STAT3介导microRNAs调控的IL-9过表达在慢性淋巴细胞性白血病免疫调节机制中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性淋巴细胞白血病(chronic lymphocytic leukemia,CLL,简称慢淋)是单克隆性小淋巴细胞恶性增殖性疾病,其特点为成熟样的B淋巴细胞在血液、骨髓、淋巴结、肝和脾大量蓄积,最后累及淋巴系统以外的组织。慢性淋巴细胞白血病病因尚未明了,感染、免疫与遗传等因素备受关注。CLL细胞形态上类似成熟淋巴细胞,实质上是一种免疫学上不成熟、功能不完善的细胞。尽管单克隆抗体应用及免疫治疗已经得到人们的广泛关注并取得一定疗效,但是CLL仍然是一种除造血干细胞移植以外不可治愈的疾病。研究证明CLL患者体内存在T、B细胞构成比例及功能失调,免疫耐受及免疫调节功能紊乱,因此开展对CLL中异常免疫和免疫调控的研究有望为CLL发生发展机理的深入探讨、肿瘤免疫治疗及新药开发等提供理论依据。
     近年来,白介素9(interleukin-9, IL-9)在肿瘤免疫中的作用已经得到了越来越多的关注。长期以来,人们认为IL-9是Th2类细胞因子,作用于多种炎症细胞和组织细胞,在对抗寄生虫感染和诱导变应性疾病,尤其是过敏性哮喘中发挥着重要的作用。最近的数据表明,T细胞分泌的IL-9介导了肥大细胞的募集,参与肿瘤免疫,促进细胞转化,促进增殖和抗凋亡活性,这些都表明IL-9在肿瘤进展中可能存在潜在作用。IL-9活化后也参与了IL-2,4,7,15参与的信号通路,这些信号通路是通过细胞因子的特异性受体链与STAT家族的γ链形成异二聚体所介导的。
     信号转导与转录激活因子-3(Signal transducer and activator of transcription,STAT3)是近年来研究异常活跃的转录因子,STAT3能够将细胞外的信号传递到细胞核,影响靶基因的转录,调控细胞功能,广泛参与细胞的增殖、分化、凋亡、免疫调节等过程,是细胞因子受体下游区重要的信号通路之一。多项研究结果显示,STAT3是在多种肿瘤组织与细胞株中异常表达,是促进炎症向肿瘤转化的关键因子,STAT3持续激活可导致细胞异常增殖和恶性转化,在肿瘤的生长和转移中发挥了举足轻重的作用,目前已被公认为癌基因。
     microRNAs(miRNAs)的表达水平在预测慢性淋巴细胞性白血病的临床预后方面是很有价值的。在结构上,niRNAs为一类短小的内源性单链非编码RNA片段,长度约为19-25个核苷酸。这些RNA是从初级转录本,也就是pri-miRNA,转变成为称为pre-miRNA的茎环结构,最后成为具有功能的niRNA. miRNA来自一些从DNA转录而来,但无法进一步转译成蛋白质的RNA(属于非编码RNA).miRNA通过与靶信使核糖核酸(mRNA)特异结合,从而抑制转录后基因表达。近年来的研究表明在CLL中存在几种染色体异常,如11Q-,13Q,17p-,和12号染色体三体的分子畸变,还包括miRNA15a和16-1的丧失或下调以及抗凋亡基因的过度表达。已有研究显示在恶性血液病肿瘤患者血液中存在miR-15a/16,miR-29及miR-155簇表达的缺失或下调,并且它们的表达缺失或下调与IgVH表达和ZAP-70状态呈正相关。最近的研究发现,miR-21在白血病患者中的过表达与各种染色体畸变有相关性,比如17P,提示miR-21的表达可能可以预测患者的生存率。
     IL-9,STAT3,以及microRNAs均与肿瘤的生长有关,但IL-9在CLL患者中的表达及它们之间的交互作用尚不清楚。在本研究中,我们证实了在CLL患者血清中IL-9的表达水平明显升高,IL-9表达的不同与CLL患者的临床特点及预后密切相关。而pSTAT3及microRNAs的表达也明显升高。对MEC-1细胞株的实验表明,在CLL细胞中可能存在一个“胞外L-9-STAT3-miR-155,miR-21-胞内IL-9”的正反馈系统。
     第一部分:CLL患者及正常对照组外周血中IL-9、STAT3及microRNA的检测
     目的:CLL是一组在组织形态学、分子生物学、细胞遗传学及临床预后方面均存在很大的异质性的侵袭性恶性肿瘤。CL1的发生发展是一个多因素参与的复杂过程,目前虽然做了大量研究,其病因及发病机制仍不清楚。本研究检测了IL-9、STAT3及microRNAs在CLL病人外周血中的表达,并探讨了IL-9的过表达与CLL患者预后因子之间的关系,为患者预后的评价提供理论依据。
     方法:
     1.标本收集2.分离外周血单个核细胞(peripheral blood mononuclear cells, PBMCs)及CD19+B细胞
     3. ELISA检测分析
     4.提取RNA,进行实时定量RT-PCR
     5.蛋白提取及蛋白印迹分析
     6.统计学分析
     结果:
     1.通过47例CLL患者外周血血清样本的检测,发现CLL患者血清中IL-9的水平增高,血清IL-9的阳性检测率为52.4%。对20例IL-9血清水平增高的患者我们分别采用逆转录PCR及Western-blot检测IL-9的表达,最终确定,IL-9在患者的外周血单个核细胞的mRNA和蛋白水平均有表达。与正常人的CD19+细胞相比,CLL患者的外周血单个核细胞中拥有更高的IL-9mRNA水平(P<0.05)。此外,通过对western-blot蛋白条带的灰度分析,表明IL-9在CLL患者蛋白水平的表达也显著高于正常人(P<0.0001)。IL-9表达不同的CLL患者在年龄、性别水平上没有明显的统计学差异。但是患者血清IL-9的表达水平与临床分期(P<0.05),ZAP-70的表达水平(P=0.0272),B2微球蛋白的表达水平(P=0.0101),IgVH基因突变状态(P=0.0320)具有显著的统计学意义。CLL患者血清IL-9水平与预后之间存在相关性。
     2.通过对20例血清IL-9增高的CLL患者的外周血单个核细胞进行Western-blot检测发现STAT3均有磷酸化表达,通过对蛋白条带的灰度分析表明,pSTAT3蛋白水平明显高于正常对照,两组比较有统计学意义(P<0.0001)。
     3.我们继续对20例患者的外周血单个核细胞进行检测,发现microRNA155及nicroRNA21mRNA表达水平明显高于正常对照,差异有统计学意义(P<0.05)。
     结论:
     1.CLL患者IL-9水平明显增高,升高的IL-9水平与患者的临床分期,ZAP-70的表达水平,B2微球蛋白的表达水平,IgVH基因突变状态呈正相关。
     2.CLL'患者的pSTAT3水平明显增高。
     3.CLL患者的microRNA155及nicroRNA21mRNA表达水平明显高于正常对照。
     第二部分:CLL中IL-9与STAT3信号通路的相关调节作用
     目的:我们在第一部分的实验中已经证明,在CLL患者的血清中,IL-9的表达有上调,而在外周血单个核细胞的蛋白水平及mRNA水平上,也存在IL-9的表达,并且IL-9的表达与患者的不良预后有相关性。我们从IL-9过表达的患者中检测到pSTAT3水平明显增高。在接下来的实验中,我们将在CLL细胞株中,检测IL-9与STAT3的磷酸化是否具有相互调节的关系,并检测IL-9对CLL细胞增殖及凋亡是否有影响,并探索IL-9对细胞的影响是否是通过STAT3的磷酸化起作用的,而它们之间是否存在正反馈作用。从而对IL-9影响CLL细胞生物学行为的机制进行初步的探索,达到更深入了解IL-9介导的信号通路的目的。
     方法:
     1.细胞培养
     2.MEC-1细胞的预处理
     3.蛋白提取及蛋白印迹分析
     4.流式细胞术检测细胞凋亡
     5.CCK8法检测细胞增殖
     6.统计学分析
     结果:
     1.我们检测的CLL细胞株是MEC-1细胞株,在加入20ng/ml IL-9的MEC-1细胞株中,我们进行Western-blot检测发现随着时间的增加,STAT3的磷酸化水平逐渐增高,并有时间依赖性,在加入IL-9培养2h的时候,STAT3的磷酸化水平达峰值。加入抑制剂(STAT3抑制剂:Wp1066)处理后,两者的磷酸化水平明显减低。
     2.我们继续用Western-blot法检测预处理后的细胞株IL-9的表达水平,在加入20ng/ml IL-9的MEC-1细胞株中,IL-9的表达也有时间依赖性,在加入IL-9培养2h的时候,IL-9表达水平达峰值。加入Vp1066(10nM)处理后,IL-9的表达明显减低。
     3.我们检测预处理后细胞的增殖及凋亡情况。在加入或不加入抑制剂培养48h后,用IL-9终浓度为20ng/ml的IMDM完全培养基培养MEC-1细胞不同的时间点后,利用CCK8法检测细胞增殖,结果显示,随着IL-9的培养时间增加,细胞增殖作用逐渐增加,在培养2h后,细胞增殖增加约20%,而这种作用能被抑制剂消除,同样,在细胞加入IL-9培养2h后,流式细胞术检测细胞株的凋亡水平发现,能够减低细胞凋亡至基础水平的40%左右,而抑制剂也可以消除这种作用。
     结论:
     1.MEC-1细胞株经过IL-9预处理后,STAT3的磷酸化水平逐渐增高,抑制剂可消除这种作用。
     2.MEC-1细胞株经过IL-9预处理后,IL-9表达水平逐渐增高,抑制剂可消除这种作用。
     3.胞外IL-9可以促进细胞增殖,抑制细胞凋亡。
     4.胞外IL-9的刺激可引起STAT3的磷酸化,进而正反馈调节胞内IL-9的分泌。
     第三部分CLL中由microRNAs调控STAT3介导的IL-9过表达的免疫调节机制
     目的:最近的数据表明,IL-9参与肿瘤免疫是由T细胞和肥大细胞介导的。它在多个转化的细胞的促进增殖和抗凋亡活性也表明在肿瘤进展中可能存在潜在作用。本研究应用人慢性淋巴细胞性白血病细胞株MEC-1为研究对象,应用质粒转染技术诱导microRNAs高表达,进一步研究CLL中由microRNAs调控STAT3介导的IL-9过表达的免疫调节机制。
     材料与方法:
     1.细胞培养
     2.质粒载体介导的上调慢性淋巴细胞性白血病的microRNA基因
     3.上调microRNA基因细胞的预处理
     4.流式细胞术检测细胞转染率
     5.蛋白提取及蛋白印迹分析
     6.流式细胞术检测细胞凋亡
     7.CCK8法检测细胞增殖
     8.统计学分析
     结果:
     1.质粒转染诱导microRNA155和microRNA21高表达后,在加入20ng/ml IL-9的MEC-1细胞株中,我们进行Western-blot检测发现IL-9在CLL细胞中的蛋白表达水平升高(P<0.05),且这种作用可以被STAT3的抑制剂所抑制(Wp1066)。
     2.质粒转染诱导microRNA155和microRNA21高表达后,CLL细胞增殖增加(n=3,P<0.0001),细胞凋亡受抑(n=3,P<0.0001)。
     结论:
     1.microRNA155和microRNA21高表达引起的胞内IL-9的分泌可以促进CLL细胞增殖,并抑制其凋亡。
     2.经胞外IL-9的刺激后,上调microRNAl55和microRNA21基因表达后的细胞
     的胞内IL-9分泌明显增加.
     3.IL-9可能与CLL的发生发展密切相关,而且这种作用可能是通过STAT3介导的microRNA155和]microRNA21调节的。
Chronic lymphocytic leukemia (CLL) remains an incurable disease with a monoclonal small lymphocytes malignant hyperplastic. It is characterized by the accumulation of neoplastic B lymphocytes in the blood sample, bone marrow, lymph nodes, liver and spleen, and the last involving organizations outside the lymphatic system. The mechanism of the disease development still remains unrevealed. However, infection, immune and genetic factors have received many concerns. CLL cells were morphology similar to mature lymphocytes, essentially were an immunologically immature, imperfect cells. Although the application of monoclonal antibodies and immune therapy has been widespread concern and achieve a certain effect, it is still is an incurable disease outside hematopoietic stem cell transplantation. Studies have shown that the presence of T, B cell composition ratio imbalance and dysfunction, immune tolerance and immune dysfunction in vivo in patients with CLL. Therefore carried out the research on abnormal immune and immune regulation is expected to explore the development of the mechanism of tumor immunotherapy in depth and provided a theoretical basis on new drug development.
     In recent years, the role of IL-9in tumor immunity has got more and more attentions. The cytokine IL-9has largely been regarded as a Th2cytokine that makes multifocal contributions to allergic disease. Recent data suggested that IL-9involved in tumor immunity mediated by Treg cells and mast cells. Its growth factor and antiapoptotic activities on multiple transformed cells also suggest a potential role in tumor progression. IL-9activities also involved in IL-2,4,7,15and21signaling which mediated by a specific receptor chain that forms a heterodimeric receptor with the common gamma chain members of the STATs family.
     STAT3is a latent cytoplasmic transcription factor, originally discovered as a transducer of signal from cell surface receptors to the nucleus. Compelling evidences suggested that STAT3was constitutively activated in many cancers and played a pivotal role in tumor growth and metastasis. It regulated cellular proliferation, invasion, migration, and angiogenesis which were critical for cancer metastasis.
     The expression levels of microRNAs were valuabe for predicting the clinical behavior of CLL. Structurally, miRNAs are short (19-to25-nucleotide) RNAs, processed from hairpin loop structures (pre-miRNAs;60-110nucleotides in length) that regulate the expression of protein-coding genes as a result of imperfect complementarity with targeting messenger RNAs. Several chromosomal abnormalities, such as11q-,13q-17p-, and trisomy12, and molecular aberrations, including loss or down-regulatipn of miRNA15a and16-1and overexpression of antiapoptotic genes, have been identified in CLL in recent years. An unique miRNA signature was found to be differentially expressed in patients with various IgVH and ZAP-70kinase statuses and composed of the most frequently deregulated miRNAs in the different hematologic malignancies (such as miR-15/16, the miR-29family, and miR-155). Recent studies have found that miR-21expression stratified survival of CLL patients with17p-as well as patients with various chromosomal aberrations, suggesting that miR-21expression could predict patient survival.
     Given the implication that IL-9, STATs, and microRNAs are involved in tumor growth, it was interesting to explore the cross-talking pathways among these important factors. In present study, we demonstrated that an elevated level of serum IL-9was detected in CLL and its level was correlated with the clinical characteristics of CLL patients. Expressions of pSTATs protein, miR-155and miR-21were found up-regulated concomitantly. Experiments on MEC-1cells showed that there was a novel "extracellular IL-9-STATs-miR-155, miR-21-intracellular IL-9" positive feedback system in CLL cells.
     Part1Expression of IL-9, STAT3and microRNAs in CLL patients and healthy controls
     Objective:Chronic lymphocytic leukemia (CLL) is an aggressive disease with variable histomorphological, biological and cytogenetic features, as well as clinical outcomes. The malignization of most lymphoma is a complex process with multifactor. In spite of extensive research, the pathogenesis of CLL has not been clearly understood. In this study, Expression of IL-9, phosphorylation of signal transducer and activator of transcription (pSTAT)-3and microRNAs (miR) were analyzed from CLL patient samples. And we investigate whether the level of IL-9was related to the progression and prognosis of CLL.
     Material and Methods:
     1. Specimen collection
     2. Peripheral blood mononuclear cells (PBMCs) and CD19+B cells isolation
     3. ELISA analysis
     4. RNA extraction and real-time quantitative RT-PCR
     5. Protein extraction and Western Blot6. Statistical analysis Results:
     1. Higher expression of serum IL-9was detected in20CLL patients from serum of47CLL patients. The positive detection rate was52.4%. The protein and mRNA levels of IL-9were also upregulated in20patients with higher serum levels of IL-9. In order to investigate whether the level of IL-9was related to the progression and prognosis of CLL, we detected the correlation between IL-9level and the clinical features of CLL. As shown in Table2, there was no correlation between IL-9expression and patient age (P=0.6580) and gender (P=0.4063). Nevertheless, the level of IL-9was strongly correlated with CLL clinical staging (P<0.05), ZAP-70expression (P=0.0272), B2M expression (P=0.0101) and IgVH status (P=0.0320). These results implied that IL-9could contribute to CLL progression.
     2. Expression of pSTAT3protein can be detected in20samples with up-regulation of IL-9, but none was detected in10PBMC from normal controls. The analysis on the gray scale of the Western blot bands indicated that expression of pSTAT3was higher in CLL patients when compared with healthy controls.(P<0.0001).
     3. Expressions of miR-155and miR-21in20CLL patients and healthy controls were measured by RQ-PCR. We found that miR-155and miR-21were significantly overexpressed in CLL samples when compared with controls.
     Conclusions:
     1. IL-9levels increased obviously in patients with CLL. Elevated levels of IL-9were associated with CLL clinical staging, ZAP-70expression, B2M expression and IgVH status, in CLL patients.
     2. pSTAT3expression was significantly upregulated in CLL patients.
     3. microRNA155and microRNA21expression was obviously higher in CLL patients than normal controls.
     Part2Extracellular IL-9-pSTAT3intracellular IL-9positive feedback system in CLL cells
     Objective:We had proved that IL-9was overexpression in the serum of patients with CLL in the first part of the experiment. The expressions of IL-9mRNA and protein were determined in20CLL patients. The overexpression of IL-9was associated with CLL clinical progression. High expression of pSTAT3was detected in patients. In the following experiment, we will elucidate whether there was a function link between IL-9and STAT3in CLL and detect the effect of IL-9on cell proliferation and apoptosis. We will explore whether there is a positive feedback effect between them. Thus Finally, the relationship between IL-9and STAT3pathway in the pathogenesis of CLL also needs to be determined.
     Material and Methods:
     1. Cells culture
     2. Cotreatment or coculture experiments
     3. Real-time quantitative polymerase chain reaction (RT-PCR)
     4. Western blot analysis
     5. Assessment of cell apoptosis
     6. Assessment of cell proliferation
     7. Statistical analysis
     Results:
     1. Recombinant human IL-9(rIL-9) was added into the medium of MEC-1cells and the final concentration of rIL-9was20ng/ml. Expressions of pSTAT3in MEC-1cells were measured by Western-blot at indicated time. We found that expressions of pSTAT3increased at a time-dependent manner. Furthermore, this phenomenon could be inhibited by Wp1066, which is a STAT3inhibitor.
     2. Expressions of IL-9in MEC-1cells were measured by Western-blot at indicated time. We found that expressions of IL-9increased at a time-dependent manner. Furthermore, this phenomenon could be inhibited by Wp1066, which is a STAT3inhibitor. These results indicated that rIL-9(extracellular IL-9) could enhance MEC-1cells to produce IL-9through STAT3phosphorylation.
     3. To determine the role of extracellular IL-9in MEC-1cells growth, we first examined its effect on the proliferation of these cells. rIL-9could promote MEC-1cells proliferation when the co-culture time with rIL-9. However, pretreatment with WP1066could significantly abolish the proproliferative effects of rIL-9on MEC-1cells. In our following experiments, we examined the role of rIL-9in CLL cells apoptosis and necrosis. rIL-9could decrease cell apoptosis to approximately60%of the baseline level. Pretreatment with WP1066could significantly abolish the anti-apoptosis effects of rIL-9on MEC-1cells.
     Conclusions:
     1. Expressions of pSTAT3were increased in pretreated MEC-1cells. This phenomenon could be inhibited by Wp1066.
     2. Expressions of IL-9were increased in pretreated MEC-1cells. This phenomenon could be inhibited by Wp1066.
     3. rIL-9could promote MEC-lcells proliferation and decrease cell apoptosis. This phenomenon could be inhibited by Wp1066.
     4. rIL-9(extracellular IL-9) could enhance MEC-1cells to produce IL-9through STAT3phosphorylation.
     Part3Overexpression of IL-9induced by STAT3phosphorylation was mediated by microRNAs in chronic lymphocytic leukemia
     Objective:In recent years, the role of IL-9in tumor immunity has got more and more attentions. The cytokine IL-9has largely been regarded as a Th2cytokine that makes multifocal contributions to allergic disease. Recent data suggested that IL-9involved in tumor immunity mediated by Treg cells and mast cells. We investigated that the gained function of microRNAs through its upregulation induced by Lipofectamine2000(Invitrogen). Further explore a novel "extracellular IL-9-pSTAT3-miR-155, miR-21-intracellular IL-9" positive feedback system in CLL cells.
     Material and Methods:
     1. Cell culture
     2. microRNAs upregulation using Lipofectamine2000(Invitrogen) in CLL cells
     3. RNA extraction and real-time quantitative RT-PCR
     4. Protein extraction and Western Blot
     5. Assessment of cell apoptosis by FACScan flow cytometer
     6. Assessment of cell proliferation using CCK8incorporation method
     7. Statistical analysis
     Results:
     1. After transfected with miR-155and miR-21for48h, MEC-1cells were treated with rIL-9(20ng/ml) for120min and then collected to examine the expression of IL-9by Western blot. We found that IL-9expression increased in transfected cells when compared with untransfected cells. When miR-transfected MEC-1cells were pretreated with Wp1066for48h, Wp1066could abolish IL-9production in cells induced by rIL-9.
     2. the proproliferative effects of rIL-9on miR-155/miR-21transfected MEC-1cells were more apparent than MEC-1cells. Pretreatment with WP1066could also abolish the proproliferative effects of rIL-9on transfected MEC-1cells. When cultured without rIL-9, the apoptosis rate of miR-155/miR-21transfected MEC-1cells was lower than that in MEC-1cells, which documented that IL-9produced by CLL cells itself could also inhibit CLL cells apoptosis. Pretreatment with WP1066could abolish the anti-apoptosis effects of rIL-9on transfected MEC-1cells
     Conclusions:
     1. rIL-9could promote MEC-1cells proliferation and decrease cell apoptosis.
     2. The overexpression of miR-155and miR-21could promote the production of IL-9in CLL cells.
     3. It is reasonably plausible that the up-regulation of IL-9induced by STAT3phosphorylation was mediated by miR-155and miR-21.
引文
1. Vanura K,Rieder F, Kastner MT, Biebl J, Sandhofer M, Le T, Strassl R, Puchhammer-Stockl E, Perkmann T, Steininger CF, Stamatopoulos K, Graninger W,Jager U, Steininger C. Chronic lymphocytic leukemia patients have a preserved cytomegalovirus-specific antibody response despite progressive hypogammaglobulinemia.PLoS One.2013 Oct 23;8(10):e78925.
    2. Hallek M. Signaling the end of chronic lymphocytic leukemia:new frontline treatment strategies. Blood.2013 Nov 28;122(23):3723-34.
    3. Nishida Y, Takeuchi K, Tsuda K, Ugai T, Sugihara H, Yamakura M, Takeuchi M, Matsue K. Acquisition of t(11;14) in a patient with chronic lymphocytic leukemia carrying both t(14;19)(q32;q13.1) and +12. Eur J Haematol.2013 Aug;91(2):179-82.
    4. Tandra P, Krishnamurthy J, Bhatt VR, Newman K, Armitage JO, Akhtari M. Autoimmune Cytopenias in Chronic Lymphocytic Leukemia, Facts and Myths. Mediterr J Hematol Infect Dis.2013 Nov 4;5(1):e2013068.
    5. Zhao P,Xiao X, Ghobrial RM,Li XC. IL-9 and Th9 cells:progress and challenges. Int Immunol.2013 Oct;25(10):547-51.
    6. Wang YH, Hogan SP, Fulkerson PC, Abonia JP, Rothenberg ME. Expanding the paradigm of eosinophilic esophagitis:mast cells and IL-9. J Allergy Clin Immunol.2013 Jun;131(6):1583-5.
    7. Sabatino G,Nicoletti M,Neri G, Saggini A, Rosati M, Conti F, Cianchetti E, Toniato E, Fulcheri M, Caraffa A, Antinolfi P, Frydas S,Pandolfi F, Potalivo G, Galzio R, Conti P, Theoharides TC. Impact of IL-9 and IL-33 in mast cells. J Biol Regul Homeost Agents.2012 Oct-Dec;26(4):577-86.
    8. Wilhelm C, Turner JE, Van Snick J, Stockinger B. The many lives of IL-9:a question of survival? Nat Immunol.2012 Jun 19;13(7):637-41.
    9. Arras M1, Louahed J, Simoen V, Barbarin V, Misson P, van den Brule S, Delos M, Knoops L, Renauld JC, Lison D, Huaux F. B lymphocytes are critical for lung fibrosis control and prostaglandin E2 regulation in IL-9transgenic mice. Am J Respir Cell Mol Biol.2006 May;34(5):573-80.
    10. Domoszlai T, Martincuks A, Fahrenkamp D, Schmitz-Van de Leur H, Kuster A, Muller-Newen G. Consequences of the disease-related L78R mutation for dimerization and activity of STAT3. J Cell Sci.2014 Feb 25.
    11. Rezvani K, Barrett J. STAT3:the "Achilles" heel for AML? Blood.2014 Jan 2:123(1):1-2.
    12. Szabo DR, Luconi M, Szab6 PM, Toth M, Szucs N, Horanyi J, Nagy Z, Mannelli M, Patocs A, Racz K, Igaz P. Analysis of circulating microRNAs in adrenocortical tumors.Lab Invest.2014 Mar;94(3):331-9.
    13. Gadelha MR,Kasuki L, Denes J, Trivellin G,Korbonits M. MicroRNAs: Suggested role in pituitary adenoma pathogenesis. J Endocrinol Invest.2013 Nov;36(10):889-895.
    14. Vitaloni M, Pulecio J, Bilic J, Kuebler B, Laricchia-Robbio L, Izpisua Belmonte JC. MicroRNAs contribute to induced pluripotent stem cell somatic donor memory. J Biol Chem.2014 Jan 24;289(4):2084-98.
    15. Pontikoglou C, Kastrinaki MC, Klaus M, Kalpadakis C, Katonis P, Alpantaki K, Pangalis GA, Papadaki HA. Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells Dev.2013 May 1;22(9):1329-41.
    16. di Meo N, Stinco G, Trevisan G. Cutaneous B-cell chronic lymphocytic leukaemia resembling a granulomatous rosacea. Dermatol Online J.2013 Oct 16;19(10):20033.
    17. Chuang HY, Rassenti L, Salcedo M, Licon K, Kohlmann A, Haferlach T, Foa R, Ideker T, Kipps TJ. Subnetwork-based analysis of chronic lymphocytic leukemia identifies pathways that associate with disease progression. Blood.2012 Sep 27;120(13):2639-49.
    18. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood.1975 Aug;46(2):219-34.
    19. Binet JL, Auquier A, Dighiero G,Chastang C, Piguet H, Goasguen J, Vaugier G, Potron G, Colona P, Oberling F, Thomas M,Tchernia G, Jacquillat C, Boivin P, Lesty C, Duault MT, Monconduit M, Belabbes S, Gremy F. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer.1981 Jul 1;48(1):198-206.
    20. Rai KR, Sawitsky A. A review of the prognostic role of cytogenetic, phenotypic, morphologic, and immune function characteristics in chronic lymphocytic leukemia. Blood Cells.1987;12(2):327-38.
    21. Shang Y, Kakinuma S, Nishimura M, Kobayashi Y, Nagata K, Shimada Y. Interleukin-9 receptor gene is transcriptionally regulated by nucleolin in T-cell lymphomacells. Mol Carcinog.2012 Aug;51(8):619-27.
    22. Holz LE, Jakobsen KP, Van Snick J, Cormont F, Sewell WA. Dexamethasone inhibits IL-9 production by human T cells. J Inflamm (Lond).2005 Apr 20;2(l):3.
    23. Qiu L, Lai R, Lin Q, Lau E, Thomazy DM, Calame D, Ford RJ,Kwak LW, Kirken RA, Amin HM. Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells. Blood.2006 Oct 1;108(7):2407-15.
    24. Lv X, Feng L, Fang X, Jiang Y, Wang X. Overexpression of IL-9 receptor in diffuse large B-cell lymphoma. Int J Clin Exp Pathol.2013 Apr 15;6(5):911-6.
    25. Lee JK, Won C, Yi EH, Seok SH, Kim MH, Kim SJ, Chung MH, Lee HG, Ikuta K, Ye SK. Signal transducer and activator of transcription 3 (Stat3) contributes to T-cell homeostasis by regulating pro-survival Bcl-2 family genes. Immunology.2013 Nov;140(3):288-300.
    26. Yang C, Lee H,Pal S,Jove V, Deng J, Zhang W, Hoon DS, Wakabayashi M, Forman S, Yu H. B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One.2013 May 29;8(5):e64159.
    27. Hornakova T, Staerk J, Royer Y, Flex E, Tartaglia M, Constantinescu SN, Knoops L, Renauld JC. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STATpathway via interleukin-9 receptor alpha homodimers. J Biol Chem.2009 Mar 13;284(11):6773-81.
    28. Mangolini M, de Boer J, Walf-Vorderwulbecke V, Pieters R, den Boer ML, Williams O. STAT3 mediates oncogenic addiction to TEL-AML1 in t(12;21) acute lymphoblastic leukemia. Blood.2013 Jul 25;122(4):542-9.
    29. Cao Q, Li YY, He WF, Zhang ZZ, Zhou Q, Liu X, Shen Y, Huang TT. Interplay between microRNAs and the STAT3 signaling pathway in human cancers. Physiol Genomics.2013 Dec 15;45(24):1206-14.
    1. Kim HS, Chung DH. IL-9-producing invariant NKT cells protect against DSS-induced colitis in an IL-4-dependent manner. Mucosal Immunol.2013 Mar;6(2):347-57.
    2. Osterfeld H, Ahrens R, Strait R, Finkelman FD, Renauld JC, Hogan SP. Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J Allergy Clin Immunol.2010 Feb;125(2):469-476.e2.
    3. Glimelius Ⅰ, Edstrom A, Amini RM, Fischer M, Nilsson G, Sundstrom C, Enblad G, Molin D. IL-9 expression contributes to the cellular composition in Hodgkin lymphoma. Eur J Haematol.2006 Apr;76(4):278-83.
    4. Gruss HJ, Brach MA, Drexler HG, Bross KJ, Herrmann F. Interleukin 9 is expressed by primary and cultured Hodgkin and Reed-Sternberg cells. Cancer Res.1992 Feb 15;52(4):1026-31.
    5. Gu D, Fan Q, Zhang X, Xie J. A role for transcription factor STAT3 signaling in oncogene smoothened-driven carcinogenesis. J Biol Chem.2012 Nov 2;287(45):38356-66.
    6. Li S, Priceman SJ, Xin H, Zhang W, Deng J, Liu Y, Huang J, Zhu W, Chen M, Hu W, Deng X, Zhang J, Yu H, He G. Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS One.2013 Dec 6;8(12):e81657.
    7. Huang C, Yang G, Jiang T, Cao J, Huang KJ, Qiu ZJ. Down-regulation of STAT3 expression by vector-based small interfering RNA inhibits pancreatic cancer growth. World J Gastroenterol.2011 Jul 7;17(25):2992-3001.
    8. Kim MS, Cho KA, Cho YJ, Woo SY. Effects of interleukin-9 blockade on chronic airway inflammation in murine asthma models. Allergy Asthma Immunol Res.2013 Jul;5(4):197-206.
    9. Knoops L, Renauld JC. IL-9 and its receptor:from signal transduction to tumorigenesis. Growth Factors.2004 Dec;22(4):207-15.
    10. Gounni AS, Hamid Q, Rahman SM, Hoeck J, Yang J, Shan L. IL-9-mediated induction of eotaxinl/CCL11 in human airway smooth muscle cells. J Immunol.2004 Aug 15;173(4):2771-9.
    11. Demoulin JB, Uyttenhove C, Van Roost E, DeLestre B, Donckers D, Van Snick J, Renauld JC. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol.1996 Sep;16(9):4710-6.
    12. Li H, Rostami A. IL-9:basic biology, signaling pathways in CD4+T cells and implications for autoimmunity. J Neuroimmune Pharmacol.2010 Jun;5(2):198-209.
    13. Mikami N, Miyagi Y, Sueda K, Takatsuji M, Fukada S, Yamamoto H, Tsujikawa K. Calcitonin gene-related peptide and cyclic adenosine 5'-monophosphate/protein kinase A pathway promote IL-9 production in Th9 differentiation process. J Immunol.2013 Apr 15;190(8):4046-55.
    14. Hassel C, Zhang B, Dixon M, Calvi BR. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development.2014 Jan;141(1):112-23.
    15. Lastauskiene E, Zinkeviciene A, Citavicius D. Ras/PKA signal transduction pathway participates in the regulation of Saccharomyces cerevisiae cell apoptosis in an acidic environment. Biotechnol Appl Biochem.2014 Jan-Feb;61(1):3-10.
    16. Futosi K, Fodor S, Mocsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transductionpathways. Int Immunopharmacol.2013 Dec; 17(4):1185-97.
    17. Chuang JY, Chang AC, Chiang IP,Tsai MH,Tang CH. Apoptosis signal-regulating kinase 1 is involved in WISP-1-promoted cell motility in human oral squamous cell carcinoma cells. PLoS One.2013 Oct 21;8(10):e78022.
    18. Li C, Chang DL, Yang Z, Qi J, Liu R, He H, Li D, Xiao ZX. Pinl modulates p63a protein stability in regulation of cell survival, proliferation and tumorformation. Cell Death Dis.2013 Dec 5;4:e943.
    19. Duensing S, Darr S, Cuevas R, Melquiot N, Brickner AG, Duensing A, Munger K. Tripeptidyl Peptidase II Is Required for c-MYC-Induced Centriole Overduplication and a Novel Therapeutic Target in c-MYC-Associated Neoplasms. Genes Cancer.2010 Sep;1(9):883-92.
    20. Neron S, Roy A, Dumont N, Dussault N. Effective in vitro expansion of CD40-activated human B lymphocytes in a defined bovine protein-free medium. J Immunol Methods.2011 Aug 31;371(1-2):61-9.
    21. Wei X,Li Y, Zhang S,Gao X,Luo Y, Gao M. Ultrasound Targeted Apoptosis Imaging in Monitoring Early Tumor Response of Trastuzumab in a Murine Tumor Xenograft Model of Her-2-Positive Breast Cancerl. Transl Oncol.2014 Mar 4. pii:S1936-5233(14)00016-3.
    22. Creeley CE, Olney JW. Drug-Induced Apoptosis:Mechanism by which Alcohol and Many Other Drugs Can Disrupt Brain Development. Brain Sci.2013 Sep 1;3(3):1153-1181.
    1. Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta.2014 Feb 22;1845(2):255-265.
    2. Offer SM, Butterfield GL,Jerde CR,Fossum CC, Wegner NJ, Diasio RB. microRNAs miR-27a and miR-27b Directly Regulate Liver Dihydropyrimidine Dehydrogenase Expression through Two Conserved Binding Sites. Mol Cancer Ther.2014 Mar; 13 (3):742-51.
    3. Heman-Ackah SM, Hallegger M, Rao MS, Wood MJ. RISC in PD:the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis.
    4. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci.2013 Nov 12;6:37.
    5. Wang W, Lin H, Zhou L, Zhu Q, Gao S, Xie H, Liu Z, Xu Z, Wei J, Huang X, Zheng S. MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. Eur J Surg Oncol.2013 Nov 19. pii:S0748-7983(13)00912-8.
    6. ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinformatics.2013 Dec;11(6):354-67.
    7. D'Ippolito E, Iorio MV. MicroRNAs and triple negative breast cancer. Int J Mol Sci.2013 Nov 11;14(11):22202-20.
    8. Hu QY, Jiang H, Su J, Jia YQ. MicroRNAs as biomarkers for hepatocellular carcinoma:a diagnostic meta-analysis. Clin Lab.2013;59(9-10):1113-20.
    9. John K, Wu J, Lee BW, Farah CS. MicroRNAs in Head and Neck Cancer. Int J Dent.2013;2013:650218.
    10. Katchy A, Williams C. Profiling of estrogen-regulated microRNAs in breast cancer cells. J Vis Exp.2014 Feb 21;(84):e51285.
    11. Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, Strano S, Yarden Y. Tumor Suppressor MicroRNAs:a novel non-coding alliance against cancer. FEBS Lett.2014 Mar 26. pii:S0014-5793(14)00252-X.
    12. Klase ZA, Sampey GC, Kashanchi F. Retrovirus infected cells contain viral microRNAs. Retrovirology.2013 Feb 7;10:15. doi: 10.1186/1742-4690-10-15.
    13. Tuo J, Shen D, Yang HH, Chan CC. Distinct microRNA-155 expression in the vitreous of patients with primary vitreoretinallymphoma and uveitis. Am J Ophthalmol.2014 Mar;157(3):728-34.
    14. Hu S,Zhu W, Zhang LF, Pei M, Liu MF. MicroRNA-155 broadly orchestrates inflammation-induced changes of microRNA expression in breast cancer. Cell Res.2014 Feb;24(2):254-7.
    15. Xu TP, Zhu CH, Zhang J, Xia R, Wu FL, Han L, Shen H, Liu LX, Shu YQ. MicroRNA-155 expression has prognostic value in patients with non-small cell lung cancerand digestive system carcinomas. Asian Pac J Cancer Prev.2013;14(12):7085-90.
    16. Onyeagucha BC, Mercado-Pimentel ME, Hutchison J, Flemington EK, Nelson MA. S100P/RAGE signaling regulates microRNA-155 expression via AP-1 activation in colon cancer. Exp Cell Res.2013 Aug 1;319(13):2081-90.
    17. Li P, Grgurevic S, Liu Z, Harris D, Rozovski U, Calin GA, Keating MJ, Estrov Z. Signal transducer and activator of transcription-3 induces MicroRNA-155 expression in chronic lymphocytic leukemia. PLoS One.2013 Jun 4;8(6):e64678.
    18. Zhou KS, Yu Z, Yi SH, Li ZJ, Li YF, An G, Zou DH, Qi JY, Zhao YZ, Qiu LG. The expression of microRNA-155 and microRNA-146a and its'clinical value in chronic lymphoproliferative disorders. Zhonghua Xue Ye Xue Za Zhi.2011 Oct;32(10):656-9.
    19. O'Connell RM1,Rao DS, Chaudhuri AA,Boldin MP,Taganov KD,Nicoll J,Paquette RL, Baltimore D. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med.2008 Mar 17;205(3):585-94.
    20. Wagner AE, Boesch-Saadatmandi C, Dose J, Schultheiss G, Rimbach G. Anti-inflammatory potential of allyl-isothiocyanate--role of Nrf2, NF-(κ) B and microRNA-155. J Cell Mol Med.2012 Apr;16(4):836-43.
    21. Motoyama K, Inoue H, Mimori K, Tanaka F, Kojima K, Uetake H, Sugihara K, Mori M. Clinicopathological and prognostic significance of PDCD4 and microRNA-21 in human gastric cancer. Int J Oncol.2010 May;36(5):1089-95.
    22. Lu Y, Yue X, Cui Y, Zhang J, Wang K. MicroRNA-124 suppresses growth of human hepatocellular carcinoma by targeting STAT3. Biochem Biophys Res Commun.2013 Nov 29;441(4):873-9.
    23. Nagata K, Hama I, Kiryu-Seo S, Kiyama H. microRNA-124 is down regulated in nerve-injured motor neurons and it potentially targets mRNAs for KLF6 and STAT3. Neuroscience.2014 Jan 3;256:426-32.
    24. Luo F, Xu Y, Ling M, Zhao Y, Xu W, Liang X, Jiang R, Wang B, Bian Q, Liu Q. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol.2013 Nov 15;273(1):27-34.
    25. Huang C, Li H, Wu W, Jiang T, Qiu Z. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol Rep.2013 Sep;30(3):1223-30.
    26. Zhao XD, Zhang W, Liang HJ, Ji WY. Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS One.2013;8(2):e56395.
    27. Lin S, Li S, Chen Z, He X, Zhang Y,Xu X, Xu M, Yuan G. Formation, recognition and bioactivities of a novel G-quadruplex in the STAT3 gene. Bioorg Med Chem Lett.2011 Oct 1;21(19):5987-91.
    28. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, Taccioli C, Zanesi N, Alder H, Hagan JP, Munker R, Volinia S,Boccadoro M, Garzon R, Palumbo A, Aqeilan RI, Croce CM. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A.2008 Sep 2;105(35):12885-90.
    29. Dogar AM, Semplicio G, Guennewig B, Hall J. Multiple microRNAs Derived from Chemically Synthesized Precursors Regulate Thrombospondin 1 Expression. Nucleic Acid Ther.2014 Apr;24(2):149-59.
    30. Ibanez-Ventoso C1, Driscoll M. MicroRNAs in C. elegans Aging:Molecular Insurance for Robustness? Curr Genomics.2009 May; 10(3):144-53.
    31. Kunder R, Jalali R, Sridhar E, Moiyadi A, Goel N, Goel A, Gupta T, Krishnatry R, Kannan S, Kurkure P, Deopujari C, Shetty P,Biyani N, Korshunov A, Pfister SM, Northcott PA, Shirsat NV. Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro Oncol.2013 Dec; 15(12):1644-51.
    32. Gu W, Shou J, Gu S, Sun B, Che X. Identifying Hedgehog Signaling Specific MicroRNAs in Glioblastomas. Int J Med Sci.2014 Mar 21;11(5):488-93.
    33. Sabarinathan R, Wenzel A,Novotny P, Tang X, Kalari KR, Gorodkin J. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-relatedgenes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS One.2014 Jan 8;9(1):e82699.
    34. Hede K. MicroRNAs as Onco-miRs, drivers of cancer. J Natl Cancer Inst.2010 Sep 8; 102(17):1306-8.
    (1)Chang HC, Han L, Jabeen R, Carotta S, Nutt SL and Kaplan MH:PU.l regulates TCR expression by modulating GATA-3 activity. J Immunol 183:4887-4894,2009.
    (2)Chang HC, Zhang S, Thieu VT, Slee RB, Bruns HA, Laribee RN, Klemsz MJ and Kaplan MH:PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity 22:693-703,2005.
    (3)Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH:The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527-534,2010.
    (4)Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T:Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33:192-202,2010.
    (5)Ahyi AN, Chang HC, Dent AL, Nutt SL and Kaplan MH:IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. J Immunol 183:1598-1606,2009.
    (6)Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C, Yu P, Arpaia E, Mak TW, Kamradt T and Lohoff M:The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958-966,2007.
    (7)Lohoff M, Mittrucker HW, Prechtl S, Bischof S, Sommer F, Kock S, Ferrick DA, Duncan GS, Gessner A and Mak TW:Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci U S A 99:11808-11812,2002.
    (8)Hultner L, Kolsch S, Stassen M, Kaspers U, Kremer JP, Mailhammer R, Moeller J, Broszeit H and Schmitt E:In activated mast cells, IL-1 up-regulates the production of several Th2-related cytokines including IL-9. J Immunol 164:5556-5563,2000.
    (9)Stassen M, Arnold M, Hultner L, Muller C, Neudorfl C, Reineke T and Schmitt E: Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J Immunol 164:5549-5555,2000.
    (10)Stassen M, Muller C, Arnold M, Hultner L, Klein-Hessling S, Neudorfl C, Reineke T, Serfling E and Schmitt E:IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide:NF-kappa B is decisively involved in the expression of IL-9. J Immunol 166:4391-4398,2001.
    (11)Stassen M, Klein M, Becker M, Bopp T, Neudorfl C, Richter C, Heib V, Klein-Hessling S, Serfling E, Schild H and Schmitt E:p38 MAP kinase drives the expression of mast cell-derived IL-9 via activation of the transcription factor GATA-1. Mol Immunol 44:926-933,2007.
    (12)Demoulin JB, Louahed J, Dumoutier L, Stevens M and Renauld JC:MAP kinase activation by interleukin-9 in lymphoid and mast cell lines. Oncogene 22:1763-1770,2003.
    (13)Cosmi L, Liotta F, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Lasagni L, Vanini V, Romagnani P, Maggi E, Annunziato F and Romagnani S:Th2 cells are less susceptible than Thl cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood 103:3117-3121,2004.
    (14)Druez C, Coulie P, Uyttenhove C and Van Snick J:Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol 145:2494-2499,1990.
    (15)Abdelilah S, Latifa K, Esra N, Cameron L, Bouchaib L, Nicolaides N, Levitt R and Hamid Q:Functional expression of IL-9 receptor by human neutrophils from asthmatic donors:role in IL-8 release. J Immunol 166:2768-2774,2001.
    (16)Kearley J, Erjefalt JS, Andersson C, Benjamin E, Jones CP, Robichaud A, Pegorier S, Brewah Y, Burwell TJ, Bjermer L, Kiener PA, Kolbeck R, Lloyd CM, Coyle AJ and Humbles AA:IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am J Respir Crit Care Med 183:865-875,2011.
    (17)Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH and Noelle RJ:IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206:1653-1660,2009.
    (18)Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX and Noelle RJ:Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997-1002,2006.
    (19)Knoops L, Louahed J and Renauld JC:IL-9-induced expansion of B-lb cells restores numbers but not function of B-1 lymphocytes in xid mice. J Immunol 172:6101-6106,2004.
    (20)Vink A, Warnier G, Brombacher F and Renauld JC:Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J Exp Med 189:1413-1423,1999.
    (21)Dugas B, Renauld JC, Pene J, Bonnefoy JY, Peti-Frere C, Braquet P, Bousquet J, Van Snick J and Mencia-Huerta JM:Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur J Immunol 23:1687-1692,1993.
    (22)Petit-Frere C, Dugas B, Braquet P and Mencia-Huerta JM:InterIeukin-9 potentiates the interleukin-4-induced IgE and IgGl release from murine B lymphocytes. Immunology 79:146-151,1993.
    (23)Fawaz LM, Sharif-Askari E, Hajoui O, Soussi-Gounni A, Hamid Q and Mazer BD:Expression of IL-9 receptor alpha chain on human germinal center B cells modulates IgE secretion. J Allergy Clin Immunol 120:1208-1215,2007.
    (24)Chen J, Petrus M, Bryant BR, Phuc Nguyen V, Stamer M, Goldman CK, Bamford R, Morris JC, Janik JE and Waldmann TA:Induction of the IL-9 gene by HTLV-Ⅰ Tax stimulates the spontaneous proliferation of primary adult T-cell leukemia cells by a paracrine mechanism. Blood 111:5163-5172,2008.
    (25)Demoulin JB, Louahed J, Dumoutier L, Stevens M and Renauld JC:MAP kinase activation by interleukin-9 in lymphoid and mast cell lines. Oncogene 22:1763-1770,2003.
    (26)Chen J, Petrus M, Bryant BR, Nguyen VP, Goldman CK, Bamford R, Morris JC, Janik JE and Waldmann TA:Autocrine/paracrine cytokine stimulation of leukemic cell proliferation in smoldering and chronic adult T-cell leukemia. Blood 116:5948-56,2010.
    (27)Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I, Rassidakis GZ,Zhang W, Fujio Y, Kunisada K, Hamilton SR and Amin HM:Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines:inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol 167,969-980,2005.
    (28)Daheron L, Opitz SL, Zaehres H, Lensch MW, Andrews PW, Itskovitz-Eldor J and Daley GQ:LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22:770-778,2004.
    (29)Kidder BL, Yang J and Palmer S:STAT3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3:e3932,2008.
    (30)Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL and Ng HH: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106-1117,2008.
    (31)Ying QL, Nichols J, Chambers I and Smith A:BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281-292,2003.
    (32)Ramana CV, Chatterjee-Kishore M, Nguyen H and Stark GR:Complex roles of STAT1 in regulating gene expression. Oncogene 19:2619-2627,2000.
    (33)Bourillot PY, Aksoy I, Schreiber V, Wianny F, Schulz H, Hummel O, Hubner N and Savatier P:Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells 27:1760-177,2009.
    (34)Yu Z, Zhang W and Kone BC:Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor κB. Biochem J 367:97-105,2002.
    (35)Zhang X, Wrzeszczynska MH, Horvath CM and Darnell JE:Jr Interacting regions in STAT3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol 19:7138-7146,1999.
    (36)Giraud S, Bienvenu F, Avril S, Gascan H, Heery DM and Coqueret O:Functional interaction of STAT3 transcription factor with the coactivator NcoA/SRCla. J Biol Chem 277:8004-8011,2002.
    (37)Youn MY, Yoo HS, Kim MJ, Hwang SY, Choi Y, Desiderio SV and Yoo JY: hCTR9, a component of Pafl complex, participates in the transcription of interleukin 6-responsive genes through regulation of STAT3-DNA interactions. J Biol Chem 282:34727-34734,2007.
    (38)Ni Z and Bremner R:Brahma-related gene 1-dependent STAT3 recruitment at IL-6-inducible genes. J Immunol 178:345-351,2007.
    (39)Giraud S, Hurlstone A, Avril S and Coqueret O:Implication of BRG1 and cdk9 in the STAT3-mediated activation of the p21wafl gene. Oncogene 23:7391-7398,2004.
    (40)Ho L, Jothi R, Ronan JL, Cui K, Zhao K and Crabtree GR:An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 106:5187-5191,2009.
    (41)Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J and Crabtree GR:An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA 106:5181-5186,2009.
    (42)Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B, Gentile L, Mann M and Scholer HR:Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141:943-955,2010.
    (43)Guiter C, Dusanter-Fourt Ⅰ, Copie-Bergman C, Boulland ML, Le Gouvello S, Gaulard P, Leroy K, Castellano F:Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104:543-549,2004.
    (44)Gerber M and Shilatifard A:Transcriptional elongation by RNA polymerase II and histone methylation. J Biol Chem 278:26303-26306,2003.
    (45)Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H, Hubner N, Doss MX, Sachinidis A, Hescheler J,Iacone R, Anastassiadis K, Stewart AF, Pisabarro MT, Caldarelli A, Poser I, Theis M and Buchholz F:A genome-scale RNAi screen for Oct4 modulators defines a role of the Pafl complex for embryonic stem cell identity. Cell Stem Cell.4:403-415,2009.
    (46)Ponnusamy MP, Deb S, Dey P, Chakraborty S, Rachagani S, Senapati S and Batra SK:RNA polymerase II associated factor 1/PD2 maintains self-renewal by its interaction with Oct3/4 in mouse embryonic stem cells. Stem Cells 27:3001-3011,2009.
    (47)Lessard JA and Crabtree GR:Chromatin regulatory mechanisms in pluripotency. Annu Rev Cell Dev Biol 6:503-532,2010.
    (48)Skinnider BF,Elia AJ,Gascoyne RD, Patterson B, Trumper L, Kapp U and Mak TW:Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 99(2):618-626,2002.
    (49)Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, Takahashi H, Liang J, Gutierrez-Cruz G, Zang C, Peng W, O'Shea JJ and Kanno Y:Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 32:840-51,2010.
    (50)Elo LL, Jarvenpaa H, Tuomela S, Raghav S, Ahlfors H, Laurila K, Gupta B, Lund RJ, Tahvanainen J, Hawkins RD, Oresic M, Lahdesmaki H, Rasool O, Rao KV, Aittokallio T and Lahesmaa R:Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity 32:852-62,2010.
    (51)Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Nakanishi K, Yoshida N, Kishimoto T and Akira S:Essential role of STAT6 in IL-4 signalling. Nature 380:627-30,1996.
    (52)Ansel KM, Djuretic I, Tanasa B and Rao A:Regulation of Th2 differentiation and 114 locus accessibility. Annu Rev Immunol 24:607-56,2006.
    (53)Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL and Kaplan MH:The transcription factor PU.l is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527-34,2010.
    (54)Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M and Kuchroo VK:IL-4 inhibits TGF-beta-induced Foxp3+T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9:1347-55,2008.
    (55)Perumal NB and Kaplan MH:Regulating 119 transcription in T helper cells. Trends Immunol 32:146-150,2011.
    (56)Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm and Stockinger B:Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341-1346,2008.
    (57)Kaplan MH, Daniel C, Schindler U and Grusby MJ:STAT proteins control lymphocyte proliferation by regulating p27Kipl expression. Mol Cell Biol 18:1996-2003,1998.
    (58)Zhu J, Guo L, Min B, Watson CJ, Hu-Li J, Young HA, Tsichlis PN and Paul WE: Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity 16:733-44,2002.
    (59)Kaplan MH, Wurster AL, Smiley ST and Grusby MJ:STAT6-dependent and-independent pathways for IL-4 production. J Immunol 163:6536-40,1999.
    (60)Kaplan MH, Whitfield JR, Boros DL and Grusby MJ:Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol 160:1850-1856,1998.
    (61)Bruns HA, Schindler U and Kaplan MH:Expression of a constitutively active STAT6 in vivo alters lymphocyte homeostasis with distinct effects in T and B cells. J Immunol 170:3478-3487,2003.
    (62)Wurster AL, Rodgers VL, White MF, Rothstein TL and Grusby MJ: Interleukin-4-mediated protection of primary B cells from apoptosis through STAT6-dependent up-regulation of Bcl-xL. J Biol Chem 277:27169-27175,2002.
    (63)Takeda K, Kamanaka M, Tanaka T, Kishimoto T and Akira S:Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J Immunol 157:3220-3222,1996.
    (64)Martinez FO, Helming L and Gordon S:Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451-483,2009.
    (65)Huber S, Hoffmann R, Muskens F and Voehringer D:Alternatively activated macrophages inhibit T-cell proliferation by STAT6-dependent expression of PD-L2. Blood 116:3311-3320,2010.
    (66)Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, Barak Y, Schwabe J and Nagy L:STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity 33:699-712,2010.
    (67)Yao Y, Li W, Kaplan MH and Chang CH:Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. J Exp Med 01:1899-1903,2005.
    (68)Jeres A, Clemente MJ, Makishima H, Koskela H, Leblanc F, Peng Ng K, Olson T, Przychodzen B, Afable M, Gomez-Segui I, Guinta K, Durkin L, Hsi ED, McGraw K, Zhang D, Wlodarski MW, Porkka K, Sekeres MA, List A, Mustjoki S, Loughran TP and Maciejewski JP:STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 120:3048-3057,2012.
    (69)Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, Shanker S, Ferrajoli A, Keating MJ and Estrov Z:STAT3 is constitutively phpsphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood 115:2852-2863,2010.
    (70)Ding BB, Yu JJ, Yu RY, Mendez LM, Shaknovich R, Zhang Y, Cattoretti G and Ye BH:Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 111:1515-1523,2008.
    (71)Ritz O, Guiter C, Castellano F, Dorsch K, Melzner J, Jais JP, Dubois G, Gaulard P, Moller P and Leroy K:Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 114:1236-1242,2009.
    (72)Kis LL, Gerasimcik N, Salamon D, Persson EK, Nagy N, Klein G, Severinson E and Klein E:STAT6 signaling pathway activated by the cytokines IL-4 and IL-13 induces expression of the Epstein-Barr virus-encoded protein LMP-1 in absence of EBNA-2:implications for the type II EBV latent gene expression in Hodgkin lymphoma. Blood 117:165-174,2011.
    (73)Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr:STAT3 as an oncogene. Cell 98:295-303,1999.
    (74)Bowman T, Garcia R, Turkson J and Jove R:STATs in oncogenesis. Oncogene 19:2474-2488,2000.
    (75)Haura EB, Turkson J and Jove R:Mechanisms of disease:Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol 2:315-24,2005.
    (76)Frank DA, Mahajan S and Ritz J:B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 100:3140-3148,1997.
    (77)Ding BB, Yu JJ, Yu RY, Mendez LM, Shaknovich R, Zhang Y, Cattoretti G and Ye BH:Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 111:1515-1523,2008.
    (78)Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J and Jove R:Constitutive activation of STAT3 in human proSTATe tumors and cell lines:direct inhibition of STAT3 signaling induces apoptosis of proSTATe cancer cells. Cancer Res 62:6659-6666,2002.
    (79)Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R, Eweis I, Wloch M, Livingston S, Seijo E, Cantor A, Lee JH, Beam CA, Sullivan D, Jove R and Muro-Cacho CA:Activation of STAT3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12:20-28,2006.
    (80)Scholz A, Heinze S, Detjen KM, Peters M, Welzel M, Hauff P, Schirner M, Wiedenmann B and Rosewicz S:Activated signal transducer and activator of transcription 3 (STAT3) supports the malignant phenotype of human pancreatic cancer. Gastroenterology 125:891-905,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700