化合物DL0108对大鼠脑缺血损伤的保护作用及线粒体调节P-CREB/CRE通路的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化合物DL0108的主要成份是生松素,我们实验室首先发现其较好的神经保护作用,本研究旨在系统研究其对大鼠脑缺血损伤的药理作用,并对作用特点和作用机制进行探讨。论文评价了化合物DL0108对急、慢性脑缺血损伤模型的治疗作用;并根据实验结果,结合当前脑缺血病理生理机制研究的重点,探讨了化合物DL0108对以线粒体为中心,CREB为靶点的作用机制。
     一、化合物DL0108对大鼠急性脑缺血损伤的保护作用及机制研究
     1.化合物DL0108对大鼠急性局灶性脑缺血损伤的保护作用
     采用大脑中动脉内线栓法建立大鼠急性局灶性脑缺血模型,观察化合物DL0108的作用。结果显示,化合物DL0108能够改善大鼠脑缺血损伤的神经症状,减小脑梗塞体积,降低乳酸脱氢酶水平,提高能量代谢指数(P<0.05)。神经细胞死亡率降低,生存细胞的形态改善。化合物DL0108对脑组织MDA、SOD、GSH-Px水平无影响。本部分结果是化合物DL0108用于急性脑缺血治疗的肯定,且不是通过作用于氧化/抗氧化机制实现。
     2.化合物DL0108对大鼠急性缺血性脑组织线粒体的保护作用
     体外提取线粒体,观察化合物DL0108对缺血性脑组织线粒体的作用。结果显示,化合物DL0108(10mg/kg)处理组线粒体SOD活性提高了24.4%、MAO-B活性降低了23.7%、Na~+-K~+-ATP酶、Ca~(2+)-ATP酶活性分别升高了24.9%、及34.0%、线粒体钙离子浓度降低了22.0%,与溶剂组相比均具有显著性差异(P<0.05)。化合物DL0108(3mg/kg,10mg/kg)处理组线粒体超氧阴离子水平分别降低了20.2%及30.6%、线粒体肿胀程度分别降低了26.1%及46.0%,与溶剂组相比均具有显著性差异(P<0.05)。本部分结果提示,化合物DL0108对脑组织急性缺血损伤后线粒体结构和功能的保护作用,可能与减轻线粒体钙超载损伤有关。
     3.化合物DL0108对大鼠急性缺血性脑组织CREB信号通路的影响
     基于分子生物学及组织化学技术,研究化合物DL0108对参与CREB通路部分因子在核酸及蛋白质水平表达的影响。结果显示,化合物DL0108能够增加BDNF、c-FOS在mRNA及蛋白水平的表达水平(P<0.05);化合物DL0108能够增加P-CREB/CREB表达比值、降低CaN表达(P<0.05)。本部分结果提示,化合物DL0108对CREB通路的作用,是其发挥神经保护作用的机制之一。
Background and Purpose
    Compound DL0108 (pinocembrin) had been found on its neuroprotective effects against glutamate damage in our previous research. In vivo, it had also been proved a potentially beneficial drug for treatment on cerebral ischemia from its neurological protection on ischemia brain in rats. The purpose of this study was to further evaluate its actions on acute and chronic cerebral ischemia in rat, and if it did so, to explore the possible mechanisms mitochondria and related CREB signal pathway involved.
    Methods
    Acute cerebral ischemia and chronic cerebral ischemia were respectively achieved by operation of middle cerebral artery occlusion (MCAO) and bilateral carotid artery ligation (2-VO) in rats. Neurological effects of compound DL0108 were evaluated in animal behavior performances and pathological morphology. Three types of cell including PC12, SH-SY5Y, and primary cortex neuron were cultured, on which established the glutamate and energy deprivation cell model in vitro. Isolated mitochondria from rat brain were detected on structure and function changes by spectrophotometric and fluorescence assay. Immunocytochemical method was used to identify the purity of primary neuron and BDNF/c-FOS expression level. Immunohistochemical and western blotting methods were applied to estimate phosphorated level of cAMP response element binding (CREB) and expression level of its downstream transcription factors. Effects of compound DL0108 on CRE transcription activity were evaluated by luciferase and electro mobility shift assay, simultaneously.
    Results
    In vivo, compound DL0108 exhibited neurological protections against both acute cerebral ischemia induced by MCAO and chronic cerebral hypoperfusion induced by 2-VO, including improvement on neurobehavior performances and neuron morphological.
引文
1. Koroshetz WJ, and Moskwotz MA. Emerging treatments for stroke in human. Trends Pharmacol Sci. 1996, 17(6): 227-233.
    2. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, Dillon W, Warach S, Broderick J, Tilley B, Sacks D. Trial design and reporting standards for intra- arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003, 34: 109-137.
    3. Feng YP. Pathophysiology of ischemic stroke and status of drug intervention. Acta Pharm Sin. 1999, 34: 72-78.
    4. Fisher M, Bogosky J. Further evaluation toward effective therapy for acute ischemic stroke. JAMA. 1998,279: 1298-1303.
    
    5. Ovbiagele B. Kidwell CS, Starkman S., Saver JL. Neuroprotective agents for the treatment of acute ischemic stroke. Curr Neurol Neurosci Rep. 2003, 3: 9-20.
    
    6. Sala A., Recio C, Schinella GR., Manez S., Giner R.M., Nicolas Cerda, M., Rios, J.L. Assemssment of the anti-inflammatory activity and reee radical scavenger activity of tiliroside. Eur. J. Pharmaco. 2003, 461: 53-61.
    
    7. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989, 20: 84-91.
    
    8. Maier CM, Ahern K, Cheng ML et al. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke. 1998, 29: 2171-2180.
    
    9. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 2nd edition. 1986. Academic Press, New York.
    
    10. Hiroyuki N., Toshio K., Kazunori M., Kenichiro H., Toshisuke S. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Neurosurgery. 1995, 37: 280-286.
    
    11. Bederson JB, Pitts LH, Tsuji M et al., Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986, 17:472-476.
    
    12. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture: Neurological and pathological evaluation of an improved model. Stroke. 1996,27: 1616-1622.
    
    13. Bederson JB, Pitts LH, Germano SM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986,17:1304-1309.
    
    14. Bradford, MM. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248-252.
    
    15. Siesjo BK. (Ed.), Brain energy metabolism. Wiley, Chichester, 1978, pp. 30.
    
    16. Stocchi V, Chiarantini L, Palma P, Crescentini G Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells, Anal Biochem. 1985, 146: 118-124.
    
    17. Petito CK, Pulsinelli WA. Delayed neuronal recovery and neuron death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood F Met. 1984,4(2): 194-205.
    
    18. 张成英, 陈前芬, 田鹤村.大鼠及家兔脑动脉的比较及其在电缺血模型中的应用。 解剖学研究. 2000,22(1):37-39.
    19. Hara H, Huang EL., Panahian N., Fishman M.C., Moskowitz M.A. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood F Met. 1996 (16): 605-611.
    20. Dirnagl U, Kaplan B, Jacewicz, Pulsinelli W. Continuous measure of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood F Met. 1989, 9: 589-596.1. Zhang, H.X., Du, G..H., Zhang, J.T., 2003. Ischemic pre-conditioning preserves brain mitochondrial functions during the middle cerebral artery occlusion in rat. Neurol. Res. 25, 471-476.
    2. Bradford, MM. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 1976, 72: 248-252.
    3. Guang HM, Du GH. Screening for MAO-A and MAO-B inhibitors by high-throughput screening methods. Acta Pharmacol Sin 2004; 25 (11): 1555.
    
    4. Ko ML, Peng PH, Ma MC, Ritch R, Chen CF. Dynamic changes in reactive oxygen species and antioxidant levels in retinas in experimental glaucoma. Free Radic Biol Med. 2005, 39(3):365-373.
    
    5. Mcormack JG, Browne HM, Dawes NI. Studies on mitochondrial Ca~(2+) transport and matrix Ca~(2+) using Fura-2 loaded rat heart mitochondria. Biochim Biophys Acta, 1989, 973:420-427.
    
    6. Ildan F, Gocer AI, Tuna M, Polat S, Kaya M, Isbir T, Cetinalp E. The effects of the pre-treatment of intravenous nimodipine on Na~+-K~+/Mg~(2+) ATPase, Ca~(2+)Mg~(2+) ATPase, lipid peroxidation and early ultrastructural findings following middle cerebral artery occlusion in the rat. Neurol Res. 2001,23(1):96-104.
    
    7. Plaschke K, Sommer C, Schroeck H, Matejic D, Kiessling M, Martin E, Weigand MA, Bardenheuer HJ. A mouse model of cerebral oligemia: relation to brain histopathology, cerebral blood flow, and energy state. Exp Brain Res. 2005 162(3):324-331.
    
    8. Chan PH. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res. 2004, 29(11): 1943-1949.
    
    9. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, Gonzalez M, Chan PH. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol. 2005,
    
    10. Abell CW, Kwan SW. Molecular characterization of monoamine oxidases A and B. Prog Nucleic Acid Res Mol Biol 2001; 65:129-156.
    
    11. Sandier M. My fifty years (almost) of monoamine oxidase. Neurotoxicology 2004; 25:5-10.
    
    12. Blahla CD, Coury A and Philips AG Does monoamine oxidase inhibition by pargyline increase extracellular dopamine concentrations in the striatum? Neuroscience, 1996, 75 (2): 543-550.
    
    13. Holschneider DP, Scremin OU, Huynh L, Chen K, Shih JC. Lack of protection from ischemic injury of monoamine oxidase B-deficient mice following middle cerebral artery occlusion. Neurosci Lett. 1999, 259(3): 161-164.
    
    14. Matsai Y, Krmogae Y. Monoamine oxidase inhibitors prevent striated neuronal necrosis induced by transient fore brain ischemia. Neurosci Lett, 1991, 126 (3): 175-178.
    
    15. Ildan F, Gocer AI, Tuna M, Polat S, Kaya M, Isbir T, Cetinalp E. The effects of the pre-treatment of intravenous nimodipine on Na~+-K~+/Mg~(2+) ATPase, Ca~(2+)/Mg~(2+) ATPase, lipid peroxidation and early ultrastructural findings following middle cerebral artery occlusion in the rat. Neurol Res. 2001,23(1):96-104.
    
    16. de Assis DR, Maria RC, Ferreira GC, Schuck PF, Latini A, Dutra-Filho CS, Wannmacher CM, Wyse AT, Wajner M. Na~+, K~+ ATPase activity is markedly reduced bycis-4-decenoic acid in synaptic plasma membranes from cerebral cortex of rats. Exp Neurol. 2006 197(1): 143-9.
    17. Korge P, Honda HM, Weiss JN. Regulation of the mitochondrial permeability transition by matrix Ca~(2+) and voltage during anoxia-reoxygenation. Am J Physiol, 2001, 280: C517-C526.
    18. Domoki F, Bari F, Nagy K, Busija DW, Siklos L. Diazoxide prevents mitochondrial swelling and Ca~(2+) accumulation in CA_1 pyramidal cells after cerebral ischemia in newborn pigs. Brain Res, 2004, 1019: 97-104.
    19. Brustovetsky N, Brustovetsky T, Purl KJ, Capano M, Crompton M, Dubinsky JM. Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J Neurosci, 2003, 23(12): 4858-4867.
    20. Maciel EN, Kowaltowski A J, Schwalm JM, Souza DO, Vercesi AE, Wajner M, Castilho RF. Mitochondrial permeability transition in neuronal damage promoted by Ca~(2+) and respiratory chain complex Ⅱ inhibition. J Neurochem. 2004, 90(5): 10251. Yanamoto H, Xue JH, Miyamoto S, Nagata I, Nakano Y, Murao K, Kikuchi H. Spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res, 2004, 1019 (1-2): 178-188.
    2. Bates B, Hirt L, Thomas SS, Akbarian S, Le D, Amin-Hanjani S, Whalen M, Jaenisch R, Moskowitz MA. Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals. Neurobiol Dis, 2002, 9(1): 24-37.
    3. Saarelainen T. Functions of BDNF in adult brain-studies using transgenic mice overexpressing truncated trkB receptor in brain. Pharmaceu Sci, 2001, 55: 84.
    4. Garoflos E, Stamatakis A, Mantelas A, Philippidis H, Stylianopoulou F. Cellular mechanisms underlying an effect of "early handling" on pCREB and BDNF in the neonatal rat hippocampus. Brain Res. 2005, 1052(2): 187-195.
    5. Mancuso A, Derugin N, Hara K, Marsh TA, Kong D, Sharp FR, Weinstein PR. Cyclooxygenase-2 mRNA expression is associated with c-fos mRNA expression and transient water ADC reduction detected with diffusion MRI during acute focal ischemia in rats. Brain Res. 2003, 961(1): 121-130.
    6. Tanaka K, Nogawa S, Nagata E, I et al. Persistent CREB phosphorylation with protection of hippocampal CA_1 pyramidal neurons following temporary occlusion of the middle cerebral artery in the rat. Exp Neurol, 2000, 161: 462-471.
    7. Jin K, Mao XO, Simon RP, et al. Cyclic AMP response element binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci, 2001, 16: 49-56.
    8. Hara T, Hamada J, Yano S, et al. CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA_1 region. J Neurochem, 2003, 86: 805-814.
    9. Impey S, Chen D, Lan JQ, et al. CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab, 2005, 25: 234-246.
    10. Gaiddon C, Loeffier JP, Larmet Y. Brain-derived neurotrophic factor stimulates AP-1 and cyclic AMP-responsive element dependent transcriptional activity in central nervous system neurons. J Neurochem, 1996, 66(6): 2279-2286.11. Koponen E, Lakso M, Castren E. Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res, 2004, 130(1-2): 81-94.
    12. Schiller M, Bohm M, Dennler S, Ehrchen JM, Mauviel A. Mitogen- and stress - activated protein kinase 1 is critical for interleukin-1-induced, CREB-mediated, c-fos gene expression in keratinocytes. Oncogene, 2006, [Epub ahead of print]
    13. Tanaka K. Alteration of second messengers during acute cerebral ischemia - adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog Neurobiol, 2001, 65(2): 173-207.
    14. Yoshida T, Mishina M. Distinct roles of calcineurin-nuclear factor of activated T-cells and protein kinase A-cAMP response element-binding protein signaling in presynaptic differentiation. J Neurosci, 2005, 25(12): 3067-3079.
    1. Desmond DW, Moroney JT, Sano M, Stern Y. Incidence of dementia after ischemic stroke: results of a longitudinal study. Stroke, 2002, 33(9):2254-2260.
    
    2. Sarti C, Pantoni L, Bartolini L, and Inzitari D. Cognitive impairment and chronic cerebral hypoperfusion: what can be learned from experimental models. J Neuro Sci, 2002, 15(203-204): 263-266.
    
    3. Ohta H, Nishikawa H, Kimura H, Anayama H, Miyamoto M. Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscience, 1997, 79(4): 1039-1050.
    
    4. Nanri M, Watanabe H. Availability of 2-VO rats as a model for chronic cerebrovascular disease. Nippon Yakurigaku Zasshi, 1999, 113(2): 85-95.
    
    5. Wakita H, Tomimoto H, Akiguchi I, et al. Protective efect of cyclosporin A on white mater changes in the rat brain after chronic cerebral hypoperfusion. Stroke, 1995, 26:1415-1422.
    
    6. Morris, R., 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11, 47-60.
    
    7. Du GH, Qiu Y, Zhang JT. Salvianolic acid B protects the memory functions against transient cerebral ischemia in mice. J Asian Nat Prod Res. 2000; 2(2): 145-152.
    
    8. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 2nd edition. 1986. Academic Press, New York.
    
    9. Hiroyuki N., Toshio K., Kazunori M., Kenichiro H., Toshisuke S. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Neurosurgery. 1995, 37: 280-286.
    
    11. Horvath S. The pathological and clinical consequences of chronic cerebral hypoperfusion. Orv Hetil,2001,142:323-329.
    
    12. de la Torre JC, Cada A, Nelson N, Davis G, Sutherland RJ and Gonzalez-Lima F. Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats. Neurosci. Lett. 1997, 223:165-168.
    
    13. Ni J, Ohta H, Matsumoto K and Watanabe H. Progressive cognitive impairment following cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res. 1994,653: 231-232.
    
    10. Pappas BA, de la Torre JC, Davidson CM, Keyes MT and Fortin T. Chronic reduction of cerebral blood flow in the adult rat: late emerging CA_1 cell loss and memory dysfunction. Brain Res. 1996, 708: 50-58.
    
    14. De Jong GI, Farkas E, Stienstra CM, Plass JRM, Keijser JN, de la Torre JC and Luiten PGM. Cerebral hypoperfusion yields capillary damage in the hippocampal CA_1 area that correlates with spatial memory impairment. Neuroscience. 1999, 91: 203-210
    15. de la Torre JC Fortin T, Park GA, et al. Chronic cerebrovascular insufficiency induces dementia-like deficits in aged rats. Brain Res, 1992, 582(2): 186-195.
    16. Tanaka K, Hori K, Wada N, et al. FK506 ameliorates the discrimining learning impairment due to preventing the rarefaction of white matter induced by chronic cerebral perfusion in rats. Brain Res, 2001, 906(1-2): 184-189.
    17. Bennett SA, Tenniswood M, Chen JH, et al. Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. Neuroreport, 1998, 9(1): 161-166.
    18. McEwen BS. Plasticity of hippocampus: adaptation to chronic stress and allostastic load. Ann N Y Acad Sci, 2001, 933: 265-277.
    19. Bennett SA, Tenniswood M, Chen JH, et al. Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. Neuroreport, 1998, 9(1): 161-166.
    20. Englund E. Neuropathology of white matter lesions in vascular cognitive impairment. Cerebrovasc Dis, 2002, 13(suppl 2): 11-15.
    21. Farkas E., Annahazi A., Institoris A., Mihaly A., Luiten P.G..M., Bari F. Diazoxide and dimethyl sulphoxide alleviate experimental cerebral hypoperfusion-induced white matter injury in the rat brain. Neurosci Lett, 2005, 373: 195-199.
    22. Chan PH. Role of oxidants in ischemic brain damage stroke, 1996, 27: 1124-1129.
    23. Bains JS, Shaw CA. Neurodegenerative disorders in humans: role of glutathione in oxidative stress-mediated neuronal cell death. Brain Research, 1996; 25: 335-358.
    24. Liu XH, Kato H, Araki T et al. An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase following focal cerebral ischemia in the rat. Brain Res. 1994; 644: 257-266.1. McCormack JG, Browne HM, Dawes NI. Studies on mitochondrial Ca~(2+) transport and matrix Ca~(2+) using Fura-2 loaded rat heart mitochondria. Biochim Biophys Acta, 1989, 973: 420-427.
    2. de la Torre, J.C. Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet. Neurol. 2004b, 3: 184-190.3. de la Torre, J.C. Alzheimer's disease is a vasocognopathy: a new term to describe its nature. Neurol. Res. 2004a, 26: 517-524.
    4. Farkas, E., de Wilde, M.C., Kiliaan, A.J.. Luiten, P.G.M. Chronic cerebral hypoperfusion-related neuropathologic changes and compromised cognitive status: window of treatment. Drugs. Today. 2002, 38: 365-376.
    5. Aliev, A., Chen, S.G., Seyidova, D., Smith, M.A., Perry, G., de la Torre, J.C., Aliev, G. Mitochondria DNA deletions in atherosclerotic hypoperfused brain microvessels as a primary target for the development of Alzheimer's disease. J. Neurol. Sci. 2005, 229-230: 285-292.
    6. Zhu, X.W., Smith, M.A., Perry, G.., Aliev, G.. Mitochondrial failures in Alzheimer's disease. Am. J. Alz. Dis. 2004, 19: 345-352.
    7. Fiskum, G. Mitochondrial participation in ischemic and traumatic neural cell death. J. Neuotrauma. 2000, 17: 843-855.
    8. Valko, M., Horecky, J., Mlynarik, V., Liptaj, T., Vancova, O., Ulicna, O., Dobrota, D. Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neuroche. 2005, 46: 601 611.
    9. Nohl, H., Gille, L., Staniek, K. Intracellular generation of reactive oxygen species by mitochondria. Biochem. Pharmacol. 2005, 69: 719-723.
    10. Sipos, I., Tretter, L., Vizi, V. A. The production of reactive oxygen species in intact isolated nerve terminals in independent of the mitochondrial membrane potential. Neurochem. Res. 2003, 10: 1575-1581.
    11. Sipos, I., Tretter, L., Vizi, V.A. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J. Neurochem. 2003, 84: 112-118.1. Leutgeb JK, Frey JU, Behnisch T. Single cell analysis of activity-dependent cyclic AMP-responsive element-binding protein phosphorylation during long-lasting long-term potentiation in area CA_1 of mature rat hippocampal-organotypic cultures. Neuroscience, 2005, 131(3): 601-610.
    2. Nagakura A, Takagi N, Takeo S. Impairment of cerebral cAMP-mediated signal transduetion system and of spatial memory function after microsphere embolism in rats. Neuroscience, 2002, 113: 519-528.
    3. Takeo S, Niimura M, Miyake-Takagi K, et al. A possible mechanism for improvement by a cognition-enhancer nefiracetam of spatial memory function and cAMP-mediated signal transduction system in sustained cerebral isehaemia in rats. Br J Pharmacol, 2003, 138: 642-654.4. Papadia S, Stevenson P, Hardingham NR, Bading H, Hardingham GE. Nuclear Ca~(2+) and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci, 2005, 25(17): 4279-4287.
    5. Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K. Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci, 2005, 25(5): 1137-1148.
    6. Tanaka K. Alteration of second messengers during acute cerebral ischemia - adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog Neurobiol, 2001, 65(2): 173-207.
    7. Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ. cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol, 2004, 56(5): 611-623.
    8. Walton M, Connor B, Lawlor P, Young D, Sirimanne E, Gluckman P, Cole G, Dragunow M. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res Brain Res Rev, 1999, 29(2-3): 137-168.
    9. Gaiddon C, Loeffler JP, Larmet Y. Brain-derived neurotrophic factor stimulates AP-1 and cyclic AMP-responsive element dependent transcriptional activity in central nervous system neurons. J Neurochem, 1996, 66(6): 2279-2286.
    10. Koponen E, Lakso M, Castren E. Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res, 2004, 130(1-2): 81-94.
    11. Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K. Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci, 2005, 25(5): 1137-1148.
    12. Hongpaisan J, Winters CA, Andrews SB. Calcium-dependent mitochondrial superoxide modulates nuclear CREB phosphorylation in hippocampal neurons. Mol Cell Neurosci, 2003, 24(4): 1103-1115.
    13. Hahm SH, Chen Y, Vinson C, Eiden LE. A calcium-initiated signaling pathway propagated through calcineurin and cAMP response element-binding protein activates proenkephalin gene transcription after depolarization. Moi Pharmacol. 2003, 64(6): 1503-1511.
    14. Groth RD, Dunbar RL, Mermelstein PG. Calcineurin regulation of neuronal plasticity. Biochem Biophys Res Commun. 2003, 311(4): 1159-1171.1. McCormack JG, Browne HM, Dawes NI. Studies on mitochondrial Ca~(2+) transport and matrix Ca~(2+) using Fura-2 loaded rat heart mitochondria. Biochim Biophys Acta, 1989, 973: 420-427.
    2. Jordan J, Galindo MF, Prehn JHM, Weichselbaum RR, Beckett M, Ghadge GD., Roos RP, Leiden JM, and Miller RJ. p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. J Neurosci, 1997, 17, (4): 1397-1405.
    3. Gillessen T, Budd SL, Lipton SA. Excitatory amino acid neurotoxicity. Adv Exp Med Biol. 2002; 513: 3-40.
    4. Boeck CR, Kroth EH, Bronzatto MJ, Jardim FM, Souza DO, Vendite D. Effects of glutamate transporter and receptor iigands on neuronal glutamate uptake. Neurosci Res. 2005, 53(1): 77-83.
    5. Das KP, Freudenrich TM, Mundy WR. Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol. 2004, 26(3): 397-406.
    6. Singh P, Mann KA, Mangat HK, Kaur G. Prolonged glutamate excitotoxicity: effects on mitochondrial antioxidants and antioxidant enzymes. Mol Cell Biochem. 2003, 243(1-2): 139-145.
    7. Kanki R, Nakamizo T, Yamashita H, Kihara T, Sawada H, Uemura K, Kawamata J, Shibasaki H, Akaike A, Shimoharna S. Effects of mitochondrial dysfunction on glutamate receptor-mediated neurotoxicity in cultured rat spinal motor neurons. Brain Res. 2004, 1015(1-2): 73-81.
    8. Jacintho JD, Kovacic P. Neurotransmission and neurotoxicity by nitric oxide, catecholamines, and glutamate: unifying themes of reactive oxygen species and electron??transfer. Curr Med Chem. 2003, 10(24): 2693-2703.
    9. Smythies J. The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox Res. 1999, 1(1): 27-39.
    10. Singh P, Mann KA, Mangat HK, Kaur G. Prolonged glutamate excitotoxicity: effects on mitochondrial antioxidants and antioxidant enzymes. Mol Cell Biochem. 2003, 243(1-2): 139-145.
    11. Gillessen T, Budd SL, Lipton SA. Excitatory amino acid neurotoxicity. Adv Exp Med Biol. 2002, 513: 3-40.1. McCormack JG, Browne HM, Dawes NI. Studies on mitochondriai Ca~(2+) transport and matrix Ca~(2+) using Fura-2 loaded rat heart mitochondria. Biochim Biophys Acta, 1989, 973: 420-427.
    2. Jordan J, Galindo MF, Prehn JHM, Weichselbaum RR, Beckett M, Ghadge GD., Roos RP, Leiden JM, and Miller RJ. p53 expression induces apoptosis in hippoeampal pyramidal neuron cultures. J Neurosci, 1997, 17(4): 1397-1405.
    3.冯凯,孟晓梅,谢琰臣,许贤豪.神经节苷脂对体外培养SH-SY5Y细胞兴奋性氨基酸毒性损伤的作用.中国神经免疫学和神经病学杂志.2005,12(4):233-235.
    4. Khodorov BI, Storozhevykh TP, Surin AM, Yuryavichyus AI, Sorokina EG, Borodin AV, Vinskaya NP, Khaspekov LG, Pinelis VG. The leading role of mitochondriai depolarization in the mechanism of glutamate-induced disruptions in Ca~(2+) homeostasis. Neurosci Behav Physiol, 2002, 32(5): 541-547.
    5. White RJ, Reynolds IJ. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci, 1996, 16(18): 5688-5697.1. Jiang X, Mu D, Manabat C, Koshy AA, Christen S, Tauber MG, Vexler ZS, Ferriero DM. Differential vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp Neurol. 2004, 190(1): 224-232.
    2. Bianchi C, Marani L, Barbieri M, Marino S, Beani L, Siniscalchi A. Effects of nociceptin/orphanin FQ and endomorphin-1 on glutamate and GABA release, intracellular [Ca~(2+)] and cell excitability in primary cultures of rat cortical neurons. Neuropharmacology. 2004, 47(6): 873-883.
    3. Rodriguez MJ, Bernal F, Andres N, Malpesa Y, Mahy N. Excitatory amino acids and neurodegeneration: a hypothetical role of calcium precipitation. Int J Dev Neurosci. 2000, 18(2-3): 299-307.
    4. Hopper RK, Carroll S, Aponte AM, Johnson DT, French S, Shen RF, Witzmann FA, Harris RA, Balaban RS. Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry. 2006, 45(8): 2524-2536.
    5. Christophe M, Nicolas S. Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion. Curr Pharm Des. 2006; 12(6): 739-757.
    6. Li M, Xia T, Jiang CS, Li L J, Fu JL, Zhou ZC. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology. 2003, 194(1-2): 19-33.
    7. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca~(2+) -induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J Biol Chem. 2004, 279(51): 53103-53108.
    8. Pizzorusso T, Ratto GM, Putignano E, Ma ffei L. Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increases in slices and cultured neurons from rat visual cortex. J Neurosci. 2000, 20(8): 2809-2816.
    9. Gaiddon C, Loeffler JP, Larmet Y. Brain-derived neurotrophic factor stimulates AP-1 and cyclic AMP-responsive element dependent transcriptional activity in central nervous system neurons. J Neurochem. 1996, 66(6): 2279-2286.
    10. Schuh RA, Kristian T, and Fiskum G. Calcium-dependent dephosphorylation of brain mitochondrial calcium/cAMP response element binding protein (CREB). J Neurochem. 2005, 92(2): 388-342.11. De Cesare D, Jacquot S, Hanauer Aet al. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc Natl Acad Sci USA, 1998, 95: 12202-12207.
    12. Weston WM, Freeman AB, Haberecht C et al. Phosphatase regulation of gene expression during development of the palate. Life Sci, 2002, 71: 1849-1862.1. Swerdlow R., Marcu s D.L., Landman J., Kooby D., Frey W., Freedman M.L. Brain glucose metabolism in Alzheimer's disease. Am. J. Med. Sci, 1994, 308: 141-144.
    2. Siesjo B.K. (Ed.). Brain energy metabolism. Wiley, Chichester, 1978, pp. 30.
    3. Stocchi V., Cucchiarini L., Chiarantini L., Palma P., Crescentini G. Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem, 1985 146: 118-124.4. Vergun O., Han Y.Y., Reynolds I.J. Glucose deprivation produces a prolonged increase in sensitivity to glutamate in cultured rat cortical neurons. Experimental Neurology, 2003, 183: 682-694.
    5. Sheng M., Thompson M.A., Greenberg M.E. CREB: a Ca~(2+) - regulated transcription factor phosphorylated by calmodulindependent kinases, Science. 1991, 252: 427-430.
    6. Sun P., Enslen H., Myung P.S., Maurer R.A. Diffrential activation of CREB by Ca~(2+)/calmodulin-dependent protein kinases type Ⅱ and Ⅳ involves phosphorylation of a site that negatively regulates activity. Genes Dev, 1994, 8: 2527-2539.
    7. Viola H., Furman M., Izquierdo L.A., Alonso M., Barros D.M., de Souza M.M., Izquierdo Ⅰ., Medina J.H. Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty. J. Neurosci, 2000, 20: RC112.
    8. Foster T.C., Sharrow K.M., Masse J.R., Norris C.M., Kumar A. Calcineurin Links Ca~(2+) Dysregulation with Brain Aging. J Neurosci, 2001, 21(11): 4066-4073.1. Hahm SH, Chen Y, Vinson C, Eiden LE. A calcium-initiated signaling pathway propagated through calcineurin and cAMP response element-binding protein activates proenkephalin gene transcription aider depolarization. Mol Pharmacol. 2003, 64(6): 1503-1511.
    2. Freeland K, Boxer LM, Latchman DS. The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res. 2001, 92(1-2): 98-106.
    3. Tabuchi A, Sakaya H, Kisukeda T, Fushiki H, Tsuda M. Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter Ⅰ. J Biol Chem. 2002, 277(39): 35920-35831.4. Lemrow SM, Anderson KA, Joseph JD, et al. Catalytic activity is required for calcium/calmodulin-dependent protein kinase Ⅳ to enter the nucleaus. J Biol Chem, 2004, 279: 11664-11671.
    5. Leutgeb JK, Frey JU, Behnisch T. Single cell analysis of activity-dependent cyclic AMP-responsive element-binding protein phosphorylation during long-lasting long-term potentiation in area CA_1 of mature rat hippocampal-organotypic cultures. Neuroscience, 2005, 131(3): 601-610.1. Du G, Willet K, Mouithys-Mickalad A, et al. EGb 761 protects liver mitochondria against injury induced by in vitro anoxia/reoxygenation. Free Radic Biol Med, 1999, 27: 596-604.
    2. Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med, 2006, 40(3): 388-297.
    3. Zhang HX, Du GH, Zhang JT. Assay of mitochondriai functions by resazurin in vitro. Acta Pharmacol Sin, 2004, 25: 385-389.
    4. Hanson C J, Bootman MD, Roderick HL. Cell signalling: IP_3 receptors channel calcium into cell death. Curr Biol. 2004, 14(21): R933-R935.
    5. Lin X, Vamai P, Csordas G, Balla A, Nagai T, Miyawaki A, Balla T, Hajnoczky G. Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisp hosphate-binding proteins. J Biol Chem. 2005, 280(13): 12820-12832.
    1. Servillo G, Delia Fazia MA, Sassone-Corsi P. Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM. Exp Cell Res, 2002, 275(2): 143-54.
    
    2. Shaywitz AJ, Dove SL, Kornhauser JM, et al. Magnitude of the CREB-dependent transcriptional response is determined by the strength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein. Mol Cell Biol, 2000, 20: 9409-22.
    
    3. Lemrow SM, Anderson KA, Joseph JD, et al. Catalytic activity is required for calcium/calmodulin-dependent protein kinase IV to enter the nucleaus. J Biol Chem, 2004,279: 11664-71.
    
    4. Dolmetsch RE, Pajvani U, Fife K, et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science, 2001, 294: 333-9.
    
    5. Davare MA, Saneyoshi T, Guire ES, et al. Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J Biol Chem, 2004, 279: 52191-9.
    
    6. Weston WM, Freeman AB, Haberecht C, et al. Phosphatase regulation of gene expression during development of the palate. Life Sci, 2002, 71(16): 1849-62.
    
    7. Wong K, Zhang J, Awasthi S, et al. Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB- binding protein-associated factor and hGCN5 acetyltransferases. J Biol Chem, 2004, 279: 55667-74.
    
    8. Leutgeb JK, Frey JU, Behnisch T. Single cell analysis of activity-dependent cyclic AMP-responsive element-binding protein phosphorylation during long-lasting long-term potentiation in area CA_1 of mature rat hippocampal-organotypic cultures. Neuroscience, 2005,131(3):601-10.
    
    9. Gong B, Vitolo OV, Trinchese F, et al. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest, 2004, 114: 1624-34.
    
    10. Sambamurti K, Kinsey R, Maloney B, et al. Gene structure and organization of the human beta-secretase (BACE) promoter. FASEB J, 2004,18:1034-6.
    
    11. Chong YH, Shin YJ, and Suh YH. Cyclic AMP Inhibition of tumor necrosis factor a production induced by amyloidogenic C-terminal peptide of Alzheimer's amyloid precursor protein in macrophages: involvement of multiple intracellular pathways and cyclic AMP response element binding protein. Mol. Pharmacol, 2003, 63:690-8.
    
    12. Hayward P. Presenilin dysfunction leads to memory and plasticity defects. Lancet Neurol, 2004, 3(6): 327.
    
    13. Yoshimura Y, Ichinose T, Yamauchi T. Phosphorylation of tau protein to sites found in Alzheimer's disease brain is catalyzed by Ca~(2+)/calmodulin-dependent protein kinase II as demonstrated tandem mass spectrometry. Neurosci Lett, 2003,353(3): 185-8.
    14. Rudolph D, Tafuri A, Gass P. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. PNAS, 1998, 95:4481-6.
    
    15. Meng Y, Xu H, Wang R, et al. Impairment of signal transduction pathway on neuronal survival in brains of Alzheimer's disease. Zhonghua Bing Li Xue Za Zhi, 2002, 31: 502-5.
    
    16. Panza F, D'Introno A, Colacicco AM, et al. Cognitive frailty: Predementia syndrome and vascular risk factors. Neurobiol Aging, 2005, 13: [Epub ahead of print]
    
    17. Tanaka K, Nogawa S, Nagata E, I et al. Persistent CREB phosphorylation with protection of hippocampal CA_1 pyramidal neurons following temporary occlusion of the middle cerebral artery in the rat. Exp Neurol, 2000, 161:462-71.
    
    18. Jin K, Mao XO, Simon RP, et al. Cyclic AMP response element binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci, 2001, 16:49-56.
    
    19. Hara T, Hamada J, Yano S, et al. CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA_1 region. J Neurochem, 2003, 86:805-14.
    
    20. Impey S, Chen D, Lan JQ, et al. CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab, 2005, 25:234-46.
    
    21. Nagakura A, Takagi N, Takeo S. Impairment of cerebral cAMP-mediated signal transduction system and of spatial memory function after microsphere embolism in rats. Neuroscience, 2002, 113 :519-28.
    
    22. Takeo S, Niimura M, Miyake-Takagi K, et al. A possible mechanism for improvement by a cognition-enhancer nefiracetam of spatial memory function and cAMP-mediated signal transduction system in sustained cerebral ischaemia in rats. Br J Pharmacol, 2003, 138:642-54.
    
    23. Sugars KL, Brown R, Cook LJ, et al. Decreased cAMP response element- mediated transcription: an early event in exon 1 and full-length cell models of Huntington's disease that contributes to polyglutamine pathogenesis. J Biol Chem, 2004, 279: 4988-99.
    
    24. Obrietan K, Hoyt KR. CRE-mediated transcription is increased in Huntington's disease transgenic mice. J Neurosci, 2004,24: 791-6.
    
    25. Chiang MC, Lee YC, Huang CL, et al. cAMP-response element binding protein contributes to suppression of the A_(2A) adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues]. J Biol Chem, 2005, 1:14331-40.
    
    26. Wong K, Sharma A, Awasthi S, et al. HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB. J Biol Chem, 2005, 280: 9390-9.
    
    27. Zauli G, Milani D. HIV-1 Tat protein down-regulates CREB transcription factor expression in PC12 neuronal cells through a phosphatidylinositol 3-kinase/AKT/cyclic nucleoside phosphodiesterase pathway. FASEB J, 2001, 15: 483-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700