外周循环内皮祖细胞的数量对大鼠脑创伤后血脑屏障的通透性及学习记忆的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察大鼠脑创伤后血脑屏障通透性改变的规律,探讨外周循环内皮祖细胞的数量增加对大鼠脑创伤后血脑屏障通透性及学习记忆的影响。
     方法健康成年Wistar大鼠随机分为对照组、假手术组、创伤组和治疗组。采用液压打击创伤性脑损伤模型。治疗组大鼠在打击前连续5天腹腔注射G-CSF(50ug·kg-1·d-1),停药后2d复制模型。EB定量采用检测大鼠皮质及海马光密度值,从标准曲线和方程上查得EB含量并计算结果;脑组织的EB示踪通过荧光显微镜观察。脑组织含水量的测定采用干湿重法。应用CD34/CD133双阳性标记方法标记内皮祖细胞,应用流式细胞仪进行测定。应用免疫组织化学的方法测定CD34+微血管密度。应用Morris水迷宫评价大鼠的学习记忆功能。
     结果1、大鼠颅脑损伤后BBB通透性的改变:创伤组大鼠伤后2h损伤侧皮层及海马的EB浓度与对照组比较明显增高(P<0.05),于4h达高峰,6h有所下降,12h达峰底(仍明显高于正常组,P<0.05),24再次升高,于72h出现第二次高峰,皮层区明显低于4h(P<0.05),而海马区与4h相比无明显差异(P>0.05),于120h再次下降,168h均接近对照组(P>0.05)。2、粒细胞集落刺激因子(G-CSF)对大鼠TBI后皮层及海马BBB通透性的影响:治疗组大鼠TBI后2h、4h、6h和12h损伤侧皮层及海马的EB含量较创伤组无明显差异(P>0.05);于伤后24h、72h、120h较创伤组明显下调(P<0.05)。3、EB示踪的脑组织荧光显微镜观察结果:创伤组大鼠脑损伤灶周围于TBI后2h红色荧光颗粒明显浓染,于4h为著,6h变浅,12h最浅,24h再次出现浓染,于72h出现第二次染色高峰,于120h再次下降,168h接近对照组;治疗组大鼠于伤后24h、72h、120h较创伤组荧光染色明显下降。4、大鼠脑组织含水量的变化:创伤组大鼠伤后2h脑组织含水量较对照组增加(P<0.05),4-24h逐渐呈上升趋势,于72小时达高峰,120h明显下降,168h基本恢复正常,对侧脑组织与对照组比较无明显差异(P>0.05)。治疗组大鼠伤后24-120h较创伤组明显下调(P<0.05)。5、大鼠外周循环EPCs的变化:创伤组大鼠伤后2h外周循环中EPCs较对照组明显下降(P<0.05),4h开始回升,于6-12 h较对照组明显增加(P<0.05),24 h有所下降,于72 h后接近正常水平;治疗组大鼠伤后2 h-72 h较创伤组明显增加(P<0.05),120 h后接近正常水平。6、CD34+微血管密度检测结果:创伤组大鼠损伤侧损伤灶周围皮层及海马齿状回区伤后72 h有所增加,与对照组相比有明显差异(P<0.05),一直持续至168 h;治疗组大鼠伤后24 h有所增加,72 h达高峰,与创伤组比较有明显差异(P<0.05),持续至168h。7、定位航行实验结果:创伤组大鼠1-5d的逃避潜伏期和游泳距离较对照组明显延长(P<0.05)。治疗组大鼠2-5d逃避潜伏期与游泳距离较创伤组明显缩短(P<0.05)。8、空间探索实验结果:创伤组大鼠目标象限百分比低于对照组(P<0.05);治疗组大鼠目标象限百分比较创伤组明显增加(P<0.05)。
     结论1、大鼠TBI后损伤灶周围皮质及海马存在BBB的开放,BBB的开放呈双相性;2、大鼠TBI后BBB破坏,脑组织的含水量增加,是导致继发性脑损伤的重要因素之一。3、EPCs参与了TBI后BBB的修复,增加外周循环的EPCs能够有效的修复BBB,降低脑水肿。4、大鼠TBI后BBB通透性增加,脑组织含水量增加导致继发性脑损伤是TBI后出现学习记忆功能障碍的重要原因。5、增加外周循环EPCs的数量,可以有效地减轻继发性脑损伤,从而改善学习记忆功能。
Objective:To observe the change of the permeability of blood-brain barrier after traumatic brain injury in rat and to investigate the impact of the permeability of blood-brain barrier and cognitive capacity after traumatic brain injury in rat by the increased number of endothelial progenitor cells in peripheral circulation.
     Methods:450 healthy adult Wistar rats were randomly divided into control group, sham group, TBI group and treatment group. The model of traumatic brain injury used by hydraulic blow. The rats of treatment group were gotten intraperitoneal injection of G-CSF (50 ug·kg-1·d-1) for 5 days before injury, and the models were replicated in 2 days after stopping injection. EB quantitative detection of cortex and hippocampus was gotten through detecting the optical density of sample, and Evans blue content was inquired from standard curve and equation, then the results were worked out. EB tracing of brains was observed under fluorescence microscope. Brain water content was determinated in wet and drying weight way. Endothelial progenitor cells were marked by CD34/CD133 double positive cells and measured by flow cytometry. CD34+ micro vessel density was detected by immunohistochemical method. Morris water maze was applicated to evaluate cognitive function.
     Results:1 The changs of BBB permeability after traumatic brain injury in rats:The EB content of cortex and hippocampus in injury side in TBI group was significantly higher compared with the control group at 2h after injury (P<0.05), and reached the peak at 4h, and begained to decline at 6h and to the lowest at 12h (still significantly higher than the control group, P<0.05), and increased again at 24h and reached the second peak at 72h, and significantly was lower in cortex than 4h(P<0.05), but was not significantly different in hippocampus at 4h, and declined again at 120h, and approached to the control group at 168h (P>0.05).2 The influence of Granulocyte colony stimulating factor on BBB permeability of cortex and hippocampus after brain injury in rat:Compared with TBI group, the EB content of cortex and hippocampus in treatment group was no significant difference at 2h,4h,6h and 12h after TBI (P> 0.05), and lower than the TBI group at 24h,72h and 120h after TBI (P<0.05); 3 The regults of EB tracer of rat brain tissue slices observed under fluorescence microscopy: The red fluorescent granules was obvious in TBI group at 2h after TBI, and deepened at 4h, and thin at 6h, and thinest at 12h, and deepened again at 24h, and the second peak occurred at 72h, and thin again at 120h, and approached to the control group at 168h. Compared with TBI group, the red fluorescence of treatment group was decreased significantly at 24h,72h,120h after TBI.4 Changes of brain water content: Compared with the control group, the brain water content in treatment group increased at 2h after injury (P<0.05), and gradually rised at 4-24h, and peaked at 72 h, and decreased at 120h, and returned to normal at 168h. Compared with TBI group, the brain water content in treatment group was lower at 24-120h group (P<0.05).5 The changes of EPCs in peripheral circulation in rats:Compared with the control group, EPCs in peripheral circulation in TBI group decreased significantly at 2 h after injury (P<0.05), and began to rise at 4h, and increased significantly at 6~12 h compared with the control group (P<0.05),24 h decreased, and closed to the normal level at 72 h. EPCs in peripheral circulation in treatment group was significantly increased compared with TBI group at 2 h~72 h after injury (P<0.05), and closed to the normal level at 120 h after in injury.6 CD34+microvessel density test results: CD34+ microvessel density of cortex and hippocampal dentate gyrus increased in TBI group at 72 h after injury, and were significantly different compared with the control group (P<0.05), and continued to 168 h. CD34+ microvessel density increased in treatment group at 24 h after injury, reached the peak at 72 h, and increased significantly compared with the TBI group (P<0.05), and continued to 168h.7 The results of oriented navigation test:Compared with control group, the escape latency and swimming distance extented significantly in the training of 1-5 day in TBI group (P<0.05). Compared with TBI group, the escape latency and swimming distance in the training of 1-5 day in treatment group shortened significantly (P<0.05).8 The results of space exploration test:Compared with the control group, the percentage of target quadrant if TBI group decreased (P<0.05) significantly. Compared with TBI group the percentage of target quadrant of treatment group was increased significantly (P<0.05).
     Conclusion:1 BBB opening exists in the injury cortex and hippocampus in rats after TBI, and BBB opening was biphasic.2 The destruction of BBB and increased brain water content in rats is one of the important factors leading to secondary brain injury after TBI.3 EPCs involve in BBB repair after TBI. the increased EPCs in peripheral circulation can repair the BBB and reduce brain edema.4 The increased permeability of BBB and brain water content after TBI result in secondary brain injury which is an important reason of cognitive dysfunction.5 Increasing the number of EPCs in peripheral circulation can repair BBB and decrease brain edema in rats after TBI, then reduce secondary brain injury, thereby improve the cognitive dysfunction.
引文
[1]Jonathan W, Graham M. Management of severe head injury[J]. Contemp Neurosurg,1996,18(1):1-5.
    [2]Qi X, Yang DL, Qi F, et al. Statistical analysis on 2213 inpatients with traffic injuries from January 2003 to September 2005 in Ningbo city[J]. Chin J Traumatol,2006,9(4):228-233.
    [3]Lee KS. Estimation of the incidence of head injury in Korea:an approximation based on national traffic accident statistics[J]. J Korean Med Sci,2001,16(3): 342-346.
    [4]Fischer C, Mutschler V. Traumatic brain injuries in adults:from coma to wakefulness. Neurophysiological data[J]. Ann Readapt Med Phys,2002,45(8): 448-455.
    [5]Mac Donald CL, Dikranian K, Bayly P, et al. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury[J]. J Neurosci,2007,27(44):11869-11876.
    [6]Tashlykov V, Katz Y, Gazit V, et al. Apoptotic changes in the cortex and hippocampus following minimal brain trauma in mice[J]. Brain Res, 2007,1130(1):197-205.
    [7]Baldwin SA, Fugaccia I, Brown DR, et al. Blood-brain barrier breach following cortical contusion in the rat[J]. J Neurosurg,1996,85(3):476-481.
    [8]Baskaya MK, Rao AM, Dogan A, et al. The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats[J]. Neurosci Lett,1997,226(1):33-36.
    [9]Asahara T, Murohara T, Sullivan A, Silver M. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science,1997,275(5302):964-967.
    [10]Iwasaki H, Kawamoto A, Willwerth C, et al. Therapeutic potential of unrestricted somatic stem cells isolated from placental cord blood for cardiac repair post myocardial infarction[J]. Arterioscler Thromb Vasc Biol,2009,29(11): 1830-1835.
    [11]Kawamoto A, Katayama M, Handa N, et al. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia:a phase I/IIa, multicenter, single-blinded, dose- escalation clinical trial[J]. Stem Cells, 2009,27(11):2857-2864.
    [12]Shi M, Ishikawa M, Kamei N, et al. Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells[J]. Stem Cells,2009,27(4):949-960.
    [13]Ii M, Nishimura H, Sekiguchi H, et al. Concurrent vasculogenesis and neurogenesis from adult neural stem cells[J]. Circ Res,2009,105(9):860-868.
    [14]Jung KH, Roh JK. Circulating endothelial progenitor cells in cerebrovascular disease[J]. J Clin Neurol,2008,4(4):139-147.
    [15]Lorz C, Mehmet H. The role of death receptors in neural injury. Front Biosci, 2009,14:583-595. Review.
    [16]Springer JE. Apoptotic cell death following traumatic injury to the central nervous system[J]. J Biochem Mol Biol,2002,35(1):94-105. Review.
    [17]Unterberg AW, Stover J, Kress B,et al. Edema and brain trauma[J]. Neuroscience, 2004,129(4):1021-1029. Review
    [18]Kazanis I. CNS injury research:reviewing the last decade:methodo- logical errors and a proposal for a new strategy [J]. Brain Res Rev,2005,50(2): 377-386.
    [19]Lindgren S, Rinder L. Experimental studies in head injury, Ⅱ. Press- ure propagation in "percussion-contusion"[J]. Biophysik,1966,3(2):174-180.
    [20]Dixon CE, Lyeth BG, Povlishock YR, et al. A fluid percussion model of experimental brain injury in the rats[J]. Neurosurg,1987,67(1):110-119.
    [21]Zhong C, Zhao X, Sanra J, et al. NAAG peplidase inhibilor reduces acute neuronal degeneration and astrocyte damage following lateral fluid percussion TBI in rats[J]. J Neurotrauma,2005,22(2):266-276.
    [22]Jiang XB, Ohno K, Qian L, et al. changes in local cerebral blood flow, glucose utilization, and mitochondrial function following traumatic brain injury in rats[J]. Neurol Med CHir(Tokyo),2000,40(1):16-29.
    [23]Garga N, Lowenstein DH. Posttraumatic epilepsy:a major problem in desperate need of major advances[J]. Epilepsy Curr,2006,6(1):1-5.
    [24]Yi JH, Pow DV, Hazell AS. Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral nuid-percussion injury[J]. Glia, 2005,49(1):121-133.
    [25]Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury[J]. Neurosci Lett.2009,456(3):120-123. Review.
    [26]Bradbury MW. The structure and function of the blood-brain barrier[J]. Fed Proc, 1984,43(2):186-190.
    [27]Bradbury MW. The blood-brain barrier. Transport across the cerebral endothelium[J]. Circ Res,1985,57(2):213-220.
    [28]Baldwin SA, Fugaccia I, Brown DR, et al. Blood-brain barrier breach following cortical contusion in the rat[J]. J Newoswg,1996,85(3):476-481.
    [29]Fukuda K, Tanno H, Okimura Y, et al. The blood-brain barrier disruption to circulating proteins in the early period after fluid percussion brain injury in rats[J]. J Neurotrauma,1995,12(3):315-324.
    [30]Bouma GJ, Muizelaar JP, Choi SC, et al. Cerebral circulation and metabolism after severe traumatic brain injury:the elusive role of ischemia[J]. J Neurosurg, 1991,75(5):685-693.
    [31]Cherian L, Robertson CS, Contant CF J, et al. Lateral cortical impact injury in rats:cenebrovascular effects of varying depth of cortical deformation and impact velocity[J]. J Neurotrauma,1994,11(5):573-585.
    [32]Sutton RL, Hovda DA, Adelson PD, et al. Metabolic changes fovowing cortical contusion:relationships to edema and morphological changes[J]. Acta Neurochir Suppl(wien),1994,60:446-448.
    [33]Wahl M, Unterberg A, Baethmann A, et al. Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema[J]. J Cereb Blood Flow Metab,1988,8(5):621-634.
    [34]Hall ED. The role of oxygen radicals in traumatic injury:clinical implications[J]. J Emerg Med,1993, 11(1):31-36.
    [35]Soares HD, Hicks RR, Smith D, et al. Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury[J]. Neurosci,1995,15(12):8223-8233.
    [36]Chodobski A, Chung I, Kozniewska E, et al. Early neutrophilic expression of vascular endothelial growth factor after traumatic brain injury[J]. Neuroscience,2003,122(4):853-867.
    [37]Baskaya MK, Rao AM, Prasad MR, et al. Regional activity of ornithine decarboxylase and edema formation after traumatic brain injury[J]. Neurosurgery, 1996,38(1):140-145.
    [38]Koenig H, Goldstone AD, Lu CY. Blood-brain barrier breakdown in cold-injured brain is linked to a biphasic stimulation of ornithine decarboxylase activity and polyamine synthesis:both are coordinately inhibited by verapamil, dexamethasone, and aspirin[J]. J Neurochem,1989,52(1):101-109.
    [39]Reese TS, Karnovsky MJ. Fine structural localization of blood-brain barrier to exogenous peroxidase. J Cell Biol,1967,34(1):207-217.
    [40]Povlishok JT, Bker DP, Sullivan HC, et al. Vascular permeability alteration to HRP in experimental brain injury[J]. Brain Res,1978,153(1):223-241.
    [41]徐如样,易声禹,吴声伶,等.神经细胞钙通道变化及对鼠脑屏障通透性和外伤性脑水肿的影响[J].中华神经外科杂志,1992,8(1):41-43.
    [42]袁绍纪,张福洲,徐兴钊,等.大鼠急性创伤性脑水肿模型的光镜和电镜改变[J].第二军医大学学报,1991,12(6):515-518.
    [43]Kimelberg HK. Current concept of brain edema:Review of laboratory investigation. J Neurosurg,1995,83(6):1051-1059.
    [44]Duvdevani R, Roof RL, Fulop Z, et al. Blood-brain barrier breakdown and edema formation following frontal cortical contusion:does hormonal status play a role[J]? J Neurotrauma,1995,12(1):65-75.
    [45]Ikeda Y, Wang M, Nakazawa S. Simple quantitative evaluation of blood-brain barrier disruption in vasogenic brain edema[J]. Acts Neurochir Suppl (teen). 1994,60(1):119-120.
    [46]刘卫平,易声禹,章翔,等.镧示踪法观察大鼠颅脑损伤后血脑屏障形态学变化[J].中华创伤杂志,1997,13(5):279-281.
    [47]Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury[J]. Neurosci Lett.2009,456(3):120-123. Review.
    [48]Opydo-Chanek M. Bone marrow stromal cells in traumatic brain injury (TBI) therapy:true perspective or false hope[J]? Acta Neurobiol Exp (Wars),2007, 67(2):187-95. Review.
    [49]Mahmood A, Lu D, Qu C, et al. Treatment of traumatic brain injury with a combination therapy of marrow stromal cells and atorvastatin in rats[J]. Neurosurgery,2007,60(3):546-554.
    [50]Brodhun M, Bauer R, Patt S. Potential stem cell therapy and application in neurotrauma[J]. Exp Toxicol Pathol,2004,56(1-2):103-112.
    [51].Greenberg DA, Kunlin J. From angiogenesis to neuropathology[J]. Nature,2005, 438(7070):954-959.
    [52]Hayashi T, Deguchi K, Nagotani S, et al. Cerebral ischemia and angiogenesis[J]. Curr Neurovasc Res,2006,3(2):119-129. Review.
    [53]Massa M, Rosti V, Ferrario M, et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardialinfarction[J]. Blood,2005,105(1):199-206.
    [54]Qu C, Mahmood A, Lu D, et al. Treatment of traumatic brain injury in mice with marrow stromal cells[J]. Brain Res.2008,1208:234-239.
    [55]Li Liu, Hui Liu, JunFeng Jiao, et al. Changes in Circulating Human Endothelial Progenitor Cells after Brain Injury[J]. J Neurotrauma,2007, 24(6):936-943.
    [56]Jin W, Wang H, Yan W, et al. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury[J]. Mediators Inflamm,2008,2008:725174-725181.
    [57]吴克荣,崔建华,顾玉林,等.大鼠脑冲击伤后VEGF的表达与损伤后存活时间关系的实验研究[J].南通大学学报,2006,26(8):865-870.
    [58]Ferrara N, Houck KA, Jakman LB. Molecular and biological properties of the vascular endothelial growth factor family of proteins[J]. Endo Rev,1992,13(1): 18-22.
    [59]Zhang QK, Magovern CJ, Mack CA, et al. Vascular endothelial growth faction is the major angiogenic factor in omentum:mechanism of the omentum-mediated angiogenesis[J].J Surg Res,1997,67(2):147-154.
    [60]Libby P. Coronary artery injury and the biology of atherosclerosis inflammation, thrombosis and stabilization[J].Am J Cardiol,2000,86(1):31-91.
    [61]Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand [J].Cell,2002,109(5):625-637.
    [62]Hattori K, Heissig B, Wu Y. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR 1 (+) stem cells from bone marrow microenvironment[J]. Nat Med,2002,8(8):841-849.
    [63]Massberg S, Konr ad I, Schurzinger K, et al. Platelets secrete stromal cell derived factor 1 alpha and recruit bone marrow derived progenitor cells to arterial thrombi in vivo[J]. J Exp Med,2006,203(5):1221-1233.
    [64]Langer H, Mayor AE, Daub K, et al. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells tomature endothelial cells in vitro[J].Circ Res,2006,98(1):2-10.
    [65]Sakihama H, Masunaga T, Yamashita K, et al. Stromal cell-derived factor-1 and CXCR4 interaction is critical for development of transplant arteriosclerosis[J]. Circulation,2004,110(18):2924-2930.
    [66]Tiesiwakul P. Stromal cell-derived factor (SDF) 1-3'A polymorphism may play a role in resistance to HIV-1 infection in seronegative high-risk Thais[J]. Intervirology,2004,47(2):87-92.
    [67]Zernecke A, Schober A, Bot I, et al. SDF-lalpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cell[J]. Circ Res,2005,96(7):784-791.
    [68]Aicher A, Hecschen C, Mildner-Rihm C, et al. Essential role of nitric oxide synthase for mobilization of stem cell andendothelial progenitor cells[J]. Nat Med,2003,9(11):1370-1376
    [69]Jin H, Ai yer A, Su J, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovaculature[J]. J Clin Invest,2006,116(3): 652-662.
    [70]Dikranian K, Cohen R, Mac Donald C, et al. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons[J]. Exp Neurol,2008,211(2): 551-560.
    [71]Tashlykov V, Katz Y, Volkov A, et al. Minimal traumatic brain injury induce apoptotic cell death in mice[J]. J Mol Neurosci,2009,37(1):16-24.
    [72]Neuhaus J, Risau W, Wolburg H. Indudion of blood-brain barrier chara-cteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture[J]. Ann N Y Acad Sci,1991,633:578-580.
    [73]Bullock R, Butcher SP, Chen MH, et al..Correlation of the extracellular glutamate concentration with extent of blood flow reduction after subdural hematoma in the rat[J]. J Neurosurg,1991,74{5):794-802.
    [74]Zuccarello M, Anderson DK. Interaction between free radicals and excitatory amino acids in the blood-brain barrier disruption after iron injury in the rat[J]. J Neurotrauma,1993,10(4):397-403.
    [75]Chan PH, Schmidley JW, Fishman RA, et al. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals[J]. Neurology, 1984,34(3):315-320.
    [76]Zuccarello M, Anderson DK. Interaction between free radicals andexcitatory amino acids in the blood-brain barrier disruption after iron injury in the rat[J]. J Neurotrauma,1993,10(4):397-403.
    [77]Wagner KR, Dean C, Beiler S, et al. Plasma infusions into porcine cerebral white matter induce early edema, oxidative stress, pro-inflammatory cytokine gene expression and DNA fragmentation:implications for white matter injury with increased blood-brain-barrier permeability[J]. Curr Neurovasc Res,2005,2(2): 149-155.
    [78]Aiguo Wu, Zhe Ying, Gomez-Pinilla F. Vitamin e protects against oxidative damage and learning disability after mild traumatic brain injury in rats[J]. Neurorehabil Neural Repair,2010,24(3):290-298.
    [79]Kanninen K, Heikkinen R, Malm T, et al. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci USA,2009,106(38):16505-16510.
    [80]James ML, Wang H, Venkatraman T, et al. Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice[J]. J Neurotrauma, 2010,27(1):217-228.
    [81]Su Z, Han D, Sun B, et al. Heat stress preconditioning improves cognitive outcome after diffuse axonal injury in rats[J]. J Neurotrauma.2009,26(10): 1695-1706.
    [82]Vogel G. Stem cells:new excitement, persitent question[J]. Science,2000, 290:1672-1679.
    [83]Mahmood A, Goussev A, Lu D, et al. Long-lasting benefits after treatment of traumatic brain injury (TBI) in rats with combination therapy of marrow stromal cells (MSCs) and simvastatin[J]. J Neurotrauma,2008,25(12):1441-1447.
    [84]Song S, Kamath S, Mosquera D, et al. Expression of brain natriuretic peptide by human bone marrow stromal cells[J].Exp Neurol,2004,185(1):191-197.
    [85]Vesely UL, Sallman AL, Bayliss JM, et al. Specific binding site for proatrial natriuretic factors 1-30,31-67, and 99-126 on distal nephrons, proximal tubules, renal cortical and medullary membranes [J]. Renal Physiol Biochem,1992, 15(1):23-32.
    [1]Yamagata K, Tagami M, Nara Y, et al. Astrocyte-conditional medium included blood-brain barrier properties in endothelial cells[J]. Clin Exp Pharmacol Physiol, 1997,24(9-10):710-713.
    [2]Rubin L, Staddon J. the cell biology of the blood-brain barrier[J]. Annu Rew Neurosci,1999,22(1):11-28.
    [3]Werener R, Hartwig W. Development of the blood-brain barrier[J]. Trends Neurosci,1990,13(2):173-178.
    [4]Tonsch W, Bawer HC. Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells[J]. Brain Res,1995,539(3):247-253.
    [5]Tao-cheng JH, Nagy Z, Brightman MW. Tight junction of brain endothelial in vitro and enhanced astroglia[J]. Adv Drug Del Rev,1999,36(2):165.
    [6]Latera J, Guerin C, Goldstein QW. Astrocytes induce neural microvascular endothelial cells to form capillary like structures in vitro [J]. J Cell Physiol, 1990,144(2):204.
    [7]Bertossi M, Roncal L, nicro B, et al. Perivascular astrocytes and endothelium in development of the blood-brain barrier in the optic tectum of the chick embryo[J]. Anet Embryol(Berl),1993,188(1):21-29.
    [8]Ramsauer M, Kunz J, Krause D, et al.Regulation of a blood-brain barrier-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) under cell culture conditions[J]. J Cereb Blood Flow Metab.1998,18(11):1270-1281.
    [9]Kimelberg HK. Current concepts of brain edema:Review of laboratory investigations[J]. J Neurosurg,1995,83(6):1051-1059.
    [10]Schilling L, Wahl M. Brain edema:pathogenesis and therapy[J]. Kidney Int Suppl,1997,59:s69-s75.
    [11]Matsuo H, Tsukada S, Nakata T, et al. Expression of a system L neutral amino acid transporter at the blood-brain barrier[J]. Neuroreport,2000,11(16):3507-3511.
    [12]Janigro D, West GA, Gordon EL, et al. ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells[J]. Am J Physiol,1993,265(3 Pt 1):C812-821.
    [13]Clatterbuck RE, Eberhart CG, Crain BJ, et al. Ultrastructural and immunocyto-chemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations [J]. J Neurol Neurosurg Psychiatry, 2001,71(2):188-192.
    [14]Ueno M, Akiguchi I, Hosokawa M, et al. Blood-brain barrier permeability in the periventricular areas of the normal mouse brain[J]. Acta Neuropathol (Berl),2000, 99(4):385-392.
    [15]Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. Neuro Rx,2005,2:86-98.
    [16]Preston E, Foster DO. Evidence for pore-like opening of blood -brain barrier following forebrain ischemia in rats [J]. Brain Res,1997,761(1):4-10.
    [17]陈兴洲,陆兵勋,石向群,等.大鼠大脑中动脉暂时性闭塞后脑毛细血管内皮细胞凋亡[J].中风与神经疾病杂志,1998,15(4):195-197.
    [18]Olesen SP. A calcium-dependent reversible permeability increase in microvessels in frog brain incluced by Serotonin[J]. J Physiol,1985,36(1):103-113.
    [19]Herman IM, Pollard TD, Wong AJ. Contractile proteins in endothelial cells[J]. Ann NY Acad Sci,1982,401(1):50-60.
    [20]Bundaard M. Tubular invaginations in cerebral endothelium and their relation to smooth-surfaced cisternae in hagfish(Myxine glutinnosa) cell [J]. Tiss Res,1987, 249(4):359-365.
    [21]林凤云,朱照静.血脑屏障转运机制的研究进展.中国药房,2006,17(10):783-785.
    [22]Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purpo-sees:osmotic opening and other means[J]. Neurosurgery,1998,42(5):1083-1099.
    [23]Foda MA, Mararou A. A new modal of brain injury in rats [J]. J Neurosurg, 1994,80(2):301-313.
    [24]Maxwell WL, Irvine A, Adams JH, et al. Response of cerebral microvas-culature to brain injury[J]. J Pat hol,1998,155(4),327-335.
    [25]杨治权,马建荣,曹庆善,等.弥漫性脑损伤脑微血管形态学研究[J].中华神经外科杂志,2001,17(6):382-384.
    [26]王洪生,赵佩林,孙晓峰,等.大鼠急性局灶性脑挫裂伤后血脑屏障的改变研究.中国现代医学杂志,2007,17(2):149-152.
    [27]Baskaya MK, Rao AM, Dogan A, et al. The biphasic opening of the blood brain barrier in the cortex and hippocampus after traumatic brain injury in rats[J]. Neurosci Lett,1997,226(1):33-36.
    [28]Baldwin SA, Fugaccia I, Brown DR, et al. Blood brain barrier breach following cortical contusion in the rats[J]. J Neurosurg,1996,85(3):476-481.
    [29]Fukuda K, Tanno H, Dogan A, et al. The blood brain barrier disruption to circulating protein in the early after fluid percussion brain injury in rats[J]. J Neurotrauma,1995,12(3):315-324.
    [30]Chen Y, Comstantini S, Trembovler V, et al. An experimental model of closed injury in mice:pathophysiology, histopathology and cognitive deficits[J]. J Neurotrauma,1996,13(10):557-568.
    [31]岳淑敏,陈晓峰,鲁晓花,等.大鼠急性局灶性脑损伤后血脑屏障通透性的变化.河北北方学院学报(医学版)2009,26(1):22-24.
    [32]Castejon OJ. Electron microscopic study of capillary wall in human cerebral edema[J]. J Neuropathol,1980,39(3):296-328.
    [33]陈火明,邹咏文.颅脑创伤后血脑屏障的改变.中华创伤杂志,2003,19(2):90-92.
    [34]刘卫平,章翔,易声禹,等.大鼠急性颅脑损伤早期脑微循环的改变的[J].第四军医大学学报,2000,21(12):1506-1509.
    [35]王社军,杜长生,唐红,等.大鼠脑缺血再灌注后血脑屏障通透性的改变.武警医学,2005,16(10):745-747.
    [36]Rosembery GA, Estrada EY, Encoff J E. Mattix metaiioproteinases and TIMPs are associated with BBB opening after reperfusion in rat brain. Stroke,1998,29(10): 2189-2195.
    [37]Hai J, Lin Q, Li ST, et al. Chronic cerebral hypoperfusion and reperfusion injury of restoration of normal perfusion pressure cont ributes to the neuropathological changes in rat brain [J]. Mol Brain Res,2004,126 (2):137-145.
    [38]Neuwelt EA. Mechanisms of disease:the blood-brain barrier [J]. Neurosurgery, 2004,54(1):131-142.
    [39]Latour LL, Kang DW, Ezzeddine MA, et al. Early blood-brain barrier disruption in human focal brain ischemia [J]. Ann Neurol,2004,56 (4):468-477.
    [40]Zhang JP, Sun GY. Free fatty acids neutral glycerides and phoshoglycerides in transient focal cerebral ischemia. J Neurochem,1995,64(4):1688-1695.
    [41]Germano A, Avella D, Imperatore C, et al. Time-course of blood brain barrier permeability changes after experimental subarachnoid haemorrhage[J]. Acta Neurochir (Wien),2000,142(5):575-581.
    [42]谢宗义,马颖,程远.大鼠蛛网膜下腔出血后血脑屏障通透性变化.第三军医大学学报,2007,29(9):834-836.
    [43]Jacowski A, Crockard A, Burnstock G, et al. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat[J]. J Cereb Blood FlowMetab,1990,10(6):835-849.
    [44]Sehba F A, Mostafa G, Knopman J, et al. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage[J]. J Neurosurg,2004,101(4):633-640.
    [45]Sercombe R, Dinh Y R, Gomis P. Cerebrovascular inflammation following subarachnoid hemorrhage[J]. Jpn J Pharmacol,2002,88 (3):227-249.
    [46]Park S, YamaguchiM, Zhou C, et al. Neurovascular p rotection reduces early brain injury after subarachnoid hemorrhage[J]. Stroke,2004,35 (10):2412-2417.
    [47]Ostrowski R P, Colohan A R, Zhang J H. Molecular mechanisms of early brain injury after subarachnoid hemorrhage[J]. Neurol Res,2006,28 (4):399-414.
    [48]宋振全,潘冬生,章翔,等.慢性低灌注性脑缺血再灌注后大鼠血脑屏障通透性的改变,中华实验外科杂志,2005,22(7):858-859.
    [49]海舰,李世亭,潘庆刚,等.慢性脑低灌注压对血脑屏障的影响.中风与神经疾病杂志,2003,20(5):406-408.
    [50]宋振全,魏学忠.慢性静脉压增高状态下脑微循环的变化,中华实验外科杂志,2002,19(1):21-22.
    [51]Del Bigio MR, Yan HJ, Buidt R, et al. Experimental intracerebral hemorrhage in rats magnetic resonance imaging and histopathological correlates[J]. Stroke,1996, 27(12):2312-2320.
    [52]Wagner KR, Xi GH,Hua Y, et al. Lobar intracerebral hemorrhage model in pigs rapid edema development in perihematomal white matter[J]. Stroke,1996,27(3): 490-497.
    [53]李中秋,陆兵勋.高血压脑出血患者血肿周围血-脑屏障超微结构的观察,临床神经病学杂志,2005,18(4):297-298.
    [54]窦林森,陈启东,李伟,等.高血压脑出血血肿周围组织血脑屏障变化的动态观察[J].中华神经科杂志,2001,34(5):267-268.
    [55]Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats:relationship between blood fractions and brain cell death[J]. Stroke,2000,31(7):1721-1727.
    [56]Fredrik PN, Alistair Jenkins, Mendelow AD, et al. Early hemodynamic changes in experimental intracerebral hemorrhage[J]. J Neurosurg,1986,65(5):697-703.
    [57]Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow and blood-brain barrier permealility in rat[J]. J Neurosurg,1994,81(1):93-102.
    [58]Mayer SA, Lignelli A, Fink ME, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage:a SPECT study[J]. J Stroke,1998,29(9): 1791-1798.
    [59]Patterson CE, Stasek JK, Schaphorst KL, et al. Machanisms pertussis toxin-induced barrier dysfunction in bovine pulmonary artery endothelial cell monolayers[J]. Am J Physiol,1995,268(6pt1):2926-2934.
    [60]Joo F, Tosaki A, Olah Z, et al. Inhibition by H7 of the protein kinase C prevents formation of brain edema in sprague bawley CFY rats[J]. Brain Res,1989,490(6): 141-143.
    [61]Schaphorst KL, Pavalko FM, Patterson CE. Thrombin-mediated for adhesion plaque reorganization in endothelium:role of protein phosphorylation[J]. Am J Respir Cell Mol Biol,1997,17(4):443-455.
    [62]Gasche Y, Fujimura M, Morita-Fujimura Y, et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice:a possible role in blood brain barrier dysfunction[J]. J Cereb Blood Flow Metab,1999,19(9):1020-1028.
    [63]Fujimura M, Gasche Y, Morita Fujimura Y, et al. Early appearance of activated matrix metalloproteinase-9 and blood brain barrier disruption in mice after focal cerebral ischemia and reperfusion[J]. Brain Res,1999,842(1):92-100.
    [64]Rosenberg GA, Cunningham LA, Wallace J, et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain:activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures [J]. Brain Res.2001,893(1-2): 104-112.
    [65]Romanic M, White RF, Arleth AJ, et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats:inhibition of matrix metalloproteinase-9 reduces infarct size[J]. Stroke,1998,29(5):1020-1030.
    [66]Grossetete M, Phelps J, Arko L, et al. Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery,2009,65(4):702-708.
    [67]Liuzzi GM, Mastroianni CM, Santacroce MP, et al. Increased activity of matrix metalloproteinases in the cerebrospinal fluid of patients with HIV-associated neurological diseases[J].J Neurovirol.2000,6(2):156-163.
    [68]Lohmann C, Krischke M, Wegener J, et al. Tyrosine phosphatese inhibition includes loss of blood-brain barrier integrity by matrix metalloproteinase dependent and independent pathways[J]. B rain Res,2004,995(2):184-196.
    [69]Abilleira S, Montaner J, Molina CA, et al. Matrixmetallop roteinases-9 concentration after spontaneous intracerebral hemorrhage[J]. Neurosurg,2003,299(1): 65-70.
    [70]Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemia stroke[J]. Stroke, 2003,34(1):40-46.
    [71]Parnetti L, Caso V, SantucciA, et al. Mild hyperhomocysteinemia is a risk factor in all etiological subtypes of stroke[J]. Neurol Sci,2004,25(1):13-17.
    [72]Suresh CT, David L, Andrew MR. Homocysteine in microvascular endothelial cell barrier permeability. Cell Biochemistry and Biophysics,2005,43(1):37-44.
    [73]Agnati LF, Genedani S, Rasio G, et al. Studie on homocysteine plasma levels in Alzheimer's patients. Relevance for neurodegeneration. Journal of Neural Transmission,2005,112(1):163-169.
    [74]吴松笛,万琪,夏峰,等.大鼠急性脑缺血再灌注后血脑屏障通透性的超微结构与血清S100B蛋白水平的动态变化.第四军医大学学报,2006,27(10):902-904.
    [75]许瑞环,廖长征,宋世军,等.轻度脑损伤早期S100蛋白及S100mRNA的水平变化[J].北华大学学报,2004,5(5):417-419.
    [76]Kleindienst A, Ross Bullock M. A critical analysis of the role of the neuro trophic protein S100B in acute brain iniury[J]. J Neurotrauma,2006,23(8):1185-1200.
    [77]RothermundtM, PetersM, Prehn JH, et al. S100B in brain damage and neurodeg -eneration[J]. Microsc Res Tech,2003,60(6):614-621.
    [78]KannerAA, Marchi N, Fazio V, et al. Serum S100beta:A nonin-vasive marker of blood2brain barrier function and brain lesions[J].Cancer,2003,97(11):2806-2813.
    [79]Weglewski A, Ryglewicz D, Mular A, et al. Changes of protein S100B serum concentration during ischemic and hemorrhagic stroke in relation to the volume of stroke lesion[J]. Neurol Neurochir Pol,2005,39(4):310-317.
    [80]Foerch C, SingerO, Neumann-Haefelin T, et al. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction [J]. Arch Neurol,2005,62(7):1130-1134.
    [81]Shi J, Zhang YQ, Simpk ins JW. Effects of 17beta-estradiolon glucose transporter 1 expression and endothelial cell survival following focal ischemia in the rats[J]. Exp Brain Res,1997,117(2):200-206.
    [82]Vannucci SJ, Reinhart R, Maher F, et al. Alterations in GLUT1 and GLUT3 glucose transporter gene expression following unilateral Hypoxia-ischemia in the immature rat brain[J]. Brain Res Dev Brain Res,1998,107(2):255-264.
    [83]李相元,李宪章,张爱梅.大鼠局灶性脑缺血后血脑屏障葡萄糖转运蛋白1表达的变化[J].山东医药,2005,45(17):10-11.
    [84]Lawrence M S, Sun GH, Kunis DM, et al. Overexpression of the glucose transporter gene with a herpes simplex viral vector protects striatal neurons against stroke[J]. J Cereb Blood Flow Metab,1996,16(2):181-185.
    [85]Boado RJ, Pardridge WM. Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. J Neurochem.2002,80(3):552-554.
    [86]Verkman AS. Physiological importance of aquaporin water channels [J]. Ann Med,2002,34(3):192-200.
    [87]Vajda Z, Pedersen M, Fuchtbauer EM, et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice[J]. Proc Natl Acad Sci,2002,99(20):13131-13136
    [88]Kiening KL, Van Landeghem FK, Schreiber S, et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats[J]. Neurosci Lett,2002,324(2):105-108.
    [89]郑跃英,兰允平,祝胜美.大鼠脑缺血/再灌注损伤后梗死灶周围水通道蛋白4与血脑屏障通透性的动态变化[J].中国病理生理杂志,2008,24(8):1647-1655.
    [90]RibeiroMC, Hirt L, Bogousslavsky J, et al. Time course of aquaporin expression after transient focal cerebral ischemia in mice[J]. J Neurosci Res,2006,83(7):1231-1240.
    [91]Badaut J, Lasbennes F, Magistretti PJ, et al. Aquaporins in brain:distribution, physiology, and pathophysiology[J]. J Cereb Blood Flow Metab,2002,22(4):367-378.
    [92]Han Z, Wax MB, Patil RV. Regulation of aquaporin-4 water channels by phorbol ester-dependent protein phosphorylation[J]. J Biol Chem,1998,273(11): 6001-6004.
    [93]Xia CF, Huo Y. The cytobiological effects and signal transduction of interleukin-10[J]. Foreign Med Fascic Immunol,2001,24(5):269-272.
    [94]赵红,聂志伟,朱丽娜,等.高压氧对缺血再灌注小鼠脑组织细胞因子IL-10及血脑屏障通透性的影响.中国康复医学杂志,2008,23(2):110-113.
    [95]Nimmo AJ, Vink R. Recent patents in CNS drug discovery:the management of inflammation in the central nervous system. Recent Pat CNS Drug Discov,2009,4 (2):86-95.
    [96]Kirchhoff C, Buhmann S, Bogner V, et al. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur J Med Res,2008,13(10):464-468.
    [97]Chen J, Liu XS. Development and function of IL-10 FN-gamma-secreting CD4(+) T cells. J Leukoc Biol,2009,86(6):1305-1310.
    [98]Kuriyama H, Kawamoto S, Ishida N, et al. Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun,1997,241(1):53-58.
    [99]Badaut J, Hirt L, Granziera C, et al. Astrocyte-specific exp ression of Aquaporin-9 in the mouse brain is increased after transient focal cerebral ishchemia[J]. J Cereb Blood Flow Metab,2001,21(5):477-482.
    [100]Badaut J, Petit JM, Brunet JF, et al. distribution of Aquaporin-9 in the adult rat brain:preferential expression in catecholaminergic neurons and in glial cells[J]. Neuroscience,2004,128 (1):27-38.
    [101]Li C, Hirooka Y, Honda R, et al. distribution of aquaporin-9 in the rat:an immunohistochemical study[J]. Int J Tissue React,2005,27(2):51-58.
    [102]刘辉,孙善全,杨美,等.大鼠轻度脑外伤后水通道蛋白9在大脑皮质及海马的表达变化.第三军医大学学报,2008,30(3):220-222.
    [103]李燕华,罗永坚,李吕力,等.脑缺血后AQP9表达与血脑屏障通透性的关系中风与神经疾病杂志,2008,25(1):33-35.
    [104]Belayev K, Busto R, Zhao W, et al. Quantitative evalusion of blood-brain barrier permeability followingmiddle cerebral artery occlusion in rats[J]. Brain Res, 1996,739(1-2):88-96.
    [105]Gonzalez-Nhriscal L, Betanzos A, lava P, et al.Tight junction proteins [J]. Progress in Biophysics & Molecular Biology,2003,81(1):41-44.
    [106]Lapierre LA.The molecular structure of the tight junction[J]. Advanced Drag Delivery Reviews,2000,41(3):255-264
    [107]Pollay M, Roberts PA. Blood-brain barrier:a definition of normal and altered function[J]. Neurosurgery,1980,6(6):675-685.
    [108]Zhou F, Xiang Z, Feng WX, et al. Neuronal free Ca(2+) and BBB permeability and ultrastructure in head injury with secondary insult[J]. J Clin Neurosci,2001,8(6): 561-563.
    [109]Esposito P, Jacobson S, Connolly R, et al. Non-invasive assessment of bbb permeability using a gamma camera to detect 99technetium-gluceptate extravasation in rat brain[J]. Brain Res Brain Res,2001,8(2):143-149.
    [110]Carrera RM, Pacheco AM Jr, Mastroti RA. Qualitative evaluation of the blood-brain barrier after the use of hypertonic saline solution in young rats[J]. Eur Surg Res,2001,33 (5-6):311-317.
    [111]Virgintino D, Robertson D, Benagiano V, et al. Immunogold cytochemistry of the blood-brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain[J].Brain Res Dev Brain Res,2000,123(1):95-101.
    [112]Bronge L, Wahlund, LO. White matter lesions in dementia:an MRI study on blood-brain barrier dysfunction[J]. Entrez Pub Med,2000,11(5):263-267.
    [113]Wahlund LO, Bronge L. Contrast-enhanced MRI of white matter lesions in patients with blood-brain barrier dysfunction[J]. Ann N Y Acad Sci,2000,903:477-481.
    [114]罗超,陈龙钦,许民辉.脑膜瘤瘤周水肿形成机制的研究进展[J].重庆医学,2002,31(9):51-52.
    [115]Gaber MW, Yuan H, Killmar JT, et al. An intravital microscopy study of radiation-induced changes in permeability and leukocyte-endothelial cell interactions in t he microvessels of t he rat piamater and cremaster muscle. Brain Res Brain Res Protoc,2004,13(1):1-10.
    [116]Nitz T, Eisenblatter T, Psat haki K, et al. Serum-derived factors weaken t he barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res,2003,981(122):30-40.
    [117]Perriere N, Demeuse P, Garcia E, et al. Puromycin-based purification of rat brain capillary endot helial cell cultures. Effect on the expression of blood2brain barrier2specific properties. J Neurochem,2005,93(2):279-289.
    [118]李江辉,潘长旺,胡听,等.血脑屏障细胞模型的构建.中国病原生物学杂志.2008,12(3):894-897.
    [119]Jong A, Huang SH. Blood-brain barrier drug discovery for central nervous system infections. Curr Drug Targets Infect Disord,2005,5(1):65-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700