大鼠海马NPY、5-HT、PAM与慢性不可预见性应激抑郁症的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症(depression)是一种以情感病态变化主要是情绪低落为显著特征的精神疾病,它的发病与逐渐增大的各种压力带来的应激性事件有关。应激(stress)是生物在生存过程中受到各种各样的刺激后产生的非特异性适应性反应,一定频率和强度的应激会导致生物个体产生情绪和认知等方面的障碍,诱发抑郁症。应激引起抑郁的机制涉及多个脑区的多种神经递质,大量的研究表明海马(hippocampus)这一应激激素作用的靶部位,是抑郁症研究中涉及最多的脑区,研究表明海马5-HT、NPY单独对抑郁症有调节作用,但是人们并不清楚海马的5-HT、NPY系统如何联合对慢性不可预见性应激(Chronic unpredicted mild stress CUMS)引起的抑郁症起作用;同时PAM是依赖于Cu~(2+)、维生素C、O_2的神经肽加工酶,它可以使NPY羧基末端的甘氨酸残基酰胺化。研究表明,PAM基因半敲除的小鼠表现出焦虑的行为,NPY在癫痫易感性中发挥关键性的作用,当诱导癫痫发生的药pentylenetetrazole(PTZ)被注射给小鼠时,只有PAM基因半敲除的小鼠的NPY表达显著升高,因此PAM可能是通过酰胺化的NPY起抗焦虑和癲痫的作用,但CUMS引起的抑郁是否与PAM表达变化相关,目前还没有报道。本实验旨在探讨CUMS对大鼠行为学表现的影响及其与海马NPY、5-HT、peptidylglycine-amidatingmonooxygenase(PAM)的关系。因此我们采用慢性不可预见性应激建立抑郁模型,通过海马微量注射5-HT、NPY及其相应受体阻断剂,利用体重变化率、糖水偏爱实验、敞箱实验、强迫游泳实验等方法观察大鼠行为学表现,同时利用免疫组织化学方法测定大鼠海马CA3区和齿状回(dental gyrus DG)5-HT、NPY、PAM表达的变化。结果行为学结果显示①对照组大鼠的体重在第7天、第14天、第21天持续增加,而CUMS组大鼠的体重持续降低;同时,CUMS组大鼠的糖水消耗率、水平运动、垂直运动、自我修饰的次数也显著降低(p<0.01),游泳不动时间显著延长(p<0.01):②NPY、5-HT使CUMS大鼠的体重在第7天、第14天、第21天持续增加,且NPY的作用比5-HT的作用强,在第14天和第21天,注射NPY的大鼠其体重和对照组大鼠的体重无显著性差异。CUMS并注射NPY和5-HT组大鼠的糖水消耗率、水平运动、垂直运动、自我修饰的次数与CUMS组大鼠相比显著升高(p<0.01),游泳不动时间与CUMS组相比显著降低(p<0.01):③单胺类受体阻断剂Spiperone在前两周不影响NPY增加大鼠体重的作用,但在第3周显著抑制NPY增加大鼠体重的作用:NPYY1受体阻断剂GR231118对5-HT有相同的作用。单胺类受体阻断剂利NPYY1受体阻断剂分别对NPY和5-HT引起的糖水消耗率的增加没有显著的抑制作用(p>0.05),然而,这两个阻断剂分别抑制NPY和5-HT引起的水平运动、垂直运动、自我修饰的次数的增加,而且它们也能降低大鼠的游泳不动时间(p<0.01/0.05)。免疫组织化学结果显示:①CUMS组大鼠在应激结束后,海马齿状回5-HT、NPY、PAM阳性表达均显著下降,与对照组相比差异极其显著(P<0.01)。②PY+CUMS组大鼠在应激结束后,海马DG区5-HT、PAM阳性表达均显著提高,与CUMS组比较差异极其显著(P<0.01)。③5-HT+CUMS组大鼠在应激结束后,海马齿状回NPY、PAM阳性表达显著提高,与CUMS组相比差异极其显著(P<0.01)。④Spiperone+NPY+CUMS组大鼠在应激结束后,海马DG区5-HT、PAM阳性表达均显著下降,与对照组相比差异极其显著(P<0.01)。⑤GR231118+5-HT+CUMS组大鼠在应激结束后,海马DG区NPY、PAM阳性表达均显著下降,与对照组相比差异极其显著(P<0.01)。结论CUMS能够引起大鼠抑郁,其特征是动物快感缺失,兴趣丧失,体重降低,生理活动迟缓及行为绝望。CUMS引起海马齿状回5-HT、NPY、PAM下降是抑郁产生的原因之一,重复的在单侧背部海马注射NPY和5-HT能够抑制或阻断CUMS引起的抑郁症状,而且NPY一方面通过提高5-HT的表达起抗抑郁作用,另一方面是增加PAM,引起NPY酰胺化,从而起到抗抑郁作用。5-HT既能增加海马NPY又能增加PAM,促进NPY酰胺化。单胺类受体阻断剂Spiperone可以抑制或阻断NPY对CUMS引起的抑郁症的治疗作用及NPY提高5-HT、PAM的表达:同时,NPY Y1受体阻断剂GR231118也能影响5-HT的作用。说明NPY可以通过单胺类受体起抗抑郁作用,而且此抗抑郁作用的发挥通过5-HT、PAM的表达完成;5-HT可以使NPY、PAM的表达增强,通过NPY Y1受体起到抗抑郁作用。因此,海马中NPY和5-HT这两种神经递质参与了抗CUMS引起抑郁,且5-HT和NPY系统的相互作用是一个重要途径。而PAM表达降低可能是抑郁症发生的重要原因之一。
Accumulated evidence indicates a role of the hippocampal 5-hydroxy-tryptamine (5-HT) neuropeptide Y (NPY) in the response to stress and modulation of depression. Peptidylglycineα-amidating monooxygenase (PAM) is a rate-limiting enzyme essential for the production of multiple bioactive neuropeptides, including NPY. But it is unclear whether and how the hippocampal 5-HT and NPY systems make contributions to chronic unpredicted mild stress (CUMS)-induced depression, an animal model of depression that closely mimics human depression. It is also unclear whether PAM has the relationship with CUMS induced depression. Here we observed that rats receiving a variety of chronic unpredictable mild stressors for 3 weeks showed a variety of behavioral measures of depression, including a significant reduction in body weight, sucrose preference, and locomotion, rearing and grooming in open field test , and a significant increase in immobility time in forced swimming test. So, our current protocol of a 3-week CUMS is able to induce a reliable rat model of depression with anhedonia, loss of interests, lost weight, psychomotor retardation and behavioral despair. We also observed the expression of NPY, 5-HT and PAM- immunopositive neurons in the dental gyrus (DG) of hippocampus in these groups ,which indicates that the depression induced by CUMS maybe is related with the decreased expression of hippocampal NPYor5-HT or maybe is related with the reduced amidated NPY induced by reduced PAM. While repeated injections of 5-HT or NPY into one side of the dorsal hippocampus can suppress or block CUMS-induced anhedonia, loss of interests, psychomotor retardation and behavioral despair. The beneficial effects of NPY and 5-HT on behavioral measures of depression were suppressed by pretreatment with the monoamine receptor antagonist Spiperone and the NPY Y1 receptor antagonist GR231118, respectively. These data suggest, reduced 5-HT and NPY neurotransmission in the hippocampus may make significant contributions to CUMS-induced depression via the interaction of hippocampal 5-HT and NPY systems. The decreased expression of PAM maybe is a main reason for depression.
引文
[1] H. Selye. Stress in Health and Disease[J]. 1976,12: 99-106.
    
    [2] F.S.Guimaraes, E.A.Delble, C.M.Padovan, et al. Hippocampal 5-HT receptors and consolidation of stressful memories[J]. Behav. Brain Res, 1993, 58: 133-139.
    
    [3] R.M. Post. Transduction of psychosocial stress into the neurobiology of recurrent depressive disorder[J]. Psychiatry , 1992, 149 (8): 999-1010.
    
    [4] B.Marianne, H.Florian. Mice with Mutations in the HPA- System as Models for Symptoms of Depression[J]. Biol Psychiatry, 2006, 59: 1104-1115.
    
    [5] J.P.Herman, W.E. Cullinan. Neurocircuitry of stress: central control of the hypothalam-pituitary-adrenocortical axis[J]. Trends Neurosci, 1997, 20: 78-84.
    
    [6] A.M.Barr, L.A.Brotto, A.G. Phillips. Chronic corticosterone enhances the rewarding effects of hypothalamic self-stimulation in rats[J]. Brain Res., 2000, 875: 196-201.
    
    [7] M.Joels, E.D.Kloet. Mineralocorticoid and glucocorticoid receptors in the brain.Implications for ion permeability and transmitter systems [J]. Prog. Neurobiol., 1994,43: 1-36.
    
    [8] K.D.Beck, V.N.Luine. Sex differences in behavioral and neurochemical profiles after chronic stress: role of housing conditions[J]. Physiol Behav., 2002,75: 661-673.
    
    [9] R.E.Bowman, V.N.Luine . Chronic stress effects on memory: sex differences in performance and monoaminergic activity[J]. Horm Behav., 2003,43: 48-59.
    
    [10] R.M. Sapolsky, L.C.Kery, B.S. Mcewen. Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response [J]. Proc Natl Acad Sci., 1984,81:6174-6177.
    
    [11] A.Vas, S. Bernal. Effects of chronic stress on dendritic arborization in the central and extended amygdala[J]. Brain Res., 2003, 965: 290-294.
    
    [12] A.L. Murra. Evidence based health policy-lessons from the global burden of disease[J]. Science, 1996, 274: 740.
    
    [13] K.S. Kendler, M.C. Neale, et al. The lifetime history of major depression in women. Reliability of diagnosis and heritability[J]. Arch Gen Psychiatry, 1993, 50(11):863-870.
    
    [14] E. Frank . Natural history and preventive treatment of recurrent mood disorders [J]. Annu Rev Med., 1999, 50: 453-468.
    
    [15] P.W.Gold , G.P.Chrousos. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs. low CRH/NE states [J].Mol.Psych.,2002, 7: 254-275.
    
    [16] S.Modell, J. Huber, et al. Corticosteroid receptor function is decreased in depressed patients [J]. Neuroendocrinology, 1997, 65: 216-222.
    
    [17] P.S.Chloss, F.A.Henn. New insights into the mechanisms of antidepressant therapy[J], Pharmacology & Therapeutics, 2004 ,102: 47-60.
    
    [18] E.J.Nestler, R.J. Dilenonei, et al. Neurobiology of depression[J]. Neuron, 2002, 34:13-25.
    
    [19] I. Lucki. The spectrum of behaviors influenced by serotonin. Biol Psychiatry, 1998,44:151 - 162.
    
    [20] S .David, E.F. Glenn .Differential inhibition of stress-induced adreocortical responses by 5-HT_(1A) agonists and by 5-HT_2 and 5-HT_3 antagonists.Psychoneuroendocrinology, 1995, 20(3): 239-257.
    
    [21] C.G.Gross. Neurogenesisn the adult brain: death of a dagma[J]. Nature Review Neuroscience, 2000,1(1): 67-73.
    
    [22] L.Santarelli, C.Gross , et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants[J]. Science, 2003, 301 (5634): 805-809.
    
    [23] R.S.Duman, J. Thome. Neural plasticity to stress and antidepressant treatment[J].Biological Psychiatry, 1999,46(9): 1181-1191.
    
    [24]G.Kempermann,G.Kronenberga. Depressed new Neurons?—Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression[J]. Biological Psychiatry, 2003, 54(5): 499-503.
    
    [25] R.M. Sapolsky . Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders [J] .Arch Gen Psychiatry 2000, 57(5):925-35.
    
    [26] J.P. Olie , C.E.Silva, J.P. Macher .Neuroplasticity-A New Approach to the Pathophvsioloev of Depression[J]. Currunt Medicine Group , 2005.
    
    [27] A.G.Rajkosk. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells[J]. Biological Psychiatry, 2000, 48(8): 766-777.
    
    [28] B.L.Jacobs. Adult brain neurogenesis and depression[J]. Brain Behav Immun.,2002, 16: 602-609.
    
    [29] A.L.lee, W.O. Ogle, R.M.Sapolsky. Stress and depression: possible links to neuron death in the hippocampus[J].Bipolar Disord,2002,4:117-128.
    [30]朱兴族,罗质璞.神经药理学新论[M].北京:人民卫生出版社,2004:1-20.
    [31]李云峰,刘艳芹,张有志等.抗抑郁剂对慢性应激小鼠海马神经元再生的影响[J].中国药理学通报,2004,20:385-388.
    [32]R.S.Duman,J.E.Malerg,et al.Regulation of adult neurogenesis by psychotropic drugs and stress[J].J Pharmacol Exp Ther.,2001,299:401-407.
    [33]P.J.Lucassen.,E.Fuchs,C.Boldizsár.Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex[J].Biol Psychiatry,2004,55:789 -796.
    [34]王祖新.抑郁症的病因学研究[J].中华内科杂志[J],1998,8:58-62.
    [35]王雪琦,路长林,孙学军,赵小林,何成,侧脑室微量注射神经生长因子对实验性抑郁大鼠抑郁行为和海马神经元损伤的影响[J].中国行为医学科学,2002,11(5):481-486.
    [36]B.S.McEwen.Stress and hippocampal plasticity[J].AnnRevNerosci.,1999,22:105-122.
    [37]王敏建,况利.海马结构与抑郁障碍的关系[J].中国临床康复,2005.9(48):116-119.
    [38]李晓泓,韩毳,张露芳,解秸萍.艾灸大椎穴对慢性应激大鼠BDNF的影响[J].中医药学报,2002,30(6):51-54.
    [39]张艳美.慢性应激、大脑损害与抑郁症[J].国外医学精神病学分册,2001,28(2):105-109.
    [40]H.J.Franke.High platelet-5-HT uptake activity is associated with a rapid response in depressed patients treated with amitriptyline[J].Affective disorders and antidepressants,177.
    [41]G.W(o|¨)rtwein,H.Husum,W.Andersson,etal.Effects of matemal separation on neuropeptideY and calcitonin gene-related peptide in "depressed"Flinders Sensitive Line rats:A study of gene environment interrations[J].Neuro-Psychopharmacology &BiologicalPsychiatry,2006,30:684-693
    [42]J.Nacher,K.Pham,et al.Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex[J].Neuro science,2004,126:503-509.
    [43]B.S.McEwen,A.M.Magarinos,L.P.Reagan.Structural plasticity and tianeptine:cellular and molecular targets[J].European Psychiatry,2002,17(3):318-330.
    [44]J.Thome,B.Pesold,M.Baader,etal.Stress differentially regulates synaptophysin and synaptotagmn expression in hippocampus[J].Biological Psychiatry.2001,50(10):809-812
    [45]A.M.Magarion,B.S.Meewen.Stress-induced atrophy of apical dendrites of hippocampal CA3 neurons:involvement of glucocorticoid secretion and excitatory amino acid receptors[J].Neuroscience,1995,69:89-98.
    [46]M.P.Vawter.Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders[J].European Journal of Pharmacology,2000,405(3):385-395.
    [47]R.S.Duman.Pathophysiology of depression:the concept of synaptic plasticity[J].Europe Psychiatry,2002,173:306-310.
    [48]S.L.Dubovsky,M.Thomas.Beyond specificity:effects of serotonin and serotonergic treatments on psychobiological function[J].Psycosomatic Res.,1995,39:429-444.
    [49]K.S.Kendler,S.L.Karkowski.Stressful life events and genetic liability to major depression:Genetic control of exposure to the environment[J]Psychol Med,1997,27:539-547.
    [50]D.F.Ashwana,R.Carl,et al.Serotonin receptor activation leads to neurite outgrowth and neuronal survival[J].Molecular Brain Research,2005,138:228-235.
    [51]S.Nishizawa,S.N.Young,et al.Differences between males and females in rates of serotonin synthesis in human brain[J].Proc.Natl.Acad.Sci.,1997,94:5308-5313.
    [52]M.Leyton,P.Gravel,et al.A-11Cmethyl-tryptophan trapping in the orbital and ventral medial prefrontal cortex of suicide attempters[J].Eur.Neuropsychopharmacol,2005.
    [53]C.Benkelfat,P.Dean,et al.Enhanced susceptibility to the mood-lowering effect of tryptophan depletion in young male adults at genetic risk for major affective disorders[J].Arch.Gen.Psychiat.,1994,51:687-697.
    [54]S.Singer,S.Rossi,et al.Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function[J].Neurochem Res.,2004,29:1779-1792.
    [55]J.P.Redrobe,Y.Dumont,A.Fournine,et al.Role of serotonin in the antidepressant-like properties of NPY in the mouse forced swim test[J].Peptides,2005,26:1394-1400.
    [56]M.E.De Quidt,P.C.Emson.Neuroscience,1986,19:10-11.
    [57]周明.神经肽Y[J].生命的化学,1995,3:26.
    [58]M.Martire,G.Pistritto,N.Mores,et al.Presynaptic A2-adrenoceptors and neuropeptide Y Y2 receptors inhibit[3]H noradrenaline release from rat hypoth- alamic synaptosomes via different mechanisms[J]Neurosci.Lett.,1995,188-189
    [59]P.C.Yannielli,M.E.Harrington.Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo[J].Neuroreport,2000,11(7):1587- 1591.
    [60]沈悦娣,徐百华.盐酸氟西汀对抑郁症模型小鼠NPY表达的研究[J].全科医学临床与教育,2006,4(3):185-188.
    [61]韩继阳,邵云,何强,孔令韬,宋宁,金魁,丁宝坤,王旭梅.慢性应激抑郁模型大鼠海马神经肽Y的表达及氟西汀的干预作用[J].中国行为医学科学,2007,16(1):4-7
    [62]M.Heilig,O.Zachriddon,et al.Decreased cerebrospinal fluid neuro- peptide Y in patients with treatment refractory unipolar major depression:preliminary evidence for association with preproNPY gene polymorphism[J].J Psychiatr Res.,2004,38(2):113-121.
    [63]M.Heilig.The NPYsystem in stress,anxiety and depression Division of Psychiatry[J].2004,5(8):
    [64]J.P.Redrobe,Y.Dumont,etal.Neuropeptide Y(NPY)Y2 receptors mediate behaviour in two animal models of anxiety evidence from Y2 receptor knock out mice,Behav Brain Res.,2003,141:251-255
    [65]A.Vezzani,T.Ravizza,D.Moneta,et al.Brain-derived neurotrophic factor immunoreactivity in the limbic system of rat after acut seizures and during spontanrous convulsions:temporal evolution of changes as neuropeptideY[J].Neuroscience,1999,90(4):1445
    [66]王荣华,李秋明,付宜鸣,等.衰老时大鼠大脑枕叶神经肽Y阳性神经元的变化[J].解剖科学进展,2001,7(4):312-314.
    [67]L.A.Adie,J.G.PameveEas,E.Franke.Development of ultrastrucural features of neuropeptide Y-immunoreactive[J].Neuroe in the rat visual cortex,1990,19:455.
    [68]X.M.Ma,R.E.Mains,B.A.Eipper.Plasticity in hippocampal peptidergic systems induced by repeated electroconvulsive shock[J].Neuropsychopharmacology,2002,27:55-71
    [69]M.R.Alam,R.C.Johnson,D.N.Darlington.Kalirin,a Cytoso- lic Protein with Spectrin-like and GDP/GTP Exchange Factor-like Domains That Interacts with Peptidylglycine a-Amidating Monoo xygenase, an Integral Membrane Peptide-processing Enzyme. [J] Bio . Che. 1997, 272 : 12667-12675.
    
    [70]S.T. Prigge , R.E.Mains , B.A.Eipper . New insights into copper mono- oxygenases and peptide amidation: structure, mechanism and function. [J]Cell Mol Life Sci.,2000 57:1236-1259
    
    [71] S.C.Baraban, G.Hollopeter, J.C.Erickson . Knock-out mice reveal a critical antiepileptic role for neuropeptide Y [J]. Neurosci., 1997,17:8927-8936.
    
    [72]R.J. Katz . Animal model of depression: Pharmacological sensitivity of a hedonic deficit[J]. Pharmacol Biochem. Behav., 1982,16,965-968.
    
    [73]P.Willner, R.Muscat ,M. Papp. Chronic mild stress-induced anhedonia:a realistic animal model of depression[J]. Neurosci Biobehav Rev., 1992;16:525-34.
    
    [74] J.Harro, M.Tonissaar, M.Eller, et al .Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry [J]. Brain Research, 2001,899 :227-239.
    
    [75] C.A.Naranjoa , L.K.Tremblaye , U.E.Bustob.The role of the brain reward system in depression[J]. Neuro-Psychopharmacology and Biological Psychiatry, 2001,25(4):781-823.
    
    [76]R.D. Porsolt, M. L. Pichon, M. Jalfre . Depression: a new model sensitive to antidepressant treatments[J]. Nature, 1977, 266:730-732.
    
    [77]C.M. Contrerasa, L. Chaco'n, et al. Spontaneous firing rate of lateral septal neurons decreases after forced swimming test in Wistar rat[J] . Neuro-Psychopharmacology & Biological Psychiatry 2004,28 (2):343- 348.
    
    [78] American Psychiatric Association.DSM-III Diagnostic and statistical manual of psychiatric disorders, 1994, 4
    
    [79]P.Willner,A.Towell,D.SampsonD,etal. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricycles antidepressant[J].Psychopharmacology 1987,93(3):358-364.
    
    [80]K. Matthews, N. Forbes , I.C. Reid ,Sucrose consumption as an hedonic measure following chronic unpredictable mild stress. Physiol.Behav, 1995,57,241-248.
    
    [81]A. Blokland , C.Lieben , N.E.Deutz. Anxiogenic and depressive-like effects, but no n cognitive eficits, after repeated moderate tryp tophan depletion in the rat1[J].Psychopharmacol, 2002, 16:39-49.
    
    [82] N.Pillai-Nair ,A.K.Panicker ,R.M. Rodriguiz , et al. NCAM-Secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior[J].Neurosci.,2005,25:4659-4671.
    [83]D.P.Woldbye,A.Nanobashvili,A.T.Sorensen,et al.Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors[J].Neurobiol Disease,2005,10:258-267.
    [84]T.J.Sajdyk,A.Shekhar,D.R.Gehlert Interactions between NPY and CRF in the amygdala to regulate emotionality[J].Neuropept,2004,38:225-234.
    [85]X.Zhang,D.L.Gelowitz,C.T.Lai et al.Gradation of kainic acid-induced rat limbic seizures and expression of hippocampal heat shock protein-70[J].Eur J Neurosci 1997;9:760-769.
    [86]P.Willner.Validity,reliability and utility of the chronic mild stress model of Depression a 10-year review and evaluation[J].Psychopharmacol.,1997,134,319-329.
    [87]A.M.Barr,L.A.Brotto,A.G,Phillips.Chronic corticosterone enhances the rewarding effect of hypothalamic self-stimulation in rats[J].Brain Res.,2000,875:196-201.
    [88]H.Anisman,K.Matheson.Stress,depression,and anhedonia:Caveats concerning animal models[Jl.Neurosci.Biobehav.,2005,29:525-546.
    [89]徐建芬.慢性束缚应激损害小鼠学习记忆和抑制体重增加[J].浙江教育学院学报,2004,5:23-27.
    [90]P.S.D'Aquila,A.T.Peana,V.Carboni.Different effects of desipramine on locomotor activity in quinpirole-treated rats after repeated restraint and chronic mild stress[J].Psychopharmacol.,2000a,14,347-352.
    [91]P.S.D'Aquila,A.T.Peana,V.Carboni.Exploratory behaviour and grooming after repeated restraint and chronic mild stress:effect of desipramine.Eur[J].Pharmacol.,2000b,399,43-47.
    [92]R.J.Katz,K.A.Roth,B.J.Carrol.Acute and chronic stress effects on open field activity in the rat:implications for a model of depression.[J].Neurosci.Biobehav.,1981,5,247-251.
    [93]J.F.Cryan,A.Holmes.The ascent of mouse:advances in modelling human depression and anxiety[J].Nat Rev Drug Discov.,2005,4:775-790.
    [94]E.J.Nestler,E.Gould,et al.Preclinical models:status of basic research in depression[J].Biol Psychiatry,2002,52:503-528.
    [95]C.Bielajew,A.T.Konkle,A.C.Kentner,et al.Strain and gender specific effects in the forced swim test: effects of previous stress exposure[J]. Stress, 2003, 6, 269-280.
    
    [96]C. Fujisaki, M. Utsuyama, Y.Kuroda, et al. An immunosuppressive drug,cyclosporine-A acts like anti-depressant for rats under unpredictable chronic stress. [J].Med. Dent.Sci. ,2003, 50, 93-100.
    
    [97]J.F. Cryan, R.J. Valentino, I.Lucki. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test[J]. Neurosci.Biobehav., 2005,29, 547-69.
    
    [98] F. Borsini. Role of the serotonergic system in the forced swimming test [J].Neurosci. Biobehav. Rev., 1995,19, 377-395.
    
    [99] M. Maes, H.Y.M. Meltzer. The Serotonin Hypothesis of Major Depression[J]. In Psycho- pharmacology: From the Fourth Generation of Progress. In: Bloom, F.E.Kupher, D. Raven Press, New York, 1995, 933-944.
    
    [100] C.A. Stockmeier, G.E. Dilley, L.A. Shapiro , et al. Serotonin receptors in suicide victims with major depression[J]. Neuropsychopharmacol., 1997, 16, 162-173.
    
    [101] J.Harro, M.Tonissaar, M.Eller, et al. Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry [J]. Brain Res., 2001, 899.
    
    [102] J.Y.Han, H.Y. Shao, Q.He, et al. The expression of NPY in hippocampus of chronic stress depression rat and the interference of fluoxetine to the NPY[J]. Chin. J.Behav. Med. Sci., 2007, 16, 4-7.
    
    [103] H.Li, L.Y.Lin, Y.N. Zhang, et al. Changes of brain tryptophan and serotonin in rats treated with chronic unpredicted stresses[J]. Chin. J. Psych.,2006, 39, 233-235.
    
    [104] J.P. Herman, N.K. Mueller, et al. Central mecha- nisms of stress integration:hierarchical circuitry controlling hypothalamo-pituitary- adrenocortical responsiveness[J]. Front Neuroendocrinol, 2003, 24: 151-180.
    
    [105] J.P. Herman, N.K. Mueller, et al. Role of GABA and glutamate circuitry in hypothalamo -pituitary-adrenocortical stress integration[J]. Ann NY Acad Sci., 2004,1018:35-45.
    
    [106]J.T. Cheng, C.L. Chang, C.L.Tsai. Inhibitory effect of neuropeptide (NPY) on the in vitro activity of tyrosine hydroxylase[J]. Neurosci. Lett., 1994,167, 117-120.
    
    [107] J.P.Redrobe, Y.Dumont,A. Fournier, et al .Role of serotonin (5-HT) in the antidepressant -like properties of neuropeptide Y (NPY) in the mouse forced swim test[J]. Peptides, 2005,26, 1394-1400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700