho Guanine Nucleotide Exchange Factor, Is Necessary for Maintenance of Hippocampal Pyramidal Neuron Dendrites and Dendritic Spines [J]. J Neurosci , 2003, 23(33): 10593-10603.
    [79]Penzes P, Johnson RC, Sattler R., et al. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis [J]. Neuron, 2001, 29:229-242.
    [80]Penzes P, Johnson RC, Kambampati V, et al. Distinct roles for the two Rho GDT/GTP exchange factor domains of kalirin in regulation of neurite outgrowth and neuronal morphology [J]. J Neurosci, 2001, 21: 8426-8434.
    [81]Estrach S, Schmidt S, Diriong S, et al. The Human Rho-GEF trio and its target GTPase RhoG are involved in the NGF pathway, leading to neurite outgrowth[J]. Curr Biol, 2002, 12:307-312.
    [82]Johnson RC,Penzes P,Eipper BA,et al.Isoforms of kalirin,a neuronal Dbl family member,generated through use of different 5'-and 3'-ends along with an internal translational initiation site[J].J Biol Chem,2000,275:19324-19333.
    [83]Penzes P,Johnson RC,Alam MR.An isoform of kalirin,a brain-specific GDP/GTP exchange factor,is enriched in the postsynaptic density fraction[J].J Biol Chem.,2000,275:6395-6403.
    [84]Penzes P,Beeser A,Chernoff J,et al.Rapid induction of dendritic spine morphogenesis by transsynaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin[J].Neuron,2003,37:263-274.
    [85]Saletu-Zyhlarz GM,Anderer P,Arnold O,et al.Confirmation of the neurophysiologically predicted therapeutic effects of trazodone on its target symptoms depression,anxiety and insomnia by postmarketing clinical studies with a controlled-release formulation in depressed outpatients[J].Neuropsychobiology,2003,48(4):194-208.
    [86]熊静悦,曾南.简述抑郁症与NMDA受体的关系[J].四川生理科学杂志,2005,27(3):123-124.
    [87]Berman RM,Cappiello A,Anand A,et al.Antidepressant effects of ketamine in depressed patients[J].Biol Psychiatry,2000,47(4):351-354.
    [88]Pacher P,Kecskemeti V.Trends in the development of new antidepressants.Is there a light at the end of the tunnel[J]? Curr Med Chem,2004,11(7):925-943.
    [89]Harkin A J,Bruce KH,Craft B,et al.Nitric oxide synthase inhibitors have antidepressant-like properties in mice.1.Acute treatments are active in the forced swim test[J].Eur J Pharmacol,1999,372(3):207-213.
    [90]Karolewicz B,Bruce KH,Lee B,et al.Nitric oxide synthase inhibitors have antidepressant-like properties in mice.2.Chronic treatment results in downregulation of cortical beta-adrenoceptors[J].Eur J Pharmacol,1999,372(3):215-220.
    [91]Sapolsky RM.Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders[J].Arch Gen Psychiatry,2000,57(10):925-935.
    [92]Sousa N,Lukoyanov NV,Madeira MD,et al.Reorganization of the morphology of hippcampal neurites and synapseds after stress-induced damage correlates with behavioral improvement[J].Neuroscience,2000,97(2):253-266.
    [93]Magarinos AM,Deslandes A,McEwen BS.Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress[J].Eur J Pharmacol,1999,371(2-3):113-122.
    [94]袁华,龙华,牟翔等.两种抑郁模型的行为学比较[J].中国临床康复,2006,10(6):48-50.
    [95]Harro J,Tonissaar M,Eller M,et al.Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat:effects on behavior and monoamine neurochemistry[J].Brain Research,2001,899:227-239.
    [96]Contreras CM,Chacon L,Rodriguez-Landa JF,et al.Spontaneous firing rate of lateral septal neurons decreases after forced swimming test in Wistar rat[J].Prog Neuropsychopharmacol Biol Psychiatry,2004,28(2):343-348.
    [97]Katz RJ.Animal model of depression:Pharmacological sensitivity of a hedonic deficit[J].Pharmacol Biochem.Behav,1982,16:965-968.
    [98]Willner P,Muscat R,Papp M.Chronic mild stress-induced anhedonia:a realistic animal model of depression[J].Neurosci Biobehav Rev,1992,16:525-534.
    [99]Matthews K,Forbes N,Reid IC.Sucrose consumption as an hedonic measure following chronic unpredictable mild stress[J].Physiol.Behav,1995,57:241-248.
    [100]Benelli A,Filaferro M,Bertolini A,et al.Influence of S-adenosyl-L-methionine on chronic mild stress-induced anhedonia in castrated rats[J].Br J Pharmacol,1999,127(3):645-654.
    [101]Willner P,Towell A,Sampson D.Reduction of sucrose preference by chronic unpredictable mild stress,and its restoration by a tricycles antidepressant[J].Psychopharmacol,1987,93:358-364.
    [102]Yadid G,Nakash R,Deri I,et al.Elucidation of the neurobiology of depression:insights from a novel genetic animal model[J].Prog Neurobiol,2000,62(4):353-378.
    [103]Blokland A,Lieben C,Deutz NE.Anxiogenic and depressive-like effects,but no cognitive eficits,after repeated moderate tryp tophan depletion in the ratl[J].Psychopharmacol,2002,16:39-49.
    [104]Cryan JF,Holmes A.The ascent of mouse:advances in modelling human depression and anxiety[J].Nat Rev Drug Discov,2005,4:775-790.
    [105]Nestler EJ,Gould E,Manji H,et al.Preclinical models:status of basic research in depression[J].Biol Psychiatry,2002,52:503-528.
    [106]Willner P.Validity,reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation[J].Psychopharmacology,1997,134(4):319-329.
    [107]许晶,李晓秋.慢性应激抑郁模型的建立及其评价[J].中国行为医学科学,2003,12(1):14-17.
    [108]Porsolt RD,Bertin A,Jalfre M.Behavioral despair in mice:a primary screening test for antidepressants[J].Arch Int Pharmacodyn Ther,1977,299(2):327-336.
    [109]Naranjoa CA,Tremblaye LK,Bustob UE.The role of the brain reward system in depression[J].Neuro-Psychopharmacology and Biological Psychiatry,2001,25(4):781-823.
    [110]Rasenick MM,Chaney KA,Chen J.G protein-mediated signal transduction as a target of antidepressant and antibipolar drug action:evidence from model systems [J].J Clin Psychiatry,1996,57(13):49-58.
    [111]Harris RB,Mitchell TD,Simpson J,et al.Weight loss in rats exposed to repeated acute restraint stress is independent of energy or leptin status[J].Am J Physiol Regul Integr Comp Physiol,2002,282(1):R77-88.
    [112]Rybkin Ⅱ,Zhou Y,Volaufova J,et al.Effect of restraint stress on food intake and body weight is determined by time of day[J].Am J Physiol,1997,273(5 Pt 2):R1612-1622.
    [113]Lin YH,Liu AH,Xu Y,et al.Effect of chronic unpredictable mild stress on brain-pancreas:relative protein in rat brain and pancreas[J].Behavioural Brain Research,2005,165(1):63-71.
    [114]Keeney AJ,Hogg S.Behavioural consequences of repeated social defeat in the mouse:preliminary evaluation of a potential animal model of depression[J].Behav Pharmacol,1999,10(8):753-764.
    [115]Fujisaki C,Utsuyama M,Kuroda Y,et al.An immnosuppressive drug,cyclosporine-A acts like anti-depressant for rats under unpredictable chronic stress [J].J Med Dent Sci,2003,50(1):93-100.
    [116]Moghaddam B.Stress activation of glutamate neurotransmission in the prefrontal cortex:implications for dopamine-associated psychiatric disorders[J].Biol Psychiatry,2002,51(10):775-787.
    [117]McEwen BS,de Leon MJ,Lupien S J,et al.Corticosteroids,the Aging Brain and Cognition[J].Trends Endocrinol Metab,1999,10(3):92-96.
    [118]Liu Y,Zhang JT.Recent development in NMDA receptors[J].Chinese Medical Journal,2000,113(10):948-956.
    [119]Papp M,Moryl E.Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression[J].European Journal of Pharmacology,1994,263(1-2):1-7.
    [120]Suzuki E,Yagi G,Nakaki T,et al.Elevated plasma nitrate levels in depressive states[J].Journal of Affective Disorders,2001,63(1-3):221-224.
    [121]Reagan LP,McKittrick CR,McEwen BS.Corticosterone and phenytoin reduce neuronal nitric oxide synthase messenger RNA expression in rat hippocampus[J].Neuroscience,1999,91(1):211-219.
    [122]Fuchs E,Fl(u|¨)gge G,Ohl F,et al.Psychosocial stress,glucocorticoids,and structural alterations in the tree shrew hippocampus[J].Physiol Behav,2001,73(3):285-291.
    [123]Sattler R,Charlton MP,Hafner M,et al.Distinct influx pathways,not calcium load,determine neuronal vulnerability to calcium neurotoxicity[J].J Neurochem,1998,71(6):2349-2364.
    [124]Mishra OP,Mishra R,Ashrafand QM,et al.Nitric Oxide-Mediated Mechanism Of Neuronal Nitric Oxide synthase and Inducible Nitric Oxide synthase Expression During Hypoxia in the Cerebral Cortex of Newborn Piglets[J].Neuroscience,2006,140(3):857-863.
    [125]钟萍,吴丹红.腹腔注射LPS对大鼠海马nNOS和iNOS表达的影响[J].现代生物医学进展,2006,6(7):29-30.
    [126]Woolley C,Gould E,McEwen BS.Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons[J].Brain Res,1990,531(1-2):225-231.
    [127]刘莹,王苏,董艳娟.抑郁症的神经内分泌学研究进展[J].实用预防医学,2007,14(5):1639-1641.
    [128]Matsuzaki M,Honkura N,Ellis-Davies GC,et al.Structural basis of long-term potentiation in single dendritic spines[J].Nature,2004,429(6993):761-766.
    [129]Xie Z,Srivastava DP,Photowala H,et al.Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines[J].Neuron,2007,56(4):640-656.
    [130]Ratovitski EA,Alam MR,Quick RA,et al.Kalirin inhibition of inducible nitric-oxide synthase[J].J Biol Chemistriy,1999,274(2):993-999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700