基于主动模拟肺的通气模式关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呼吸机是抢救和治疗各种急慢性呼吸衰减或呼吸功能不全病人的重要工具。通气模式是指导呼吸机通气的规则,直接决定了呼吸机对病人的治疗效果,因此具有重要的研究价值。为提高各通气模式工作的人机协调性以及避免真人试验的危险,论文基于主动模拟肺对通气模式进行了研究,涉及到的关键技术有:通气系统建模、试验平台的建立、系统模型参数的在线估计方法和基于人机协调的通气控制技术等。主要研究内容和结论包括:
     (1)建立了由顺应性、气阻和呼吸肌产生压力三元素组成的非线性时变呼吸系统模型,并通过对不同病人的临床通气数据分析和与现有各种模型的比较验证了模型的适用性;建立了呼吸机气路各组成部分的气体力学模型。利用上述模型组建了呼吸机/呼吸系统集总参数模型,为通气模式研究提供了理论基础。
     (2)为避免真人试验的危险,同时针对现有通气模式研究试验平台的呼吸系统模拟能力和在线调试能力差、控制精度低和不能开展辅助通气模式研究等问题,设计了基于主动模拟肺的通气模式研究试验平台。
     (3)提出了一种管道顺应性的预通气测量方法,为量化分析管道对呼吸机输出气流的分流影响提供了条件;提出了一种基于比例辅助通气的最小二乘生理估计法,理论分析和试验结果表明,该估计法较M.Younes方法而言,将呼吸系统气阻估计的有效率由48.9%提高到了73.7%,消除了单点测量误差,提高了呼吸系统气阻和顺应性的估计精度。
     (4)为提高通气过程中的人机协调性能,针对保证通气水平、确保通气安全和减少人机不同步这三个问题,提出了相应的改善方法,具体包括:
     ①提出了一种潮气量比例补偿方法和一种有创通气时气道压的补偿方法。理论分析和试验结果表明,潮气量从未补偿前的EC /( EC + E rs )×Vset提高到了设定值Vs et,气道压从未补偿前的Pr ef ?λRT V提高到了设定值Pr ef,确保了病人通气水平。( Er s是呼吸系统弹性系数, EC是呼吸机管道弹性系数, Rr s是呼吸系统气阻, RT是气管插管气阻,λ是自动补偿因子)
     ②实现了PI参数模糊自整定通气控制方法。试验结果表明,方法较传统PI控制方法而言,有效地减小了压力过冲和振荡,减少了两者对病人安全的危害,提高了通气安全。
     ③提出了一阶自适应通气控制方法。理论分析和试验结果表明,方法消除了压力过冲和振荡,实现了压力上升时间的准确可控,还能让呼吸机在保证病人潮气量的前提下采用最小的气道压力进行通气,从而减少高气道压对病人的危害,进一步提高了通气安全。
     ④引入基础流实现了流量和压力双反馈型控制通气。理论分析和仿真结果表明,这种控制方法更能够及时有效地跟踪病人呼吸肌运动,提高了人机同步性能,同时方法有效地降低了呼吸机有效输出阻抗,减少了呼吸机对病人的做功,有利于病人自主呼吸能力的恢复。
     ⑤依据专家经验知识,采用模糊逻辑和推理技术,实现了压力支持水平的在线自动调节。仿真结果与实际调整结果的对比表明,方法实现了指定周期的压力支持水平的最佳选择,确保了生理参数指标处于安全水平,减小了压力支持水平不合适引发的通气安全和人机不同步问题出现的几率。
     (5)成功地实现了容量控制和压力控制通气模式,并将其应用于麻醉机AS3000上,临床数据表明了它们工作的有效性;在Shangrila590呼吸机上实现了压力支持通气模式。试验表明了模式在压力上升时间的可控性、气道压的稳定性这两个性能上接近甚至优于国外品牌呼吸机上的压力支持模式;首次在国产呼吸机Shangrila590上实现了容量保障压力支持通气、压力调节容量控制通气和适应性支持通气这三种双重控制通气模式。试验结果表明,这三种模式工作输出的流量、气道压和容量曲线完全符合要求,可以进一步开展动物和人体实验;采用PI参数模糊自整定法在呼吸机Shangrila590上实现了比例辅助通气模式,并给出了PI控制的PAV系统稳定条件,为开展比例辅助通气模式研究迈出了探索步伐。
     上述研究工作对进一步开展通气模式研究、改善呼吸机通气性能和提高产品市场竞争力具有一定的参考价值和现实意义。
The ventilator is an important tool in treating patients with acute/chronic respiratory failure or insufficiency. The ventilation modes are the ventilation rlues and determine the efficacy of clinical treatment and therefore possess significant research value. In order to improve the man-machine harmony and avoid the risks that exist in live tests, this paper made a profound research based on an active servo lung. And the key technologies included building the model of the ventilation system, establishing the testing platform, estimation of the model’s parameters and control methods of ventilation based on man-machine harmony. The content and final conclusions are as follows:
     (1) A non-linear time-varying system model is built with compliance, resistance and pressure produced by the respiratory muscles. Its suitability was verified by analyzing the clinical ventilation data from different patients and comparing it with available typical mechanical modes. And the pneumatics models of the blocks of the ventilator gas way were built. By combining the models mentioned above, the lumped parameter model was built, providing basic theories for ventilation mode research.
     (2) Based on active servo lung, the testing platform for ventilation mode research is established to avoid risks that exist in live tests. This platform aims at eliminating problems caused by the current platform for its poor simulation and debug capacity, low controlling accuracy and inability to conduct the assist ventilation mode.
     (3) A pre-ventilation measurement method for the circuit compliance is proposed to analyze of the circuit diffluence quantitatively. A least square physiological method based on the proportional assist ventilation(PAV) is presented to estimate the resistence and the compliance of the respiratory system. Compared with M.Younes’method, this method improves the resistance estimation availability from 48.9% to 73.7% and eliminates the single shot measurement error and improves the estimation accuracy.
     (4) In order to improve the man-machine harmony during ventilation, and concerning the ventilation level, the ventilation safety and the man-machine synchrony, the corresponding improvement methods are put forward. They are as follows:
     ①A volume proportional compensation method and an pressure compensation method under invasive ventilation are presented to eliminate the impacts caused by the circuit on tidal volume and by the endotracheal tube on the airway pressure, respectively. As proved by the theoretical analysis and the test results, the tidal volume is improved from EC /( EC + Er s )×Vset to the set value Vs et and the airway pressure is improved from Pr ef ?λRT V to the set value Pr ef.( Er s, EC , Rr s, RT andλare the elasticity coefficient of the respiratory system and the circuit, the resistance of the respiratory system and the endotracheal tube, the auto penalty coefficient, respectively.)
     ②The PI parameter fuzzy self-modified control method has been used. The test results have proved that this method, compared with taditional PI, efficiently reduces pressure overshoot and oscillation, and improves the ventilation safety.
     ③A first order adaptive ventilation control method has been presented. The theoretical analysis and the test results have proved that, by using this method, the pressure overshoot and oscillation are eliminated, that the pressure rise time is accurately controlled, and that under the guarantee for the tidal volume, the smallest airway pressure can be calculated and reduce the hurt of high airway pressure and improve the ventilation safety.
     ④The basis flow has been adopted to gain the flow and pressure double close-up ventilation control method. The theoretical analysis and the simulation results indicate that this method traces the movement of the patient’s respiratory muscles timely and efficiently, improves the man-machine harmony, lowers the effective output resistance of the ventilator, reduces the work that the ventilator does to the patiet and is good for the recovery of the patient’s spontaneous respiration ability.
     ⑤The on-line automatic regulation of the pressure support(PS) level has been realized according to the expertise, the fuzzy logic and reasoning method. Compard the simulation results with actual adjustment results, this method has reached the optimal choice of the PS level, that ensured the safety level of the physiological parameters, and decreased the occurrence probability of the ventilation safety problems and the man-machine asynchrony problems caused by improper PS level.
     (5) The volume control and pressure control ventilation mode have been successfully realized and applied to the anesthesia machine AS3000, and their validity has been testified by clinical data. The pressure support ventilation mode has been realized on the ventilator Shangrila590, the control ability of the pressure rise time and the stability of the airway pressure is close to or even better than those of the foreign ventilator brands. Three dual control ventilation modes, the volume assured pressure support, the pressure regulted volume control and the adaptive support ventilation mode, have been realized on the Shangrila590, as indicated by the test results, the output flow, the airway pressure and the volume curve of the three modes meet the standard, and we can carry out further animal and human experimentation. By using the PI parameter fuzzy self-modified control method, the PAV mode has been realized on the Shangrila590, and the stability conditions of th PAV system has been obtained, which is a firm step in the quest of the PAV mode research.
     The above-mentioned investigations have definite referential values and practical meanings for further research on ventilation modes and for improving the ventilator functions and the marketability of the product.
引文
[1]全力,文海燕.现代呼吸机通气模式原理、目的及应用初步探讨[J].北京生物医学工程, 2005, 24(4):316.
    [2]吴克.新型呼吸机的呼吸模式及应用[J].医疗设备信息, 2006, 21(11):35~36.
    [3]王保国,周建新.实用呼吸机治疗学[M].北京:人民卫生出版社,2005.
    [4]刘又宁. SARS机械通气治疗[M].北京:人民卫生出版社, 2003.
    [5]王克杰,于克荣,郎宇等. 220例非典型肺炎治疗中的机械通气[J].临床麻醉学杂志, 2004, 20(6):361~362.
    [6]徐晨,任波,董刚.机械通气在治疗SARS患者中的应用[J].传染病信息, 2004, 17(3):134.
    [7] 2008-2010中国医用呼吸机发展预测与投资报告[Z]. 2008.
    [8]范烨.便携式呼吸机研究[D].中国人民解放军军事医学科学院硕士论文, 2007.
    [9]刘大为.机械通气:一个需要不断解决的问题[J].中国危重病急救医学, 2007, 19(2):1.
    [10]机械通气临床应用指南[Z].中国医学会重症医学分会, 2006.
    [11]李振华,郑欲如,彭卫平. Bi-Level技术解析及其临床应用[J].医疗装备, 2003, 16(4):10~11.
    [12]俞志凌,薛辛东.肺顺应性对于呼吸窘迫综合症早期诊断的临床意义[J].中国优生与遗传杂志, 2005, 13(1):86~88.
    [13]李缨,罗群,黎毅敏等.无创正压通气不同压力支持水平对正常人呼吸做功的影响[J].广州医学院学报, 2003, 31(1):18~23.
    [14]邓乃沙,罗海燕.压力支持通气和同步间歇指令通气用于呼吸机撤离观察[J].现代医药卫生, 2004, 20(11):1003~1004.
    [15]邱海波,刘晓岩,杜斌等.测定患者呼吸功对调整压力支持通气水平的意义[J].中国危重病急救医学, 1997, 9(1):33~35.
    [16]曹玉书,童皖宁,曾葭.慢性呼吸衰竭患者无创比例辅助通气和压力支持通气的比较[J].中国呼吸与危重监护杂志, 2006, 5(4):275~277.
    [17]黄河,李寅环,芩燕遗.平均吸气压(Pi)用于压力支持通气中吸气努力的无创性评估[J].临床和实验医学杂志, 2006, 5(6):649~651.
    [18]邹琳,俞森洋,王立万等.压力支持通气是不同吸气上升时间对人机协调的影响[J].中国呼吸与危重监护杂志, 2006, 5(4):248~251.
    [19]张劭夫,刘又宁.机械通气发展简史[J].中华医史杂志, 1998,28(4):202.
    [20] Pablo Rodriguez, Michel Dojat, Laurent Brochard. Mechanical Ventilation: ChangingConcepts[J]. Indian J. Crit. Care Med., 2005, 9(4):235~243.
    [21] J.X.Brunner, G.A.Iotti. Adaptive Support Ventilation(ASV) [J]. Minerva Anestesiologica, 2002, 68(5):365~368.
    [22]贠基民,乔忠强,曹锐.呼吸机机械通气概述及应用[J].医疗卫生设备, 2005, 26(5):52.
    [23]方玲,仪垂杰,丛红等.呼吸机通气模式综述[J].医疗装备, 2006, 19(6):1~4.
    [24]王佰顺,苑水珍. PRVC和VS通气模式的比较[J].中国医学装备, 2005, 2(3):41~42.
    [25]罗群,陈荣昌.比例辅助通气和压力支持通气的比较[J].国外医学呼吸系统分册, 2004, 24(3):116~118.
    [26]方伟,张晨曦,万胜春等.呼吸机DuoPAP/APRV通气模式的原理与应用[J].医疗卫生设备, 2004, 8:59~60.
    [27]孟祥全,吴太虎,李若新.机械通气技术及呼吸机的现状与发展[J]。中国医疗器械信息, 2001, 7(6):17~19.
    [28] Robert L. Computer Control of Mechanical Ventilation[J]. Respire Care, 2004, 49(5):507~515.
    [29] J.X. Brunner, Hamilton Medical AG, Rhazuns. History and Principles of Closed-Loop Control Applied to Mechanical Ventilation[Z]. 2002.
    [30]丰继华,李文娟,张榆锋.呼吸机控制测略与工作模式[J].仪器仪表学报, 2006, 27(6):515~517.
    [31]夏文俊.智能化呼吸机控制理论及机械通气技术的应用[J].医疗设备信息, 2005, 20(6):28~30.
    [32]郁红漪,韦汉鹏.呼吸机机械通气的智能化[J].中国医疗器械杂志, 2004, 2003, 27(1):47~50.
    [33]许继平,钟秋海,徐远达等.智能控制和建模仿真在机械通气中的应用[J].中国生物医学工程学报, 2007, 26(3):468~473.
    [34] H.F.Kwok, D.A.Linkens, M.Mahfouf, et. al.. Fuzzy Logic Knowledge Elicitation for Model-Based Ventilator Management in the ICU[J]. Advances in Medical Signal and Information Processing. 2000:9~13.
    [35] David Wheeler RRT. Ratiocinative Ventilator Control Algorithms[J]. Focus Journal for Respiratory Care & Sleep Medicine, May/June, 2007:24,27.
    [36] H.F. Kwok, D.A. Linkens, M. Mahfouf, et. al.. Rule-base Derivation for intensive care ventilator control using ANFIS[J]. Artificial Intelligence in Medicine. 2003, 29:185~201.
    [37] MichelDojat. Knowledge-Based Systems for Automatic Ventilatory Management, Special Issue on Closed-Loop Control Mechanical Ventilation[J]. Respiratory CareClinics, 2001.
    [38] MarieCh.Chambrin, Claude Chopin, Jacques Mangalaboyi, et. al.. An Autoadaptive Volumetric Inspiratory Aid for Mechanical Ventilation[C]. Proceeding-10th Annual International Conference of the IEEE EMBS, 1988:1853~1854.
    [39] F.Liu, G.S.Ng, C.Quek, et. al.. Artificial Ventilation Modeling using Neuro-Fuzzy Hybrid System[C]. Proceedings of the 2006 International Joint Conference on Neural Networks,Vancouver, Canada, 2006:2859~2864.
    [40] Robert L.Chatburn. Engineering Priciples Applied to Mechanical Ventilation[C]. Proceedings-25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003:406~410.
    [41]李云飞.电动呼吸机发展史[J].中国医学装备, 2005, 2(12):37~38.
    [42]易韦韦,张玘,王跃科.呼吸机气路自动标定系统设计[J].中国测试技术, 2008, 34(4):20~22.
    [43]樊晓克,宋涛,薛贤铭.新型流量传感器在呼吸机上的应用[J].山东理工大学学报(自然科学版),2008,17(2):72~75.
    [44] Borrello MA. Adaptive Inverse Model Control of Pressure Based Ventilation[C]. Proceedings of the American Control Conference, Arlington, VA, 2001:1286~1291.
    [45] Tyrone Fernando. An Extension to Mandatory Minute Volume[C]. Proceeding-19th Annual International Conference of the IEEE EMBS, Chicago, USA, 1997:2064~2067.
    [46] L.Domingo, P.Caminal, B.F.Giraldo, et. al.. Respiratory Pattern Variability Analysis Based on Nonliear Prediction Methods[C]. Proceeding-23rd Annual International Conference of the IEEE EMBS, Istanbul, Turkey, 2001:1550~1553.
    [47] M.Vallverdu, B.F.Giraldo, S.Benito, et. al.. Respiratory Pattern Variability Analysis Based on Nonliear Dynamics Methods[C]. Proceeding-22nd Annual International Conference of the IEEE EMBS, Chicago, 2000:2963~2965.
    [48] M.Vallverdu, B.F.Giraldo, S.Benito, et. al.. Analysis of the Nonliear Autodependencies of Respiratory Pattern Variability in Patients on Weaning Trials[C]. Proceeding-26th Annual International Conference of the IEEE EMBS, SanFrancisco, CA, USA, 2004:542~545.
    [49] B.F.Giraldo, S.Benito,J.Chaparro, et. al.. Effect of Pressure Support Ventilation on the Respiratory Pattern Variability[C]. Proceeding-25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003:447~450.
    [50] M.A. Mananas, S.Romero, P.Caminal. A Comparative Study of Respiratory Models in Control of Ventilation[C]. Proceedings-22nd Annual International Conference of the IEEE EMBS, Chicago, USA, 2000:1601~1604.
    [51] A.S.Favre, F.C.Jandre, A.Giannella Neto. Closed-Loop Control of a ContinuousPositive Airway Pressure Device[C]. Proceedings-25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003:419~422.
    [52] Rui Carlos Sa, Yves Verbandt. Automated Breath Detection on Long-Duration Signals Using Feedforward Backpropagation Artificial Neural Networks[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(10):1130~1141.
    [53] Gy.Boganyi, F.Bersani, M.Nichelatti, et. al.. Model-Based Approach for Optimal Artificial Ventilation[C]. Proceedings-10th Annual International Conference of the IEEE EMBS, 1988:585~586.
    [54] V.Tamburrelloi, S.Silvestri, S.A.Sciuto. Reliable Procedure to Switch from Volume Controlled to Pressure Controlled Ventilation Assuring Tidal Volume during Anesthesia[C]. Proceedings-25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003:415~418.
    [55] Bram W.Smith, Stephen Rees, Jan Tvorup, et. al.. Modeling the Influence of the Pulmonary Pressure-Volume curve on Gas Exchange[C]. Proceedings-27th Annual International Conference of the IEEE EMBS, Shanghai, China, 2005:2357~2340.
    [56] Inez Frerichs, Gunter Hahn, Gerhard Hellige. Thoracic Electrical Impedance Tomographic Measurements during Volume Controlled Ventilation-Effects of Tidal Volume and Positive End-Expiratory Pressure[J]. IEEE Transactions on Biomedical Engineering, 1999, 18(9):764~773.
    [57] Wolfgang Recheis, Axel Kleinsasser, Antonius H.Schuster, et. al.. Respirator Triggering of EBCT: Differences in Dynamic Changes between Augmented Ventilation and Controlled Mechanical Ventilation[C]. Proceeding of SPIE, 2000, 3978:384~394.
    [58]樊晓克.智能化呼吸机设计方案和PSV控制算法的研究[D].山东大学硕士论文, 2006.
    [59]赵奎.医疗设备控制系统中融合理论的研究及嵌入式系统实现[D].湖南大学硕士论文, 2005.
    [60]丛红.模糊神经网络理论及应用于呼吸机控制的关键技术研究[D].中国农业大学博士论文, 2007.
    [61]郭军涛.呼吸机测控系统的研究[D].中国人民解放军军事医学科学院硕士论文, 2004.
    [62]苏东风.睡眠呼吸机的模糊PID控制系统研究[D].吉林大学硕士论文, 2006.
    [63]郝木兰.基于Linux的呼吸机控制系统的研究[D].天津大学硕士论文, 2006.
    [64]利建波.智能呼吸机平台搭建及容量控制模式的实现[D].汕头大学硕士论文, 2006.
    [65]胡玉叶.呼吸机关键技术的研究[D].山东大学硕士论文, 2006.
    [66]冼莹.呼吸机人机同步新方法的研究[D].暨南大学硕士论文, 2006.
    [67]樊晓克. PSV的模糊控制[J].淄博学院学报(自然科学与工程版), 2002, 4(2):25~28.
    [68]丰继华,李文娟,陈建华等.集总参数呼吸机模型仿真研究[J].系统仿真学报, 2006, 18(10):2959~2962.
    [69]方玲.基于模糊控制的呼吸机压力支持机械通气模式研究[D].青岛理工大学硕士论文, 2006.
    [70]黄志伟.呼吸力学参数监测系统的研究[D].四川大学硕士论文, 2006.
    [71]朱肇轩.呼吸机综合测试平台及呼吸模式的研究[D].国防科学技术大学硕士论文, 2006.
    [72] Borrello MA. Modeling and Simulation of Pressure Regulated Control Systems for Ventilation of the Lung[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1991, 13(5):2178~2179.
    [73] Mike Borrello. Modeling and Control of Systems for Critical Care Ventilation[C]. Proceeding of the 2005 American Control Conference, Portland, OR, USA, 2005:2166~2180.
    [74]李春燕,曹志新,王晨.管路漏气对无创机械通气影响的研究[J].中华护理杂志, 2007, 42(9):805~806.
    [75] Ronald W.Jodat, James D.Horgan, Ramon L.Lange. Simulation of Respiratory Mechanics[J]. Biophysical Journal, 1966, 6:773~785.
    [76]郑筱祥,戴品忠,白净等.生理系统仿真建模[M].北京:北京理工大学出版社, 2003.
    [77] R.Peslin. Frequency Response of the Chest: Modeling and Parameter Estimation[J]. J. Appl. Phys., 1975, 39(4):523~534.
    [78] K.R.Lutchen, K.D.Costa. Physiological Interpretations Based on Lumped Element Models Fit to Respiratory Impedance Data: Use of Forward-Inverse Modeling[J]. IEEE Trans. Biomed. Eng., 1990, 37(11):1076~1086.
    [79] A.B. Dubois. Oscillation Mechanics of Lungs and Chest in Man[J]. J. Appl. Phys., 1956, 8:587~594.
    [80] M.Schmidt, B.Foitzik. Computer Simulation of the Measured Respiratory Impedance in Newborn Infants and the Effect of the Measurement Equipment[J]. Medical Eng. Physics, 1998, 20(3):220~228.
    [81] J.Mead. Mechanical Properties of Lungs[J]. Phys. Rev., 1961, 41:281~330.
    [82] S.Baswa, B.Diong. Evaluation of Respiratory System Models Based on Parameter Estimates from Impulse Oscillometry Data. Proc[C]. IEEE Eng. Medicine Biol. Conf., Shanghai, China, 2005:2958~2961.
    [83] K.R.Lutchen. Optimal Selection of Frequencies for Estimating Parameters from Respiratory Impedance Data[J]. IEEE Trans. Biomed. Eng., 1988, 35(8):607~617.
    [84] Bill Diong, Homayoun Nazeran, Patricia Nava, et. al.. Modeling Human Respiratory Impedance: Comparing the Best Method with the Least Estimation Errors[J]. IEEE Engineering in Medicine and Biology Magazine, 2007:48~55.
    [85] Jason H.T. Bates, Peter Goldberg. Fitting Nonlinear Time-domain Models of Respiratory Mechanics to Pressure-flow Data from an Intubated Patient[C]. Proceedings of the First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology, Atlanta, USA. 1999:323.
    [86] C.Brighenti, G.Gnudi, G.Cevenini, et. al.. Expiratory Flow Limitation in Mechanically Ventilated Patients: a Simulation Study[C]. Proceedings-25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003:411~414.
    [87] Miltos P.Vassiliou, Argyro Amygdalou, Charampos J.Psarakis, et. al.. Volume and Flow Dependence of Respiratory Mechanics in Mechanically Ventilated COPD Patients[J]. Respiratory Physiology & Neurobiology, 2003, 135:87~96.
    [88] Bram W.Smith, Stephen Rees, Jan Tvorup, et. al.. Modeling the Influence of the Pulmonary Pressure-Volume curve on Gas Exchange[C]. Proceedings-27th Annual International Conference of the IEEE EMBS, Shanghai, China, 2005:2357~2340.
    [89] Jose G.Venegas, R.ScottHarris, Brett A.Simon. A Comprehensive Equation for the Pulmonary Pressure-Volume Curve[J]. The American Physiological Society, 1998:389~395.
    [90] W.Alan, C.Mutch. Convexity, Jensen’s Inequality and Benefits of Noisy or Biologically Variable Life Support[C]. Proceeding of SPIE, Bellingham, WA, 2005, 5841:1~8.
    [91] Jordan C.. Specific Conductance Using Forced Airflow Oscillation in Mechanically Ventilated Human Subjects[J]. J. Appl. Phys., 1981, 51:715.
    [92] Roy R.. Estimation of Respiratory Parameters by the Method of Covariance ratios[J]. Comp. Biomed. Res., 1974, 7:21.
    [93]张立藩,张荣.呼吸力学系统的模型与辨识[J].航天医学与医学工程, 1990, 3(1):58~65.
    [94] Zhang Rong, Zhang Lifan. Estimation and Sensitivity Analysis of Volume-Independent Parameters in Pulmonary Mechanics[J]. Space Medicine & Medical Engineering, 1993, 6(1):39~48.
    [95] C.A.Rios, J.C.Tafur. Mathematical Model and Control of the Pneumatic System of a Lung Ventilator Prototype[C]. Proceeding-25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003:2776~2779.
    [96] P.A.Stegmaier, A.Zollinger. A Ventilator Workstation for Simultaneous Recording of Lung Function Indices and Airway Signals[C]. 1995 IEEE-EMBC and CMBEC, 1995:731~732.
    [97] Juan Luis Larrabe, Francisco J.Alvarez, Elena Gastiasoro Cuesta, et. al..Development of a Time-Cycled Volume-Controlled Pressure-Limited Respirator and Lung Mechanics System for Total Liquid Ventilation[J]. IEEE Transactions on Biomedical Engineering, 2001, 48(10):1134~1144.
    [98] G.Nucci, S.Tessarin, C.Cobelli. Time-Domain Analysis of Lung Mechanics in the Ventilated Patient[C]. Proceedings of the First Joint BMES/ENBS Conference Serving Humanity, Advacing Technology, Atlanta, GA, USA, 1999:325.
    [99] Mohsen Ahmadi, Jason H.T.Bates. A Computer-Controlled Mechanical Ventilator Based on a Rotating Vane[C]. Proceedings of the First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology, Atlanta, GA, USA, 1999:336.
    [100] J.K.K.Kanhai, P.J.Caspers, E.G.J.Reinders, et. al.. A Fast, Digitally Controlled Flow Proportional Gas Injection System for Studies in Lung Function[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(11):1268~1275.
    [101] Virendra K.Jain, Sujoy K.Guha. A Control System for Long-Term Ventilation of the Lungs[J]. IEEE Transactions on Biomedical Engineering, 1972, 19(1):47~53.
    [102] Dr.Glen Atlas, Kristine Joy Quinones, Tenbit Shiferaw, et. al.. Coaxial Endotracheal Tube for Single Lung Ventilation. 2006:95~96.
    [103] Will Almeida, Bruno Costa, Sebastian Catunda, et. al.. Measurement of Respiratory Floe with Ultrasonic Sensor Using the Technique of Forced Oscillations[C]. IMTC 2006 Instrumentation and Measurement Technology Conference, Sorrento, Italy, 2006:1368~1372.
    [104] Yufeng Li. Investigation on Dynamics of the Flow Control Unit in Ventilator Systems and its Fundamental Performance Limitations[C]. Proceedings of the 2005 American Control Conference, Portland, OR, USA, 2005:2181~2186.
    [105] Francesco Grianti, Francesco Montecchia, Leonardo Di Bari, et. al.. A Versatile Mechanical Ventilator with High Flow Stability and a Programmable Inspiratory Phase Flow Pattern[J]. IEEE Transactions on Biomedical Engineering, 1996, 43(11):1062~1072.
    [106] Samir Mesic, Robert Babuska, Henk C.Hoogsteden, et. al.. Computer-Controlled Mechanical Simulation of the Artificially Ventilated Human Respiratory System[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(6):731~743.
    [107] James L.Woo, Jacob Rootenberg. Digital Simulation of an Adaptive System for Long-Term Ventilation of the lungs[J]. IEEE Transactions on Biomedical Engineering, 1973:475~477.
    [108]易韦韦,张玘,王跃科.基于呼吸机的人工呼吸系统力学建模与仿真[J].系统仿真学报, 2009,21(15):4892~4895.
    [109]易韦韦,张玘,王跃科.主动模拟肺ASL5000在呼吸机检测的应用[J].中国医疗设备, 2008, 23(7):93~94.
    [110]易韦韦,张玘,王跃科.基于虚拟仪器技术的呼吸机测试[J].电子测量技术, 2008, 31(1):186~188.
    [111]黄河,陈荣昌.数学模型在机械通气是持续呼吸力学动态监测中的应用[J].国外医学呼吸系统分册, 2003, 23(5):237~239.
    [112]韩厉萍,张立藩,张荣.渐消记忆递推最小二乘法在呼吸力学参数估计中的应用[J].航天医学与医学工程, 1993, 6(4):253~260.
    [113]冯俊伟.以呼吸道阻抗和顺应行为指标的机械耗能通气装置[D].台湾逢甲大学硕士论文, 2001.
    [114] Richard Fisler, Stephen D.Siegel, Richard Kubicka, et. al.. Respiratory Resistance and Compliance in COPD Measured with Forced Oscillations[C]. Proceedings-10th Annual International Conference of the IEEE EMBS, 1988:1312~1313.
    [115] Hohn G.Eyles, Russell L.Pimmel. Estimating Respiratory Mechanical Parameters in Parallel Compartment Models[J]. IEEE Transactions on Biomedical Engineering, 1981, 29(4):313~317.
    [116] Tyrone Fernando. The Work of Breathing of Mechanically Ventilated Patients[C]. Proceeding-19th Annual International Conference of the IEEE EMBS, Chicago, USA, 1997:255~258.
    [117] Tyrone Fernando, John Packer, John Cade. On-Line Estimation of Patient and Ventilator Respiratory Work[C]. 1995 IEEE-EMBC and CMBEC, 1995:1639~1640.
    [118] Ants R.Silberberg, Karl-Erik Edberg, Kenneth Sandberg, et. al.. Estimation of Changes of Mechanical Parameters in Ventilated Newborn Children as a Result of Altered Ventilator Settings[C]. Proceedings-10th Annual International Conference of the IEEE EMBS, 1988:580~581.
    [119] Carlo A.Volta, Elisabetta Marangoni, Valentina Alvisi, et. al.. Respiratory Mechanics by Least Squares Fitting in Mechanically Ventilated Patients: Application on Flow-Limited COPD Patients[J]. Intensive Care Med., 2002, 28:48~52.
    [120] Guido Avanzolini, Paolo Barbini. A Comparative Evaluation of Three On-Line Identification Methods for a Respiratory Mechanical Model[J]. IEEE Transactions on Biomedical Engineering, 1985, 32(11):957~963.
    [121] Guido Avanzolini, Paolo Barbini. A Versatile Identification Method Applied to Analysis of Respiratory Mechanics[J]. IEEE Transactions on Biomedical Engineering, 1984, 31(7):520~526.
    [122] Linkens. Identification of Respiratory and Cardiovascular Systems[C]. IFAC Symp. Ident. & Syst. Par. Est., York, UK, 1985:55~66.
    [123] S.Sondergaard, S.Karason, J.Wiklund, et. al.. Alveolar Pressure Monitoring: an Evaluation in a Lung Model and in Patients with Acute Lung Injury[J]. IntensiveCare Med., 2003, 29:955~962.
    [124] Sigurbergur Karason, Soren Sondergaard, Stefan Lundin, et. al.. Continuous On-Line Measurements of Respiratory System, Lung and Chest Wall Mechanics during Mechanic Ventilation[J]. Intensive Care Med., 2001, 27:1328~1339.
    [125] A.D.Bersten. Measurement of Overinflation by Multiple Linear Regression Analysis in Patients with Acute Lung Injury[J]. Eur. Respir. J., 1998, 12:526~532.
    [126] G.Mols, I.Brandes, V.Kessler, et. al.. Volume-Dependent Compliance in ARDS: Proposal of a New Diagnostic Concept[J]. Intensive Care Med, 1999, 25:1084~1091.
    [127] Lourens MS, Ali L, van den Berg B, et. al.. Estimation of Expiratory Time Constants via Fuzzy Clustering[J]. Journal of Clinical Monitoring and Computing, 2002, 17:15~22.
    [128] R.Babuska, L.Alic, M.S.Lourens, et. al.. Estimation of Respiratory Parameters via Fuzzy Clustering[J]. Artificial Intelligence in Medicine, 2001, 21:91~105.
    [129] Kouji Maeda, Shunshoku Kanae, Zijiang Yang, et. al.. Design of RBF Network Based on Fuzzy Clustering Method for Modeling of Respiratory System[C]. ISNN 2006, LNCS 3973, 2006:746~753.
    [130] M.Younes, John Kun, Bard Masiowski, et. al.. A Method for Noninvasive Determination of Inspiratory Resistance during Proportional Assist Ventilation[J]. Am. J. Respir. Crit. Care Med., 2001, 163(4):829~839.
    [131] M.Younes, Kimberly Webster, John Kun, et. al.. A Method for Measuring Passive Elastance during Proportional Assist Ventilation[J]. Am. J. Respir. Crit. Care Med., 2001, 164(1):50~60.
    [132]黄志伟,叶继伦.呼吸力学参数检测电路的硬件设计[J].医疗卫生设备, 2007, 28(2):16~18.
    [133]范烨,吴太虎,刘志国.呼吸机动力学参数监测模块设计[J].医疗设备信息, 2006, 21(12):7~9.
    [134]李德旺,仇原鹰,盛英.呼吸力学参数测量方法的研究[J].生物医学工程学杂志, 2006, 23(4):770~773.
    [135]于莲芝,颜国正,黄标等.内置在线监测机器人系统的气道阻力分析[J].中国生物医学工程学报, 2007, 26(2):317~320.
    [136]刘宝华.一种新的阻抗式呼吸监测系统的设计[J].生物医学工学杂志, 2003, 20(3):527~530.
    [137]王卫红,鲍咸能,王博亮.双频率阻抗法在呼吸监测中的应用研究[J].航天医学与医学工程, 1999, 12(1):51~55.
    [138]王建峰.呼吸力学监测新技术[J].医疗装备, 2004, 17(10):4~6.
    [139]华木松.呼吸力学中R. C. Auto PEEP的监测新技术[J].医疗设备, 2002, 15(9):19~20.
    [140] Weiwei Yi, Qi Zhang, Yueke Wang, et. Al.. On-line Non-invasive Determination of Patients and Ventilator Respiratory Work during Proportional Assist Ventilation[C]. ICIA’2008, Zhang Jiajie, China, 2008:1163~1167.
    [141] Yanling Tong, Monique Frize, Robin Walker. Extending Ventilation duration Estimations Approach from Adult to Neonatal Intensive Care Patients Using Artificial Neural Networks[J]. IEEE Transactions on Information Technology in Biomedicine, 2002, 6(2):188~191.
    [142]陈新海,李言俊,周军.自适应控制与应用[M].西安:西部工业大学出版社, 2003.
    [143] James L.Woo, Jacob Rootenberg. Analysis and Simulation of an Adaptive System for Forced Ventilation of the lungs[J]. IEEE Transactions on Biomedical Engineering, 1975, 22(5):400~411.
    [144] Dalton S.Nelson, Thomas C.Jannett, James H.Strickland. An Intelligent Control System Architecture for the Control of Patient-Ventilator Synchrony[Z]. 2002:46~50.
    [145] Michael A.Borrello. Positive Feedback in Flow Controller Reduces Ventilator Imposed Work of Breathing for Critical Care Patients[C]. Proceeding of the 2002 American Control Conference, Anchorage, AK, 2002:4050~4055.
    [146] Mehdi M.Jafari, Francisco J.Lopez. Robust Feedback Design for Proportional Assist Ventilation-System Dynamics and Problem Definition[C]. Proceedings-44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005:4839~4844.
    [147] Honglin Du, Mikiya Ohtsuji, Masaki Shigeta, et. al.. Expiratory Asynchrony in Proportional Assist Ventilation[J]. Am. J. Respir. Crit. Care Med., 2002, 165:972~977.
    [148] Kenji Ozaki, Kazutoshi Soga, Yutaka Ishikawa, et. al.. Proportional Assist Ventilation Using a Disturbance Observer[C]. Proc. SICE 18th Symp. On Biolog. And Phys. Eng., Niigata, 2003:21~24.
    [149] Kenji Ozaki, Kazutoshi Soga, Yutaka Ishikawa, et. al.. Proportional Assist Ventilation Using a Disturbance Observer and Predictive Control[C]. Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, Germany, 2006: 1770~1776.
    [150] Nelson Claure, Cleide Suguihara, Ozacan Ozdamar, et. al.. Hybrid Algorithm for Automatic Regulation of Mechnical Ventilation in Premature Inflants Based on Expert Rules and Proportional Differential Control[C]. Proceedings-26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, 2004:3929~3932.
    [151] Dalton S.Nelson, James H.Strickland, Thomas C.Jannett. Simulation of FuzzyControl for Management of Respiratory Rate in Assist-control Mechanical Ventilation[C]. Proceedings-19th International Conference-IEEE/EMBS, 1997:1104~1107.
    [152] Tyrone Fernando, John Cade, John Packer. Automatic Control of Arterial Carbon Dioxide Tension in Mechanically Ventilated Patients[J]. IEEE Transactions on Information Technology in Biomedicine, 2002, 6(4):269~276.
    [153] C.S.Poon. Neural Plasticity of Respiratory Control System: Modeling Perspectives[C]. Proceedings-27th Annual International Conference of the IEEE EMBS, Shanghai, China, 2005:5847~5849.
    [154] I.A.Rybak, M.Pottmann, B.A.Ogunnaike, et. al.. A Colsed-Loop Model of the Rerspiratory Control System[C]. Proceedings of the American Control Conference, Seattle, USA, 1995:275~279.
    [155] Nelson Claure, Ozcan Ozdamar, Eduardo Bancalari. A System for Automatic Adjustment of the Inspired Oxygen in Mechanically Ventilated Premature Infants[C]. Proceeding-25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003:454~455.
    [156] Richard Fisler, Stephen D.Siegel, Richard Kubicka, et. al.. Respiratory Resistance and Compliance in COPD Measured with Forced Oscillations[C]. Proceedings-10th Annual International Conference of the IEEE EMBS, 1988:1312~1313.
    [157] Hoifei Kwok, Derek A.Linkens, MahdiMahfouf, et. al.. SIVA: A Hybrid Knowledge-and-Model-Based Advisory System for Intensive Care Ventilation[J]. IEEE Transactions on Biomedical Engineering, 2004, 8(2):161~172.
    [158] S.Faenza, G.Azzali, M.Balestri, et. al.. Monitoring and Feedback Controlling End Tidal % CO2[C]. Proceedings-10th Annual International Conference of the IEEE EMBS, 1988:1086~1087.
    [159] Frederico C.Jandre, Alexandre V.Pino, Ivanir Lacorte, et. al.. A Closed-Loop Mechanical Ventilation Controller with Explicit Objective Functions[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(5):823~831.
    [160] Richard D.Branson, Robert S.Campbell. Pressure Support Ventilation, Patient-Ventilator Synchrony, and Ventilator Algorithms[J]. Respiratory Care, 1998, 43(12):1045~1047.
    [161] Michael A.Borrello. Controlling Respiratory Mechanical Impedance: An Analysis of Proportional Assist Ventilation[C]. Proceeding of the 2004 American Control Conference, Boston, 2004:1649~1654.
    [162] Glen Atlas. Is a Reduction in Ventilator-Generated Lung Work and Power Beneficial in ARDS? [Z]. 2002:9~10.
    [163]易韦韦,张玘,王跃科.自适应压力调节容量控制通气的研究[J].中国生物医学工程学报, 2008, 27(4):543~546.
    [164]郭军涛,吴太虎.呼吸机控制理论及其应用技术[J].医疗卫生设备, 2003, 12:31~35.
    [165]覃海燕,张玘,易韦韦.正反馈在流量调节持续气道正压通气模式的应用[J].医疗卫生设备. 2008, 23(10):20~21.
    [166] Weiwei Yi, Qi Zhang, Yueke Wang, et. Al.. The Study of Constant Pressure Ventilation with no spontaneous respiration[C]. ISTM’2007, Bei Jing, China, 2007:5405~5408.
    [167] D.W.Kaczka, K.Yang, G.M.Barnas, K.R.Lutchen. Use of Ventilator Driven Forced Oscillations for Characterizing Human Respiratory Mechanics at low Frequencies[C]. Proceeding of the 1991 IEEE Seventeenth Annual Bioengineering Conference, 1991:73~74.
    [168]郑方,范从源.麻醉设备学[M].北京:人民卫生出版社, 2000.
    [169]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社, 2006.
    [170]雷珍山. LabVIEW 7 Express实用技术教程[M].北京:中国铁道出版社, 2005.
    [171]高文焕,汪蕙.模拟电路的计算机分析与设计-PSPICE程序设计[M].北京:清华大学出版社, 1999.
    [172] Vassiliou MP, Petri L. Linear and Nonlinear analysis of Pressure and Flow during Mechanical Ventilation[J]. Intensive Care Med., 2000, 26:1057~1064.
    [173] Sigurbergur Karason, Soren Sondergaard, Stefan Lundin, et. al.. Continuous On-Line Measurements of Respiratory System, Lung and Chest Wall Mechanics during Mechanic Ventilation[J]. Intensive Care Med., 2001, 27:1328~1339.
    [174] Astrom K.J., Wittenmark B.. Adaptive Control. Addison Wesley, Mass., 1989.
    [175] Younes M, Kun J, Webster K, et. al.. Response of Ventilator-Dependent Patients to Delayed Opening of Exhalation Valve[J]. Am. J. Respir. Crit. Care Med., 2002, 166:21~30.
    [176]钟麟,王峰. MATLAB仿真与应用教程[M].北京:国防工业出版社, 2004.
    [177] Bonmarchand G, Chevron V, Chopin C, et. al.. Increased Initial Flow Rate Reduces Inspiratory Work of Breathing during Pressure Support Ventilation in Patients with Exacerbation of Chronic Obstructive Pulmonary Disease[J]. Intensive Care Med., 1996, 22:1147~1154.
    [178] Bonmarchand G, Chevron V, Menard JF, et. al.. Effects of Pressure Ramp Slope Values on the Work of Breathing during Pressure Support Ventilation in Restrictive Patients[J]. Crit. Care Med., 1999, 27:715~722.
    [179] Chiumello D, Pelosi P, Croci M, et. al.. The Effects of Pressurization Rate on Breathing Pattern, Work of Breathing, Gas Exchange and Patient Comfort in Pressure Support Ventilation[J]. Eur. Respir. J., 2001, 18:107~114.
    [180] Chatmongkolchart S, Williams P, Hess DR, et. al.. Evaluation of Inspiratory RiseTime and Inspiration Termination Criteria in New-Generation Mechanical Ventilators: a Lung Model Study[J]. Respiratory Care, 2001, 46:666~677.
    [181] Corne S, Gillespie D, Roberts D, et. al.. Effect of Inspiratory Flow Rate on Respiratory Rate in Intubated Ventilated Patients[J]. Am. J. Respir. Crit. Care Med., 1997, 156:304~308.
    [182] Appendini L, Purro A, Patessio A, et. al.. Partitioning of Respiratory Muscle Workload and Pressure Assistance in Ventilator-Dependent COPD Patients[J]. Am. J. Respir. Crit. Care Med., 1996, 154:1301~1309.
    [183] Yamada Y, Shigeta M, Suwa K, et. al.. Respiratory Muscle Pressure Analysis in Pressure-Support Ventilation[J]. J. Appl. Physiol., 1994, 77:2237~2243.
    [184] Tobin MJ, Jubran A, Laghi F. Patient-Ventilator Interaction[J]. Am. J. Respir. Crit. Care Med., 2001, 163:1059~1063.
    [185] Chiumello D, Pelosi P, Taccone P, et. al.. Effect of Different Inspiratory Rise Time and Cycling off Criteria during Pressure Support Ventilation in Patients Recovering from Acute Lung Injury[J]. Crit. Care Med., 2003, 31:2604~2610.
    [186] Takeuchi M, Williams P, Hess D, et. al.. Continuous Positive Airway Pressure in New-Generation Mechanical Ventilators: a Lung Model Study[J]. Anesthesiology, 2002, 96:162~172.
    [187] Sakanaka K., Akashi M., Noguchi H.. Study of the Effectiveness of an Impedance Assistance Type Ventilation Method Developed at Aichi Medical University[C]. Proceedings of Japan Society of Respiratory Care Medicine, Akita, Japan, 1994.
    [188] Uchiyama A, Imanaka H, Nishimura M, et. al.. Optimal Level of Pressure Support Ventilation for Rescovery from Diaphragmatic Fatigue in Rabbits[J]. Crit. Care Med., 2000, 28:473~478.
    [189] Yamada Y, Du HL. Analysis of the Mechanisms of Expiratory Asynchrony in Pressure Support Ventilation: a Mathematical Approch[J]. J. Appl. Physiol., 2000, 88:2143~2150.
    [190] Du HL, Amato MB, Yamada Y. Automation of Expiratory Trigger Sensitivity in Pressure Support Ventilation[J]. Respir. Care Clin. N. Am., 2001, 7:503~517.
    [191]李振华,郑欲如.呼吸机通气模式名称辨析[J].中国医疗器械杂志, 2004, 28(3):219~220.
    [192]李振华,郑欲如.机械通气的双重控制模式[J].医疗卫生设备, 2004, 8:51~52.
    [193]郑欲如,李振华.机械通气新模式PAV解析[J].医疗设备信息, 2007, 22(7):103~104.
    [194]陆志华,方强.比例辅助通气原理及其应用现状[J].临床肺科杂志, 2005, 10(3):369~371.
    [195]陈宇清,周新.压力支持通气技术的研究进展[J].中国呼吸与危重监护杂志,2006, 5(1):74~78.
    [196]姜辉,俞森洋.影响压力支持通气有效实用的一些因素[J].中华结核和呼吸杂志, 2006, 29(11):772~774.
    [197] Tassaux D, Michotte JB, Guinnier M, et. al.. Expiratory Trigger Setting in Pressure Support Ventilation: from Mathematical Model to Bedside[J]. Crit. Care Med., 2004, 32:1844~1850.
    [198] Perrigault PF, Pouzeratte YH, Jaber S, et. al.. Changes in Occlusion Pressure (P0.1) and Breathing Pattern during Pressure Support Ventilation[J]. Thorax, 1999, 54:119~123.
    [199] Tobin MJ, Jubran A, Laghi F. Patient-Ventilator Interaction[J]. Am. J. Respir. Crit. Care Med., 2001, 163:1059~1063.
    [200] Takeuchi M, Williams P, Hess D, et. al.. Continuous Positive Airway Pressure in New-Generation Mechanical Ventilators: a Lung Model Study[J]. Anesthesiology, 2002, 96:162~172.
    [201] B.Otis, Wallance O.Fenn, Hermann Rahn. Mechanics of Breathing in Man[J]. J. Appl. Physiol., 1950, 2(11):592~607.
    [202]王慧玲,韩芳.成比例辅助通气技术的应用[J].国外医学呼吸系统分册, 2003, 23(5):234~236.
    [203]吴晓莉,林哲辉. Matlab辅助模糊系统设计[M].西安电子科技大学出版社, 2002.
    [204]楼顺天,胡昌华,张伟.基于Matlab的系统分析与设计——模糊系统[M].西安电子科技大学出版社, 2003.
    [205]诸静.模糊控制理论与系统原理[M].机械工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700