1、第一部分 二甲双胍对B淋巴细胞增殖性疾病作用的研究2、第二部分 B淋巴细胞增殖性疾病MYD88L265突变的研究3、第三部分 初治多发性骨髓瘤患者血清IL-6预后意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲双胍((?)netformin,MET)是一种传统而又安全的降糖药物。最近研究发现,二甲双胍能够降低乳腺癌、前列腺癌、结肠癌以及胰腺癌等多种肿瘤的发生。基础研究也发现,二甲双胍对于上述肿瘤具有抑制作用。然而,二甲双胍对套细胞淋巴瘤以及其他BLPD细胞的作用却未见报道。
     研究目的
     1、体外实验:研究二甲双胍对套细胞淋巴瘤(MCL)细胞系以及BLPD原代细胞增殖、周期、凋亡的影响。
     2、体外实验机制研究:研究二甲双胍对于NF-kb通路、Cyclin D1通路、凋亡通路的影响。
     3、体内试验:在套细胞淋巴瘤小鼠皮下移植瘤模型中研究二甲双胍对肿瘤的抑制作用。
     研究方法
     1、以不同浓度二甲双胍分别对套细胞淋巴瘤细胞系Z138和Granta-519进行体外干预,在第0、24、48和72h,以CCK-8法检测细胞增殖情况。应用不同浓度的二甲双胍分别处理BLPD原代细胞72h,应用CCK-8法检测细胞增殖情况。
     2、应用不同浓度的二甲双胍处理套细胞淋巴瘤细胞系Z138以及Granta-519细胞72h后,应用流式细胞术检测细胞凋亡情况。应用二甲双胍(20mM)处理BLPD原代细胞24h、48h、72h后,应用流式细胞术检测细胞凋亡情况。
     3、二甲双胍处理套细胞淋巴瘤细胞系Z138以及Granta-519细胞48h后,应用流式细胞术检测细胞周期差异。
     4、检测MCL以及其他BLPD细胞增殖、周期、凋亡中具有重要调节作用的细胞信号通路的变化。应用Western blotting方法检测不同浓度二甲双胍处理MCL细胞系以及BLPD原代细胞24h后NF-kb通路、Cyclin D1通路、凋亡通路的变化。
     5、建立套细胞淋巴瘤NOD/SCID小鼠皮下移植瘤模型,观察二甲双胍治疗对小鼠移植瘤生长的影响。
     6、应用小鼠移植瘤石蜡切片免疫组化的方法,检测移植瘤细胞周期相关蛋白表达情况;采用TUNEL法检测移植瘤细胞凋亡情况。
     结果
     1、与对照组相比,二甲双胍处理后MCL细胞系以及BLPD原代细胞的增殖活性明显下降。
     2、二甲双胍干预Granta-519细胞72h后,与对照组相比,细胞凋亡比例增加,但是Z138细胞凋亡变化不显著。二甲双胍(20mM)可诱导BLPD原代细胞凋亡。
     3、二甲双胍干预Granta-519以及Z138细胞48h后细胞周期阻滞于G0/G1期,并且其周期阻滞作用呈浓度依赖性。
     4、二甲双胍干预前后,套细胞淋巴瘤细胞系以及BLPD原代细胞NF-kb通路、CyclinD1通路受到抑制,凋亡通路激活。
     5、在小鼠Granta-519以及Z138细胞皮下移植瘤模型中,二甲双胍腹腔注射15天,能显著缩小移植瘤的体积.(P<0.05)。
     6、二甲双胍治疗后的小鼠异位移植瘤模型组织切片免疫组化显示CyclinD1日性细胞比例显著降低。小鼠异位移植瘤组织切片TUNEL法检测肿瘤凋亡结果显示,较之对照组,二甲双胍治疗后移植瘤凋亡增加。
     结论
     1、在体内及体外,二甲双胍均可以抑制人套细胞淋巴瘤的生长,体外实验显示二甲双胍对BLPD原代细胞也具有显著的抑制增殖并促进凋亡的作用。
     2、在MCL细胞系以及BLPD原代细胞中,二甲双胍可以抑制NF-kb、CyclinD1通路,活化凋亡通路。二甲双胍对于BLPD尤其MCL中,重要信号通路的影响,可能是二甲双胍在上述疾病中发挥抑瘤作用的原因。
     3、本研究加深了我们对MCL以及其他BLPD的理解,也为临床治疗开阔了新的视野。
     研究目的
     探讨MYD88L265P突变与华氏巨球蛋白血症/淋巴浆细胞淋巴瘤(WM/LPL)以及其他B淋巴细胞增殖性疾病(BLPD)之间的关系。
     研究方法
     对199例BLPD患者进行回顾性研究。应用直接测序法检测MYD88L265P突变。比较MYD88L265P突变患者与野生型患者的临床及实验室特征。
     结果
     WM/LPL中MYD88L265P突变率为43.33%(13/30);慢性淋巴细胞白血病(CLL)突变率为2.70%(2/74);不能分类BLPD (BLPD-U)患者突变率为12.9%(4/31);高度疑似脾边缘区淋巴瘤SMZL患者突变率为9.1%(1/11);而在套细胞淋巴瘤(MCL)、边缘区淋巴瘤(MZL)、脾边缘区淋巴瘤(SMZL)、粘膜相关淋巴瘤(MALT)、毛细胞白血病(HCL)、滤泡细胞淋巴瘤(FL)患者中均未检测到该突变。WM/LPL患者MYD88L265P突变型与野生型相比TTT (time to treatment)并无显著差异。2例MYD88L265P突变的CLL患者Binet分期分别为B和C,均存在IGVH基因突变,流式细胞术检测ZAP70、CD38均为阴性,TTT分别为12月、2月。4例MYD88L265P突变型BLPD-U患者中,有2例免疫固定电泳异常,其中一例为单克隆的IgMk成分,另一例患者为单克隆IgMk伴单克隆轻链k成分。这4例BLPD-U患者均存在IGVH突变,其中3例为VH3家族,1例为VH4家族。1例疑似SMZL患者存在MYD88L265P突变,该患者的免疫固定电泳也存在单克隆的IgMk成分。
     结论
     1. MYD88L265P突变在WM/LPL中更为常见,有利于WM/LPL患者同其他BLPD患者相鉴别;
     2. MYD88L265P突变可能与单克隆性IgM分泌有关;
     3.在BLPD患者中检测该突变有利于指导BTK抑制剂的应用。
     本研究旨在探讨初治多发性骨髓瘤(MM)患者血清IL-6的预后价值。本研究回顾性分析了238例MM患者初诊时血清IL6水平,比较不同IL-6水平患者的临床特点以及与疾病预后的关系。初诊MM患者根据血清IL-6水平分为两组:低IL-6水平组(血清IL-6小于100pg/ml),高IL-6水平组(血清IL-6大于100pg/ml)。结果表明高IL-6水平组的MM患者,其ECOG评分大于3患者比例、MBD2-4级患者比例、血肌酐水平明显高于低IL-6水平组的MM患者。两组在年龄、核型异常比例、13号染色体缺失者比例、CD138+/CD38+细胞比例、血钙水平、血磷水平、血清β2-MG水平以及血清HB、CRP、Alb、LDH水平、诱导治疗反应等均无明显差异。IL-6血清水平小于100pg/ml组以及大于100pg/ml组的疾病进展时间(TTP)分别为:23月、14月(P=I.93);两组的总体生存时间(OS)分别为:35月、29月(P=0.04)。结论:不同IL-6水平患者临床特点以及疾病预后具有明显差异,应用放射性免疫的方法检测患者血清IL-6水平可作为初诊MM患者的常规检查,可有效地提示患者预后。
Metformin is a safe and cheap biguanide drug, widely used in the treatment of diabetes. Recent studies have revealed that metformin treatment was associated with a decreased incidence of cancers, such as breast, prostate, colon and pancreatic cancer, et al. Experiments have showed that metformin may inhibit the growth of those tumor cells. However, the efficacy of metformin on MCL or other BLPD has never been studied.
     Objective
     1. To study the effects of metformin in different doses on proliferation, cell cycle, apoptosis in MCL cell lines (Z138, Granta-519) and BLPD primary cells in vitro.
     2. To explore the mechanisms of metformin in some classic pathological pathways in vitro, including the NF-kb pathway, Cyclin Dl pathway and apoptosis pathway.
     3. To evaluate the response of treatment with metformin in a murine lymphoma subcutaneous xenograft model.
     Methods
     1. MCL cells (Granta-519and Z138) and BLPD primary cells were treated with metformin in vitro. The proliferation of MCL cells was assessed by CCK8assay at the time of0,24,48and72hours after treatment. The proliferation of BLPD primary cells was assessed by CCK8assay at the time of72hours after treatment.
     2. After treatment with metformin for72hours, apoptosis of Granta-519and Z138cells was examined by Flow cytometry. Apoptosis of BLPD primary cells was examined by Flow cytometry at the time of24,48and72hours after treatment with metformin.
     3. After treatment with metformin for48hours, cell cycle of Granta-519and Z138cells was examined by Flow cytometry.
     4. Western blotting was performed to detect the status of important pathways in proliferation, cell cycle, apoptosis of MCL and primary BLPD cells:MCL cells and primary BLPD cells were collected after treated with metformin for24h, Western blotting was performed to measure NF-kb pathway, Cyclin D1pathway and apoptosis pathway.
     5. MCL xenograft tumor model was established in NOD/SCID mouse and tumor growth was monitored during metformin treatment.
     6. The expression of cell cycle related proteins in xenograft tumor tissues were detected by immunohistochemistry. The apoptosis of xenograft tumor tissues was detected by TUNEL analysis.
     Results:
     1. Proliferation of MCL cells and BLPD primary cells was decreased after metformin treatment.
     2. After treatment for72hours, metformin induced Granta-519cells apoptosis, whereas it could not induce Z138cells apoptosis. Metformin (20mM) treatment induced BLPD primary cells apoptosis.
     3. After treatment for48hours, metformin induced significant increase of the G0/G1phases fraction of Granta-519and Z138cells in a dose-dependent manner.
     4. Metformin treatment inhibited the NF-kb pathway, Cyclin D1pathway, meanwhile activated the apoptosis pathway.
     5. In mouse xenograft model of Granta-519and Z138cells, intraperitoneal treatment of metformin for15days reduced tumor growth significantly(P<0.05).
     6. Immunohistochemical study showed a decreased positive rate of Cyclin D1in the metformin group than control, meanwhile metformin group showed an increased positive rate for TUNEL staining.
     Conclusion:
     1. Metformin inhibits the growth of MCL cells both in vitro and vivo. In our present experiments metformin can inhibit the proliferation of BLPD primary cells and induce these cells apoptosis in vitro.
     2. In MCL cells and BLPD primary cells NF-kb pathway, Cyclin D1pathway and apoptosis pathways are involved in the antitumor effect of metformin.
     3. Our study deepens the understanding of MCL and other BLPD, provides a new insight for therapy strategies with metformin.
     Object
     To investigate the relationship between MYD88L265P mutation and B cell lymphoproliferative disorder (BLPD), especially Waldenstrom's Macroglobulinemia/Lymphoplasmacytic lymphoma(WM/LPL).
     Method
     A retrospective study on199BLPD cases was performed. MYD88L265P mutation was detected by direct sequencing. The clinical and laboratory features were compared between the patients with MYD88L265P mutation and those with wild type.
     Results
     MYD88L265P mutation was identified in43.33%(13/30) WM/LPL, while in2.7%(2/74) CLL,12.9%(4/31) BLPD-U,9.1%(1/11) highly suspected SMZL, but not identified in MCL, MZL, SMZL, MALT, HCL and FL. This mutation was not associated with TTT (time to treatment) in WM/LPL. Two CLL patients with MYD88L265P mutation were diagnosed with Binet stage B and C, both accompanied with IGHV mutation, while ZAP70and CD38of these two patients were both negative, and TTT of these two CLL patients were12and2months respectively. In four BLPD-U Patients with MYD88L265P mutation, abnormal Immunofixation Electrophoresis was detected in two cases, one exhibited an monoclonal IgM k, the other exhibited an monoclonal IgM k and monoclonal light chain k. These four patients all exhibited IGHV mutation, in which three cases were VH3predominance, one was VH4predominance. One highly suspected SMZL patient with MYD88L265P mutation also exhibited an monoclonal IgM k peak.
     Conclusion
     1. MYD88L265P mutation is more common in WM/LPL, suggesting a clinical significance in WM/LPL and other BLPD differentiation;
     2. MYD88L265P mutation may be associated with abnormal monoclonal IgM secretion;
     3. The detection of MYD88L265P mutation is conducive to guide the application of BTK inhibitors in BLPD.
     This study was aimed to evaluate the clinical significance of serum IL-6(S-IL-6levels) in newly diagnosed multiple myeloma patients. This study retrospectively investigated the S-IL-6levels in238newly diagnosed multiple myeloma patients, and analyzed the clinical characteristics and prognosis in different IL-6groups. The newly diagnosed patients with MM were divided into two groups:the low S-IL-6group(S-IL-6<100pg/ml) and the high S-IL-6group(S-IL-6≥100pg/ml). The results showed that high S-IL-6level was more common in patients with ECOG performance score>3, myeloma bone disease (MBD) between grade2to4, and high creatinine level, but there was no significant differences in age, abnormal karyotype percentage, chromosome13deletion percentage, CD138+/CD38+cells percentage and the level of calcium, phosphorus,(32-MG, hemoglobin, C-reactive protein, albumin, lactate dehydrogenase between the two groups at diagnosis, and also no significant difference in response to initial induction chemotherapy among the two groups. The overall survival is significantly different between the low and high IL-6groups (P=0.04,35m vs29m); but no difference in time to progress between the two groups (P=1.93,23m vs14m). In conclusion, the S-IL-6levels correlates with the clinical characteristics and prognosis. Serum IL-6levels measured by radioimmunoassay can be used as a routine examination in newly diagnosed multiple myeloma patients, which can effectively prompt prognosis.
引文
1. L.A. Witters. The blooming of the French lilac. J Clin Invest.2001; 108:1105-1107.
    2. Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes, Diabetes.2000; 49:2063-2069.
    3. W. Holland, T. Morrison, Y. Chang, et al. Metformin (Glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase, Biochem Pharmacol. 2004; 67:2081-2091.
    4. Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ.2005; 330:1304-5.
    5. Li D, Yeung SC, Hassan MM, et al. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology.2009; 137:482-8.
    6. Bodmer M, Meier C, Krahenbiihl S, et al. Long-term metformin use is associated with decreased risk of breastcancer. Diabetes Care.2010; 33:1304-8.
    7. Donadon V, Balbi M, Mas MD, et al. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int.2010; 30:750-8.
    8. Landman GW, Kleefstra N, van Hateren KJ, et al. Metformin associated with lower cancer mortality in typ-e 2 diabetes:ZODIAC-16. Diabetes Care.2010; 33:322-6.
    9. Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene.2008; 27:3576-86.
    10. Kisfalvi K, Eibl G, Sinnett-Smith J, et al. Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res.2009; 69:6539-45.
    11. Liu B, Fan Z, Edgerton SM, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle.2009; 8:2031-40.
    12. Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res.2009; 69:7507-11.
    13. Jaffe HN, Stein H, Vardiman J,et al. Tumours of Haematopoietic and Lymphoid Tissues: Pathology and Genetics. World Health Organization Classification of Tumours. Lyon, France. IARC Press; 2008:11.
    14. Lefrere F, Delmer A, Suzan F, et al. Sequential chemotherapy by CHOP and DHAP regimens followed by high-dose therapy with stemcell transplantation induces a high rate of complete response and improves event-free survival inmantle cell lymphoma:a prospective study. Leukemia.2002; 16:587-93.
    15. Khouri IF, Romaguera J, Kantarjian H, et al. Hyper-CVAD and high-dose methotrexate/cytarabine followed by stem-cell transplantation:an active regimen for aggressive mantle cell lymphoma. J Clin Oncol.1998; 16:3803-3809.
    16. Romaguera JE, Khouri IF, Kantarjian HM, et al. ntreated aggressive mantle cell lymphoma:results with intensive chemotherapy without stem cell transplant inelderly patients. Leuk Lymphoma.2000; 39:77-85.
    17. Romaguera JE, Fayad L, Rodriguez MA, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol.2005; 23:7013-23.
    18. A. Green, N. Chapuis, T. Maciel, et al. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation, Blood.2010; 116:4262-4273.
    19. C. Grimaldi, F. Chiarini, G. Tabellini, et al. AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia:therapeutic implications, Leukemia.2011; 26:91-100.
    20. Tracey L, Perez-Rosado A, Artiga MJ, et al. Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-celllymphomas, respectively. J Pathol.2005; 206:123-34.
    21. Roue G, Perez-Galan P, Lopez-Guerra M, et al. Selective inhibition of IkappaB kinase sensitizes mantle cell lymphoma B cells to TRAIL by decreasing cellular FLIP level. J Immunol,2007; 178:1923-30.
    22. Pham LV, Tamayo AT, Yoshimura LC, et al. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol,2003; 171:88-95.
    23.Fu L, Lin YC, Pham LV, et al. Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood,2006; 107: 4540-8.
    24. Gupta SV, Hertlein E, Lu Y, et al. The Proteasome Inhibitor Carfilzomib Functions Independently of p53 To Induce Cytotoxicity and an Atypical NF-κB Response in Chronic Lymphocytic Leukemia Cells. Clin Cancer Res.2013 Mar 20.
    25. Lin TS, Ruppert AS, Johnson AJ, et al. Phase Ⅱstudy of flavopiridol inrelapsed chronic lymphocytic leukemia demonstrating high response ratin genetically high-risk disease. J Clin Oncol.2009; 27:6012-6018.
    26. Lin TS, Blum KA, Fischer DB, et al. Flavopiridol fludarabine, and ritux-imab in mantle cell lymphoma and indolent B-cell Iymphoproliferativedisorders. J Clin Oncol.2009; 28: 418-423.
    27. Advani R, Sharman JP, Smith SM, et al. Effect of Btk inhibitor PCI-32765 monotherapy on re-sponses in patients with relapsed aggressive NHL:evidence of antitumor activity from a phase I study [abstract]. J Clin Oncol.2010; 28:Abstract 8012.
    28. An D, Kewalramani G, Chan JK, et al. Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia.2006; 49:2174-84.
    29. Wang LW, Li ZS, Zou DW, et al. Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol.2008; 14:7192-8.
    30. Isakovic A, Harhaji L, Stevanovic D, et al. Dual antiglioma action of metformin:cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci.2007; 64:1290-302.
    31. Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene.2008; 27:3576-86.
    32. Isakovic A, Harhaji L, Stevanovic D, et al. Dual antiglioma action of metformin:cell cycle arrest and mitochondria-dependent apoptosis. Cellularand Molecular LifeSciences.2007; 64:1290-302.
    33. Alimova IN, Liu B, Fan Z, et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle.2009; 8:909-15.
    34. Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res.2011; 9:603-15.
    35. Hirsch HA, Iliopoulos D, Struhl K., et al. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A.2013; 110:972-7.
    36. Al-Yahya AA, Al-Majed AA, Al-Bekairi AM, et al. Studies on the reproductive, cytological and biochemical toxicity of Ginkgo Biloba in Swiss albino mice.J Ethnopharmacol.2006; 107:222-8.
    37. Aleisa AM, Al-Rejaie SS, Bakheet SA, et al. Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swissalbino mice. Mutat Res.2007,634: 93-100.
    38. Martin-Castillo B, Dorca J, Vazquez-Martin A, et al. Incorporating the antidiabetic drug metformin in HER2-positive breast cancer treated with neo-adjuvant chemotherapy and trastuzumab:an ongoing clinical-translational research experience at the Catalan Institute of Oncology. Ann Oncol.2010; 21:187-9.
    1. Jaffe ES HN, Stein H, Vardiman J et al. Tumours of Haematopoietic and Lymphoid Tissues: Pathology and Genetics. World Health Organization Classification of Tumours. Lyon, France: IARC Press; 2008:11.
    2. Xose S. Puente, Magda Pinyol, Victor Quesada, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature.2011; 475:101-105.
    3. Steven P,Treon SP, Xu L, et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med.2012; 367:826-33.
    4. N Gachard, M Parrens, I Soubeyran, et al. IGHV gene featur es and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom Macroglobulinemia/Lymphoplasmacytic lymphomas. Leukemia.2013; 27:183-9.
    5.Poulain S, Roumier C, Decambron A, et al. MYD88 L265P mutation in Waldenstrom's macroglogulinemia. Blood.2013 Mar 26.
    6. Jimenez C, Sebastian E, Del Carmen Chillon M, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom's macroglobulinemia. Leukemia.2013 Feb 28.
    7. Varettoni M, Arcaini L, Zibellini S, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms. Blood.2013; 121:2522-8.
    8.Burger JA, Buggy JJ. Emerging drug profiles:Bruton tyrosine kinase (BTK) inhibitor ibrutinib (PCI-32765). Leuk Lymphoma.2013 Feb 21.
    9.Schwamb J, Feldhaus V, Baumann M, et al. B-cell receptor triggers drug sensitivity of primary CLL cells by controlling glucosylation of ceramides. Blood.2012; 120:3978-85.
    1.张之南,沈悌.血液病诊断及疗效标准.3版.北京:科学出版社,2007;232-235
    2.Durie BG, Salmon SE. A clinical slaging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting linical features, reponse totreatment and survival. Cancer,1975; 36:842-854
    3.Greipp PR, San Mignel J, Dufie BG, et al. International staging for multiple myeloma. J Clin Oncol,2005; 23:3412-3420
    4.Durie BG, Harousseau JL, Miguel JS, et al. International uniform esponse criteria for multiple myeloma. Leukemia,2006; 20:1467-1473
    5.Nefedova Y, Landowski TH, Dalton WS> et al. Bone marrow tromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia,2003; 17:1175-1182
    6. Hodge DR, Hurt EM, arrar WL, et al. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer,2005; 41:2502-2512
    7. Rose-John S, Scheller J, Elson G, et al. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors:role in inflammation and cancer. J Leuk Biol,2006; 80:227-236
    8. Chauhan D, Neri P, Velankar M, et al. Targeting mitochondrial actor Smac/DIABLO as therapy for multiple myeloma (MM). Blood,2007; 109:1220-1227
    9.Stasi R, Brunetti M, Parma A, et al. The prognostic value of soluble interleukin-6 receptor in patients with multiple myeloma. Cancer research,1998; 82:1860-1866
    11.Pulkki K, Pelliniemi TT, Rajamaki A, et al. Soluble interleukin-6 receptor as a prognostic factor n multiple myeloma. Finnish Leukaemia Group. Br J Haematol,1996; 92:370-374
    12.Ludwig H, Nachbaur DM, Fritz E, et al. Inter-leukin-6 is a prognostic factor in multiple myeloma. Blood,1991; 77:2794-2795
    13.Stephens OW, Zhang Q, Qu P, et al. An intermediate-risk multiple myeloma subgroup is defined by sIL-6r:levels synergistically increase with incidence of SNP rs2228145 and Iq21 amplification. Blood,2012; 119:503-512
    14. Yoshio-Hoshino N, Adachi Y, Aoki C, et al. Establishment of a new interleukin-6 (IL-6) receptor inhibitor applicable to the gene therapy for IL-6-dependent tumor. Cancer Res, 2007; 67:871-875
    15.Solary E, Guiguet M, Zeller V, et al. Radio immunoassay for the measurement of serum IL-6 and its correlation with tumor cell mass parameters in multiple myeloma. Am J Hematol,1992; 39:163-171.
    16. Nachbaur DM, Herold M, Mancschg A, et al. Serum levels of interleukin-6 in multiple myeloma and other hematological disorders:correlation with disease activityand other prognostic parameters. Ann Hematol,1991; 62:54-58
    17.Hao M, Zhang L, An G, et al. Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells. J Hematol Oncol.2011 Sep 22; 4:37
    1. Burger JA, Ghia P, Rosenwald A, et al. The microenvironment in mature B-cell malignancies:a target for new treatment strategies. Blood.2009; 114:3367-3375.
    2. Panayiotidis P, Jones D, Ganeshaguru K, et al. Hoffbrand AV. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells invitro. Br J Haematol.1996; 92:97-103.
    3. Lagneaux L, Delforge A, Bron D, et al. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood.1998; 91:2387-2396.
    4. Burger JA, Burger M, Kipps TJ,* et al. Chronic Lymphocytic Leukemia B Cells Express Functional CXCR4 Chemokine Receptors That Mediate Spontaneous Migration Beneath Bone MarrowStromal Cells. Blood.1999; 94:3658-3667.
    5. Kurtova AV, Balakrishnan K, Chen R, et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug induced apoptosis:development of a reliable and reproduciblesystem to assess stromal cell adhesion-mediated drug resistance. Blood.2009; 114:4441.4450.
    6. Bagnara D, Kaufman MS, Calissano C, et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood.2011; 117: 5463-5472.
    7. Ding W, Nowakowski GS, Knox TR, et al. Bi-directional activation between mesenchymal stem cells and CLL B-cells:implication for CLL disease progression. Br J Haematol.2009; 147:471-483.
    8. Burger JA, Tsukada N, Burger M, et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood.2000; 96:2655-2663.
    9. Tsukada N, Burger JA, Zvaifler NJ, et al. Distinctive features of "nurselike" cells that differentiate in the context of chronic lymphocytic leukemia. Blood.2002; 99:1030-1037.
    10. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug.J Clin Invest.2008; 118:2427-2437.
    11. Gorgun G, Ramsay AG, Holderried TA, et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad SciUSA.2009; 106:6250-6255.
    12. Patten PE, Buggins AG, Richards J, et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood.2008; 111:5173-5181.
    13. Burger JA, Burger M, Kipps TJ. Chronic Lymphocytic Leukemia B Cells Express Functional CXCR4 Chemokine Receptors That Mediate Spontaneous Migration Beneath Bone Marrow Stromal Cells. Blood.1999; 94:3658-3667
    14. QuirogaMP, Balakrishnan K, Kurtova AV, et al. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival:specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood.2009; 114:1029-1037
    15. Richardson SJ, Matthews C, Catherwood MA, et al. ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B-cell chronic lymphocytic leukemia (B-CLL). Blood.2006; 107:3584-3592.
    16. Burger JA, Peled A. CXCR4 antagonists:targeting the microenvironment in leukemia and other cancers. Leukemia.2009; 23:43-52.
    17. Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol.2009; 9:618-629.
    18. Burkle A, Niedermeier M, Schmitt-Graff A, et al. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 2007; 110:3316-3325.
    19. Burger JA, Quiroga MP, Hartmann E, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood.2009; 113:3050-3058.
    20. Ghia P, Strola G, Granziero L, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+T cells by producing CCL22. Eur J Immunol. 2002; 32:1403-1413.
    21. Sivina M, Hartmann E, Kipps TJ, et al. CCL3 (MIP-lalpha)plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood.2011; 117:1662-1669.
    22. Shanafelt TD, Geyer SM, Bone ND, et al. CD49d expression is an independent predictor of overall survival in patients withchronic lymphocytic leukaemia:a prognostic parameter with therapeutic potential. Br J Haematol.2008; 140:537-546.
    23. Majid A, Lin TT, Best G, et al. CD49d is an independent prognostic marker that is associated with CXCR4 expression in CLL. Leuk Res.2011; 35:750-756.
    24. Stevenson FK, Caligaris-Cappio F, et al. Chronic lymphocytic leukemia:revelations from the B-cell receptor. Blood.2004; 103:4389-4395.
    25. Kitada S, Zapata JM, Andreeff M, et al. Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br J Haematol.1999; 106:995-1004.
    26. Nishio M, Endo T, Tsukada N, et al. Nurselike cells expressBAFF and APRIL, which can promote survival of chroniclymphocytic leukemia cells via a paracrine pathway distinctfrom that of SDF-lalpha. Blood.2005; 106:1012-1020.
    27. Endo T, Nishio M, Enzler T, et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood. 2007; 109:703-710.
    28. Chiorazzi N, Rai KR, Ferrarini M,et al. Chronic lymphocytic leukemia. N Engl J Med. 2005; 352:804-815.
    29. Chu CC, Catera R, Hatzi K, et al. Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain ⅡA. Blood. 2008; 112:5122-5129.
    30. Catera R, Silverman GJ, Hatzi K, et al. Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med.2008; 14:665-674.
    31. CosciaM, Pantaleoni F, Riganti C, et al. IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells.Leukemia.2011; 25:828-837.
    32. Guarini A, Chiaretti S, Tavolaro S, et al. BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgVH unmutated chronic lymphocytic leukemia (CLL) cells. Blood.2008; 112:782-792
    33. Andritsos LA, Byrd JC, Hewes B, et al. Preliminary results from a phase Ⅰ/Ⅱ dose escalation study to determine the maximum tolerated dose of plerixafor incombination with rituximab in patients with relapsed chronic lymphocytic leukemia [Abstract]. Haematologica. 2010;95(suppl 2):0772.
    34. Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood.2010; 115:2578-2585.
    35. Honigberg LA, Smith AM, Sirisawad M, et al. The Brutontyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad SciUSA.2010; 107:13075-13080.
    36. Lannutti BJ, Meadows SA, Herman SE, et al. CAL-101, ap110(delta) selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood.2011; 117:591-594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700