新人参二醇对老年大鼠痴呆的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
痴呆是一种持续性的智能障碍。老年期痴呆主要有两种:一是老年性痴呆,即阿尔茨海默氏病;二是血管性痴呆。老人患病后常表现为认知能力、自理能力下降,并伴有不同程度的行为精神症状,严重危及老人的健康,给家庭、社会造成了巨大负担。临床上主要的治疗方法虽然可以减轻症状,改善功能,但并不能阻止或逆转疾病的进程,且具有一定的不良反应。目前的研究显示中药在治疗痴呆方面有一定的优势,在中药中寻找治疗痴呆的有效药物是目前医药界主要的研究方向。
     文献报道,人参二醇可通过改变中枢神经递质和保护神经元作用(抗氧化、抗凋亡、保护线粒体、降低tau蛋白过度磷酸化及影响细胞信号传导),改善痴呆的症状。
     新人参二醇是人参二醇经酸、碱降解并纯化后得到的高纯度人参二醇,其通过增强部分基团结构,有可能使其某些药物活性增加。
     本论文实验通过行为学(水迷宫及避暗)、生化指标(胆碱系统,自由基)及病理检测,观察新人参二醇对老年大鼠痴呆的影响。
     1.新人参二醇对老年大鼠双侧颈总动脉结扎致血管性痴呆的影响
     双侧颈总动脉结扎致老年大鼠血管性痴呆,造模2个月后,按体重分为假手术组、模型组、阳性药安理申组(1.75mg/kg)及新人参二醇(20mg/kg)组灌胃给药15天,行为学检测期间继续给药,通过行为学(水迷宫)、生化指标(胆碱系统,自由基)及病理检测,观察新人参二醇对老年大鼠血管性痴呆(VaD)的影响。
     新人参二醇(20mg/kg),连续给药15天,行为学期间继续给药,与模型组比:水迷宫结果显示,新人参二醇(20mg/kg)组大鼠第1天至第6天到达平台的潜伏期、游程、朝向角、游泳速度及寻台策略无明显变化,第7天2min内大鼠在平台区的逗留时间、平台象限内的逗留时间、穿越平台次数、平台象限内游程占总游程百分比,朝向角和平均速度均无显著差异;胆碱能检测显示,新人参二醇(20mg/kg)组对AChE活性无影响;自由基检测结果显示,新人参二醇组(20mg/kg)大鼠脑组织MDA含量降低(P<0.05),SOD活性升高(P<0.05),CAT活性升高(P<0.01)、SOD活性升高(P<0.05),GSH-px活性有升高的趋势,但无统计学意义,Na~+-K~+-ATPase及Ca~(2+)-Mg~(2+)-ATPase活性均无明显差别。病理学结果显示,新人参二醇(20mg/kg)组大鼠海马CA1区锥体细胞和大脑皮质神经元的损伤程度较模型组有所减轻。结果提示:新人参二醇改善双侧颈总动脉结扎致老年大鼠血管性痴呆病理变化,减轻自由基的损伤。
     2.新人参二醇对Aβ致老年大鼠AD的影响
     大脑定位注射Aβ致老年大鼠老年性痴呆(AD)模型,造模3天后,按体重分为假手术组、模型组、阳性药安理申组(1.75mg/kg)及新人参二醇(10mg/kg,20mg/kg)组,灌胃给药15天,行为学检测期间继续给药,通过行为学(水迷宫,避暗)、生化指标(胆碱系统,自由基)及病理学检测,观察新人参二醇对老年大鼠老年性痴呆的影响。
     新人参二醇(10mg/kg、20mg/kg),连续给药15天,行为学期间继续给药,与模型组比:水迷宫结果显示:新人参二醇(10mg/kg、20mg/kg)组大鼠第1天至第6天到达平台的潜伏期,平台游程,朝向角,游泳速度,寻台策略无明显变化。第7天大鼠在2min内在平台区的逗留时间,平台象限内的逗留时间,穿越平台次数及平台象限内游程占总游程百分比,游泳平均速度及朝向角无差别;从避暗实验结果来看:新人参二醇(10mg/kg、20mg/kg)大鼠在第二天避暗的潜伏期和错误次数均无显著差异;从胆碱能检测来看,新人参二醇(10mg/kg、20mg/kg)对大脑定位注射Aβ致AD老年大鼠AChE无明显的影响;从自由基检测结果来看,新人参二醇(10mg/kg、20mg/kg)组大鼠脑组织中MDA含量降低(P<0.01),SOD活性升高(P<0.05),GSH-px活性升高(P<0.01),CAT活性有升高(P<0.05,P<0.01),Na~+-K~+-ATPase活性升高(P<0.01),Ca~(2+)-Mg~(2+)-ATPase活性无明显差别。病理学检查结果显示,新人参二醇(10mg/kg、20mg/kg)组的大鼠海马CA1区锥体细胞和大脑皮质神经元损伤程度较模型组明显减轻。结果提示:新人参二醇改善Aβ所致老年大鼠AD病理变化,减轻自由基的损伤。
Dementia is a continual mental retardation. Alzheimer's disease and vascular dementiaare the major styles of the senile dementia.The symptoms of the patients often containcognitive and self-care ability decreased, with varying degrees of behavioral andpsychological disorders. The diseases endanger the health of the elder, also led to anenormous burden to the family and society. The symptoms and functions of dementia canbe reduced through treament, but it does not stop or reverse the disease processing. Thepresent study shows that traditional Chinese medicine has some advantages in the treatmentof dementia, and to find effective drugs for the treatment of dementia in traditional Chinesemedicine becomes a main medicine research.
     In recent year, it is reported that panaxadiol may improve the symptoms of dementiaby altering the neurotransmitters and protecting neurons(antioxidant, anti-apoptotic,protection of mitochondria, reducing tau protein hyperphosphorylation and affecting cellsignaling).
     The novel panaxadiol is high-purity panaxadiol, by panaxadiol degradation of acidand base and purification. The structural changes of some groups might influence somepharmacological activity.
     The aim of our study was to evaluate the effect of novel panaxadiol on VaD and ADin aged rats by behavior (water maze)test, biochemical indexs (the cholinergic system, freeradicals) and the pathological examination.
     1. the effect of novel panaxadiol on VaD in aged rats
     Animal model of VaD caused by bilateral carotid artery occlusion(2-VO). Rats aredivided into control group, model group, acricept group and the novel panaxadiol (20mg/kg)group according to the body weight after2months.
     The novel panaxadiol (20mg/kg) group was intragastric administration for15days,and continued to administration during behavior tests,compared with the model group:①inthe water maze, novel panaxadiol (20mg/kg) group rats had no significant changes inlatency, swimming distance, starting angle, average velocity, and strategy to findingplatform from the1st day to the6th day; there was also no significant diffenerces in totletime in the platform, time cross the platform, totle time in the quadrant of platform, averagevelocity, starting angle, distance in the quadrant of platform/totle swimming distance on the 7th days in2min;②The new panaxadiol (20mg/kg) had no effect on AChE activity;③MDA level decreased (P <0.05), SOD activity increased (P <0.05), CAT activityincreased (P <0.05), GSH-px activity had a trend to increased, Na~+-K~+-ATPase andCa~(2+)-Mg~(2+)-ATPase activity did not change in rat brain tissue.④The pathological resultsshowed the injuries of hippocampal CA1pyramidal cells and cortical neurons was reducedin the new panaxadiol (20mg/kg) groups rats.We came to a conclusion that the novelpanaxadiol may improve VaD by reducing damage of free radical.
     2. the effect of novel panoxadiol on AD in aged rat
     Animal model of AD induced by microinjection of Aβ. Rats were divided into controlgroup, model group, acricept group and the novel panaxadiol (10mg/kg,20mg/kg) groupaccording to the body weight after3days.
     The novel panaxadiol (10mg/kg,20mg/kg) group were intragastric administration for15days, and continued to administration during behavior tests, compared with the modelgroup:①i n the water maze,novel panaxadiol (10mg/kg,20mg/kg) group rats had nosignificant changes in latency, swimming distance, starting angle, average velocity, andstrategy to finding platform from the1st day to the6th day; there is also no significantdiffenerces in totle time in the platform, time cross the platform, totle time in the quadrantof platform, average velocity, starting angle, distance in the quadrant of platform/totleswimming distance on the7th days in2min;②The passive avoidance results showed thatthe latency and the errors times were not significant differences on the2nd day in novelpanaxadiol(10mg/kg,20mg/kg) group rats;③The new panaxadiol (10mg/kg,20mg/kg)had no effect on AChE activity;④MDA level decreased (P <0.01), SOD activityincreased(P <0.05), GSH-px activity increased(P <0.05,P <0.01), CAT activity increased(P<0.05,P <0.01), Na~+-K~+-ATPase activity increased (P <0.01)and Ca~(2+)-Mg~(2+)-ATPaseactivity was no significant difference in brain tissue⑤The pathological results showed theinjuries of hippocampal CA1pyramidal cells and cortical neurons was significantlyreduced in the new panaxadiol (10mg/kg,20mg/kg) groups rats. The results suggest thatthe novel panaxadiol may improve AD by reducing the damage of free radical in aged rats.
引文
[1]王晓平.学习记忆的神经基础[M].哈尔滨出版社,2002,31-117.
    [2] Trond Myhrer.Neurotransmitter systems involved in learning and memory in the rat: ameta-analysis based on studies of four behavioral tasks[J].Brain Research Reviews,2003,41(2–3):268–287.
    [3] Benjamin D. Drever,Gernot Riedel,Bettina Platt.The cholinergic system andhippocampal plasticity[J].Behavioural Brain Research,2011,221(2):505–514.
    [4] Sven Ove gren,Eugenia Kuteeva,Elin Elvander-Tottie,Tet al.Neuropeptides inlearning and memory processes with focus on galanin[J]. European Journal ofPharmacology,2010,626(1):9–17.
    [5] Ritesh J. Rangani,Manoj A. Upadhya,Kartik T. Nakhate,et al.Nicotine evokedimprovement in learning and memory is mediated through NPY Y1receptors in ratmodel of Alzheimer's disease[J].Peptides,2012,33(2):Pages317–328.
    [6] Manoj A. Upadhya, Kartik T. Nakhate, Dadasaheb M. Kokare, et al. Cocaine-andamphetamine-regulated transcript peptide increases spatial learning and memory inrats[J].Life Sciences,2011,88(7–8):322–334.
    [7] Masayuki Hiramatsu,Masaya Miwa,Kazuki Hashimoto,et al.Nociceptin/orphaninFQ reverses mecamylamine-induced learning and memory impairment as well asdecrease in hippocampal acetylcholine release in the ratNociceptin/orphanin FQreverses mecamylamine-induced learning and memory impairment as well as decreasein hippocampal acetylcholine release in the rat[J].Brain Research,2008,1195:96–103.
    [8] Margarita Ivanova,Alexandar Ternianov, Roman Tashev, et al.Lateralized learningand memory effects of vasoactive intestinal peptide infused into the rat hippocampalCA1area[J].Regulatory Peptides,2009,156(1–3):42–46.
    [9] Maziar M. Akhavan,Mitra Emami-Abarghoie,Bizhan Sadighi-Moghaddam,etal.Hippocampal angiotensin II receptors play an important role in mediating the effectof voluntary exercise on learning and memory in rat[J].Brain Research,2008,1232:132–138.
    [10]Jacques Micheau,Aline Marighetto.Acetylcholine and memory: A long, complexand chaotic but still living relationship[J].Behavioural Brain Research,2011,221(2):424–429.
    [11]Paul E. Gold.Acetylcholine modulation of neural systems involved in learning andmemory[J].Neurobiology of Learning and Memory,2003,80(3):194–210.
    [12]Julie Espallergues,Laurie Galvan,Florence Sabatier,et al.Behavioral phenotypingof heterozygous acetylcholinesterase knockout (AChE+/) mice showed no memoryenhancement but hyposensitivity to amnesic drugs[J].Behavioural Brain Research,2010,206(2):263–273.
    [13]Thomas Freret,Valentine Bouet,Anne Quiedeville,et al.Synergistic effect ofacetylcholinesterase inhibition (donepezil) and5-HT4receptor activation (RS67333) onobject recognition in mice[J].Behavioural Brain Research,2012,230(1):304–308.
    [14]María-Ximena Silveyra, María-Salud García-Ayllón, Carol Serra-Basante, etal.Changes in acetylcholinesterase expression are associated with altered presenilin-1levels[J].Neurobiology of Aging,2012,33(3):627.e27–627.e37.
    [15]Jeffrey W. Dalley, Barry J. Everitt.Dopamine receptors in the learning, memory anddrug reward circuitry[J].Seminars in Cell&Developmental Biology,2009,20(4):403–410.
    [16]Mazer C,Muneyyirei J,Theny K,et al.Serotonin depletion during synaptogenesisleads to decreased synaptic density and learning deficits in the adult: a Possible modelof neurodeveloPmental disoulers with cognitive deficits[J]. BrainRes,1997,760(120):68-73.
    [17]María Esther Olvera-Cortés, Patricia Anguiano-Rodríguez, Miguel ángelLópez-Vázquez,et al.Serotonin/dopamine interaction in learning[J].Progress in BrainResearch,2008,172:567–602.
    [18]C.F. Murchison,K. Schutsky,S.-H. Jin,et al.Norepinephrine and1-adrenergicsignaling facilitate activation of hippocampal CA1pyramidal neurons during contextualmemory retrieval[J]. Neuroscience,2011,181:109–116.
    [19]Thea Hammerschmidt, Dick Terwel, Markus Kummer, et al. Norepinephrinedeficiency aggravates learning and memory impairment independent of amyloid-betalevels in APP PS1mice[J].Alzheimer's and Dementia,2009,5(4):499.
    [20]González-Burgos,D.A. Velázquez-Zamora,C. Beas-Zárate.Damage and plasticity inadult rat hippocampal trisynaptic circuit neurons after neonatal exposure to glutamateexcitotoxicity[J]. International Journal of Developmental Neuroscience,2009,27(8):741–745.
    [21]李永生,阎学安,邵福源.中枢神经递质与学习记忆的相关性研究进展[J].实用医用药物杂志,2006,23(07):864-866.
    [22]赵永才,吴耿安,黄亨奋.运动与记忆:N-甲基-D-天冬氨酸在学习记忆中的作用[J].中国临床康复,2005,9(37):101-103.
    [23]包新民,舒斯云,王虹.γ-氨基丁酸及其受体在大鼠纹状体边缘区的表达[J].第一军医大学学报,2002,22(11):961-965.
    [24]Nahid Majlessi,Samira Choopani,Tahereh Bozorgmehr,et al.Involvement ofhippocampal nitric oxide in spatial learning in the rat[J].Neurobiology of Learning andMemory,2008,90(2):413–419.
    [25]Tijen Utkan,Semil Selcen Gocmez,Cuneyt Ozer,et al.Selective and nonselectiveneuronal NOS inhibitors impair cognitive function in the three panel runway andpassive avoidance tasks in rats[J].Pharmacology Biochemistry and Behavior,2012.
    [26]Alfonso Diaz,Liliana Mendieta,Edgar Zenteno,Jorge Guevara,et al.The role of NOSin the impairment of spatial memory and damaged neurons in rats injected withamyloid beta25–35into the temporal cortex[J].Pharmacology Biochemistry andBehavior,March2011,98(1):67–75.
    [27]Raz Yirmiya,Inbal Goshen.Immune modulation of learning, memory, neural plasticityand neurogenesis[J].Brain Behavior and Immunity,2011,25(2):181–213.
    [28]谢朝阳,祝其锋,吴斌华.Aβ25-35对PC12细胞周期及P21、CDK4、E2F1、BAX基因表达的影响[J].基础医学与临床,2009,29(4):383-387.
    [29]王秋艳,马涤辉,陈微,等.Aβ25-35海马注射对大鼠神经细胞中NF-kB活性的影响[J].实用老年医学,2006,20(5):341-343.
    [30]张红,刘剑,秦大莲,等.Aβ25-35致PC12细胞凋亡和线粒体跨膜电位损伤关系研究[J].四川生理科学杂志,2011,33(1):5-7.
    [31]曾育琦,陈晓春,朱元贵,等.AB25-35诱导SH-SY5Y细胞Tau蛋白的过度磷酸化[J].福建医科大学学报,2004,38(3):237-240.
    [32]赵丽波,张琳,邬英全,等.Aβ25-35致PC12细胞模线粒体损伤及人参皂甙对其影响[J].中国实验诊断学,2005,9(1):67-69.
    [33]赵保胜,马群,艾璐,等. Aβ25-35刺激对海马神经细胞株NG108-15Toll样受体3、4表达的影响[J].中国实验方剂学杂志,2010,16(5):178-180.
    [34]Caroline Chambon,Nico Wegener,Andreas Gravius,et al.Behavioural and cellulareffects of exogenous amyloid-β peptides in rodents[J].Behavioural Brain Research,2011,225(2):623–641.
    [35]孟红旗,张白燕.血管性痴呆的研究进展[J].佛山科学技术学院学报,2008,26(6):46-49.
    [36]宋春焕.血管性痴呆研究进展[J].齐齐哈尔医学院学报,2010,31(21):3443-3445.
    [37]Benishin C G,Lee R,Wang L C,et al. Effect s of ginsenosideRb1on cent ral cholinergicmetabolism [J].Pharmacology,1991,42(4):223-229.
    [38]潘欣萍,王玉芹.精制原人参二醇皂苷对小鼠学习记忆的影响[J].现代药物与临床,2010,25(4):290-292.
    [39]陈声武,王丽娟,王岩,等.人参皂苷Rb1和Rd对不同类型记忆障碍模型小鼠学习记忆功能的影响[J].Chinese Journal of Pharmacology and Toxicology,2001,15(5):330-332.
    [40]方欣,杨吉平,赖红.人参皂甙Rb1对老年性痴呆模型大鼠顶叶皮质β-分泌酶及早老蛋白-1表达的影响[J].解剖学杂志,2008,31(6):812-815.
    [41]刘微,王艳春,范红艳,等.人参皂苷Rb1对染铅小鼠骨铅含量及行为记忆的影响[J].吉林大学学报,2009,35(5):848-851.
    [42]张明磊,杨金升,石向群,等.人参皂甙Rd对颞叶癫大鼠学习记忆能力及海马5-HT表达的影响[J].卒中与神经疾病,2010,17(3):147-150.
    [43]曲传勇,杨金升,石向群,等.人参皂甙Rd对高原大鼠运动疲劳后学习记忆及海马CA1区超微结构的影响[J].神经损伤与功能重建,2010,5(2):79-82.
    [44]王国贤,宗瑞义,刘丹平.人参二醇皂甙对沙土鼠急性脑缺血-再灌注损伤的保护作用[J].中国药理学通报,1996,12(6):575.
    [45]曲绍春,于晓风,刘巍,等.西洋参茎叶20s-原人参二醇组皂苷对大鼠实验性脑缺血的影响[J].中国中药杂志,2011,36(12).
    [46]Qia YH,Han H,Hu XP,et al.protective effect of ginsenosides Rb1on beta-amyloidprotein(1-42)-induced neurotoxicity in cortical neurons[J]. Neuro Res,2009,31(7):663-667.
    [47]周婧,孙百强,高瑞兰,等.Aβ1-40诱导皮层神经元凋亡和人参二醇的保护作用[J].浙江大学学报,2008,37(5):451-455.
    [48]Liao B,Newmark H,Zhou R.Neuroprotective effect of ginseng total soponin andginsenosides Rb1and Rg1on spinal cord neuros in vitro Exp[J].Neurol,2002,173:224-234.
    [49]Radad K,Gille G,Moldzio R,et al. Ginsenosides Rb1and Rg1effects on survival andneurite growth of MPP+affected mesencephalic dopaminergic cells[J].J neural Transm,2004,111:37-45.
    [50]柯荔宁,王玮,赵小贞,等.人参皂苷Rb1抗SD大鼠海马神经元的缺氧损伤作用[J].山西医科大学学报,2009,40(8):688-692.
    [51]何胜虎,张晶.过氧化氢体外诱导人血管内皮细胞损伤与人参皂苷Rb1的保护效应[J].中国组织工程研究与临床康复,2008,12(2):255-257.
    [52]王强利,徐维蓉,赵英侠,等.人参皂苷Rb1预处理抗β一淀粉样蛋白神经细胞毒性及机制研究.
    [53]李桂生,田京伟,傅风华,等.人参皂苷Rb3对脑缺血大鼠脑线粒体损伤的保护作用[J].中国新药杂志,2006,15(7):518-521.
    [54]开丽,王中峰,肖家思.人参二醇组皂甙对大鼠皮层神经元钙通道的影响[J].中国药理学通报,1998,14(1):53-56.
    [55]杨勤,陈云波,闫福曼,等.人参皂苷Rb1对阿尔茨海默病模型细胞大电导钙激活钾通道变化机制的影响[J].广州中医药大学学报,2010,27(6):599-605.
    [56]江炜炜,姜正林,柯开富.人参皂苷Rb3对缺血及正常神经元持续性钠电流的影响[J].药学与临床研究,2007,15(6):444-448.
    [57]Radad K,Gille G,Moldzio R,et al.Ginsenosides Rb1and Rg1effects on mesencephalicdopaminergic cells stressed with glutamate[J].Brain Res,2004,1021:41-53.
    [58]沈洪妹,姜正林,顾晓松.人参皂甙Rb3对大鼠海马神经细胞谷氨酸损伤作用及相关机制的研究[J].中国应用生理学杂志,2006,22(1):31-34.
    [59]曾育琦,陈晓春,朱元贵,等.人参皂苷Rb1抑制β淀粉样蛋白25-35诱导的皮层神经元tau蛋白过度磷酸化[J].药学学报2005,40(3):225-230.
    [60]赵庆霞,刘小转,李博,等.β-淀粉样蛋白25~35和人参皂苷Rb1对神经干细胞分化过程中tau蛋白磷酸化水平的影响[J].中国组织工程研究与临床康复,2011,15(27):5077-5079.
    [61]黄天文,陈晓春,张静,等.p25/cdk5可能参与人参皂苷Rb1减轻Aβ25-35诱导的tau蛋白过度磷酸化[J].中国药理学通报,2006,22(6):688-693.
    [62]段萍,邢孟韬,许燕,等.人参皂苷Rb1减轻Aβ25~35所致新生神经细胞损伤[J].基础医学与临床2010,30(9):966-970.
    [63]刘娟,裘莹,何晶,等.人参皂苷Rb1和Rg1对海马神经元的影响[J].同济大学学报,2011,32(3):1-6.
    [64]María-Salud García-Ayllón,María-Ximena Silveyra,Javier Sáez-Valero.Associationbetween acetylcholinesterase and β-amyloid peptide in Alzheimer's cerebrospinal fluid.[J].ChemicoBiological Interactions,2008,175(1-3):Pages209–215.
    [65]张岗,许成勇,耿淼,等.参龙健脑胶囊对慢性脑缺血大鼠氧化损伤及胆碱能神经递质的影响[J].中国中医药信息杂志,2011,18(1):41-43.
    [66]王保奇,程传浩,马云枝.复智胶囊对血管性痴呆大鼠炎性因子、胆碱能系统的时效性影响[J].中国实验方剂学杂志,2011,17(8):176-179.
    [67]杜侃,李军。脑泰通冲剂对血管性痴呆大鼠学习记忆及脑皮质AChE的变化[J].中医药学刊,2003,22(11):2080-2081.
    [68]张博爱,高林,陈烈冉.天智颗粒对血管性痴呆大鼠行为学及脑内AChE、CHAT活性的影响[J].神经病学与神经康复学杂志,2006,3(2):95-97.
    [69]李子清,喻凯,赵焕英.四物汤对血管性痴呆大鼠的认知功能及脑组织中AchE、SOD、GSH-Px活性的影响[J].中药药理与临床,2007,23(3):4-6.
    [70]罗兰,王晓雯,杨梅.肉苁蓉总皂苷双侧颈总动脉结扎大鼠学习记忆功能影响及机制探讨[J].中国新药与临床杂志,2007,26(6):401-405.
    [71]赵晖,王蕾,张秋霞,等.竹节参总皂苷对血管痴呆大鼠递质氨基酸及自由基代谢的影响[J].中国老年学杂志,2010,30:3096-3098.
    [72]王玲,孙晓菊,黄衍军.依达拉奉对血管性痴呆大鼠海马氧化损伤和迟发性神经元死亡的影响[J].中国医院药学杂志,2009,29(19):1639-1642.
    [73]虞冬辉,王秀虹,王柳青,等.桃仁红花煎对血管性痴呆大鼠学习记忆能力的影响[J].医药导报,201130(9):1137-1140.
    [74]刘丽,赵玲,李雅莉,等.四羟基二苯乙烯苷对慢性脑缺血致痴呆模型大鼠的保护作用[J].中国药学杂志,2006,41(5):354-357.
    [75]蔡志友,晏勇,余昌胤.美满霉素增强血管性痴呆大鼠自由基清除[J].中国老年学杂志,2009,29:294-296.
    [76]李俊垚,于辛,孙宏.三羟异黄酮对血管性痴呆大鼠学习记忆及脑内氧化损伤的影响[J].实用医学杂志,2007,23(18):2835-2837.
    [77]林琅,陈文军,梅元武.慢性低灌注状态对大鼠脑部能量代谢及学习记忆功能的影响[J].卒中与神经疾病,2004,11(1):22-25.
    [78]郭芳,齐亚娟,王永利.大鼠缺血性全脑损伤Na+-K+-ATP酶活性及其α亚基表达的变化[J].中国药理学通报,2006,22(2):234-7.
    [79]张保平,唐金草,刘楠.健脑复智口服液对血管性痴呆大鼠脑组织过氧化氢酶、ATP酶的影响[J].河南中医学院学报,2006,21(126):16-17.
    [80]Joana Barbosa Mel,Paula Agostinho,Catarina Resende Oliveira.Involvement ofoxidativestress in the enhancement of acetylcholinesterase activity induced by amyloidbeta-peptide[J].Neuroscience Research,2003,45(1):17–127.
    [81]Margarita C. Dinamarca,Macarena Arrázola,Enrique Toledo,et al. Release ofacetylcholinesterase (AChE) from β-amyloid plaques assemblies improves the spatialmemory impairments in APP-transgenic mice[J].Chemico Biological Interactions,2008,175(1–3):142–149.
    [82]Vincenzo Nicola Talesa.Acetylcholinesterase in Alzheimer's disease[J].Mechanisms ofAgeing and Development,2001,122(16):1961–1969.
    [83]David H. Small, Samantha Michaelson,Gian Sberna Non-classical actions ofcholinesterases: Role in cellular differentiation, tumorigenesis and Alzheimer's disease[J].Neurochemistry International,1996,28(5–6):453–483
    [84]王芝兰,王荣田,郭立新.益脑灵对老年性痴呆模型大鼠学习记忆力及海马细胞超微结构的影响[J].中医药学报,2005,33(3):50-52.
    [85]D.A. Butterfield, K. Hensley,M. Harris,et al.β-amyloid peptide free radical fragmentsinitiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications toAlzheimer's disease[J].Biochem. Biophys. Res. Commun.,1994,200:710–715.
    [86]C. Pereira,M.S. Santos,C. Oliveira.Involvement of oxidative stress on the impairmentof energy metabolism induced by Aβ peptides on PC12cells: protection byantioxidants[J].Neurobiol. Dis.,1999,6:209–219.
    [87]孙晶,方芳,邬伟,等.金雀异黄素对大鼠氧化应激损伤的保护作用研究[J].中国微生态学杂志,2010,22(10):894-896.
    [88]王瑞婷,张建新,董雅洁.黄芩茎叶总黄酮对AD大鼠模型海马神经元超微结构的影响及抗氧化作用.中国老年学杂志。2010,30:926-928.
    [89]郭燕君,袁华,张俐娜,等.灵芝多糖对阿尔茨海默病大鼠海马组织形态学及抗氧化能力的影响[J].解剖学报,2006,37(10):509-513.
    [90]Z.Q. Yang,S.F. Yang,J.Q. Yang,et al.LiProtective effects and mechanism of totalcoptis alkaloids on a beta25-35induced learning and memory dysfunction inrats[J].Chin J Integr Med,13(2007):50–54.
    [91]赵保胜,徐暾海.老年性痴呆的模型的建立[J].中国实验方剂学杂志,2011,17(6):362-365.
    [92]Gottfries,C G.Alzheimer's disease and senile dementia: biochemical characteristics andaspects of treatment[J]. Psychopharmacology,1985,86(3):245-52.
    [93]Nakano.S,Kato.T,Nakamura.S,et al.MAcetylcholinesterase activity in cerebrospinalfluid of patients with Alzheimer's disease and senile dementia[J].Journal of theneurological sciences,1986,7(2):213-23.
    [94]聂晶,罗勇.黄燮南淫羊藿苷对淀粉样蛋白片段25-35所致大鼠学记忆障碍的改善作用[J].中国药理学与毒理学杂志,2008,22(1):31-37.
    [95]李强,胡长林,王景周.地黄益知浸膏对老年性痴呆大鼠行为学及中枢胆碱能系统的影响[J].中成药,2008,30(1):38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700