基于突触可塑性的加味四逆散对睡眠剥夺大鼠学习记忆障碍的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
学习和记忆是脑的最高机能——智能的重要组成部分。学习指个体对新知识的获得过程,而记忆是指对这种获得知识的编码、巩固、检索,或者说记忆是刺激消失后在心理上保持下来的代表原刺激的讯息。睡眠和学习记忆能力关系密切。而睡眠障碍已成为困扰当代人群日常工作、学习和生活的一种常见因素。因此,本课题以睡眠剥夺复制学习记忆障碍模型,观察加味四逆散调控模型动物学习记忆能力的神经生物学机制。
     上篇理论研究
     对中医经典文献、历代医家专著和期刊文献涉及学习记忆的资料,进行整理、分析、归纳和总结。从五藏神与学习记忆的关系入手研究,侧重论述了心、肝和肾在学习与记忆过程中的作用。心神、肝魂和肾志调控学习记忆过程,依赖于心主血脉、肝主疏泄和肾藏精的功能或物质基础。在心神“任物“的主宰下,肝魂和肾志神相互作用、相互影响调控学习的获得、记忆的储存和再现过程。睡眠一觉醒周期受五藏神的调控,而睡眠剥夺主要影响了心主神明、肝藏魂和肾藏志的功能,导致学习记忆能力障碍。
     下篇实验研究
     实验研究一SD大鼠一般状况及学习记忆成绩的评价
     方法:应用Y迷宫评价各组大鼠学习记忆能力的状况,并对各组一般状况进行观察和记录。结果:①体重变化:在SD72h和168h时点,与模型组比较,四逆散组和加味四逆散组大鼠体重减轻量有统计学差异(p<0.05);与其余四组体重量呈现减少的表现相反,对照组大鼠体重量呈现增加的表现。②血清酶学变化:模型组大鼠血清LDH较对照组明显增多(p<0.05)。加味四逆散组血清LDH较模型组明显降低(p<0.01)。③SD168h后,大鼠Y迷宫正确百分率较造模前明显下降(p<0.05),与对照组比较也明显下降(p<0.05)。在三个中药复方中,加味四逆散能明显增加模型大鼠迷宫成绩(p<0.05),而四逆散、生慧汤对模型大鼠迷宫成绩无明显变化。结论:①SD导致大鼠学习记忆能力下降,并出现躯体疲劳;②加味四逆能明显改善SD致学习记忆能力障碍,而四逆散和生慧汤对SD致学习记忆能力障碍改变不明显
     实验研究二SD大鼠行为学变化及加味四逆散对其调控作用
     方法:应用旷场和高架十字迷宫评价各组大鼠精神行为的变化。结果:①OFT变化:在水平活动上,各组大鼠SD168h后,模型组在总穿格次数上明显高于对照组(p<0.01);模型组在中央格停留时间明显高于对照组(p<0.01);模型组在中央格停留次数明显高于对照组(p<0.05),而生慧汤组和加味四逆散组明显低于模型组(p<0.05)。在垂直活动上,模型组站立次数明显高于对照组(p<0.01),加味四逆散组明显低于模型组(p<0.01);生慧汤组也低于模型组(p<0.05)。②EPM变化:在水平活动上,模型组在进入开放臂时间百分比上明显高于对照组(p<0.05),而加味四逆散组明显低于模型组(p<0.05)。在垂直活动上,模型组向下探究时间明显高于对照组(p<0.05)。结论:①SD大鼠减少了焦虑样行为和增强了探索行为。②加味四逆散能显著改善SD所致大鼠焦虑样行为减少和探索行为增强的异常变化。生慧汤和四逆散仅能部分改善SD所致大鼠焦虑样行为减少和探索行为增强的异常变化。
     实验研究三SD大鼠PFC和海马CA3区突触界面结构的变化及加味四逆散对其调节作用
     方法:采用透射电镜技术,观察各组大鼠PFC和海马CA3区神经元突触界面超微结构的变化。结果:①PFC神经元突触界面超微结构的变化:与对照组比较,模型组大鼠PFC神经元突触间隙明显变宽(P<0.05),PSD厚度明显变薄(P<0.05)。与模型组比较,加味四逆散组大鼠PFC神经元、PSD厚度明显变厚(P<0.05)。②海马CA3区神经元突触界面超微结构的变化:与对照组比较,模型组大鼠海马CA3区神经元突触PSD厚度明显变薄(P<0.05),突触间隙厚度变宽(P<0.05)。与模型组比较,四逆散组和生慧汤组大鼠海马CA3区神经元突触间隙厚度明显变窄(P<0.05)。与模型组比较,加味四逆散组大鼠海马CA3区神经元PSD厚度明显增厚(P<0.05),突触间隙厚度明显变窄(P<0.05)。结论:①加味四逆散能增加SD大鼠PFC和海马CA3区神经元突触PSD厚度、调整海马CA3区突触间隙宽度,影响突触结构可塑性,增加突触传递效能。②四逆散和生慧汤仅能调整海马CA3区神经元突触间隙宽度,对突触传递效能影响低于加味四逆散组。
     实验研究四SD大鼠PFC和海马CA3区NMDA和EphB2受体蛋白质表达的变化及加味四逆散对其调节作用
     方法:采用Western blot技术,观察各组大鼠PFC和海马CA3区NMDA和EphB2受体蛋白质表达的变化。结果:①NMDA受体NR2A亚基蛋白质表达变化:与对照组比较,SD168h后大鼠PFC脑区NMDA受体MNR2A亚基蛋白质的表达明显减少(p<0.05)。与模型组比较,加味四逆散组大鼠PFC脑区NMDA受体MNR2A亚基蛋白质的表达明显增多(p<0.05)。与四逆散组比较,加味四逆散组大鼠PFC脑区NMDA受体MNR2A亚基蛋白质的表达明显增多(p<0.05)。②NMDA受体NR2B亚基蛋白质表达变化:与对照组比较,SD168h后,大鼠PFC和海马CA3区NMDA受体NR2B蛋白质的表达明显减少(p<0.05)。与模型组比较,加味四逆散组大鼠PFC和海马CA3区NMDA受体NR2B蛋白质的表达均明显增多(p<0.05)。与四逆散组比较,加味四逆散组大鼠PFC脑区NMDA受体NR2B蛋白质的表达均明显增多(p<0.05)。③NMDA受体NR2B (Tyr1472)蛋白质表达变化:与对照组比较,SD168h后大鼠PFC脑区NMDA受体NR2B (Tyr1472)蛋白质的表达明显减少(p<0.05)。与模型组比较,加味四逆散组大鼠PFC脑区NMDA受体NR2B (Tyr1472)蛋白质的表达均明显增多(p<0.05)。各组大鼠海马CA3区NMDA受体NR2B (Y1472)蛋白质的表达比较均无明显变化。④EphB2受体蛋白质表达变化:与对照组比较,SD168h后,大鼠PFC脑区EphB2受体蛋白质的表达明显减少(p<0.05)。与模型组比较,四逆散组、生慧汤组、加味四逆散组大鼠PFC脑区EphB2受体蛋白质的表达表达均明显增加(p<0.05)。各组大鼠海马CA3区EphB2受体蛋白质的表达比较均无明显变化。结论:①加味四逆散能上调SD大鼠PFC区的学习记忆相关受体NR2B、NR2B (Tyr1472)和EphB2蛋白质的表达;并上调海马CA3区NR2B受体蛋白质的表达。②四逆散和生慧汤仅能上调SD大鼠PFC区的EphB2蛋白质的表达。
     实验研究五SD大鼠海马CA1区NMDA和EphB2受体基因表达的变化及加味四逆散对其调节作用
     方法:采用实时荧光定量PCR技术,观察各组大鼠海马CA1区中枢神经受体基因表达的变化。结果:与对照组比较,模型组大鼠海马CA1区NMDA受体NR2B亚基和EphB2的mRNA表达明显减少(p<0.01), NMDA受体NR2A基因表达无明显变化。与模型组比较,加味四逆散组能明显增加大鼠海马CA1区NMDA受体NR2A, NR2B和EphB2的mRNA表达(p<0.01)。与模型组比较,生慧汤组能明显增加大鼠海马CA1区NMDA受体NR2A的mRNA表达(p<0.01)。结论:加味四逆散能明显上调SD大鼠海马CA1区学习记忆相关中枢神经受体基因表达的变化,而四逆散和生慧汤对其影响不明显。
     小结
     对研究数据进行分析,可以总结为四点:一是加味四逆散(疏肝补肾养心法)对SD大鼠从行为学、形态学、基因表达、蛋白质表达等多个层面进行调控,能明显改善SD大鼠学习记忆成绩。四逆散(疏肝法)和生慧汤(补肾养心法)仅影响SD大鼠在形态学、蛋白质表达等部分层面的部分靶点,对SD大鼠学习记忆成绩改变无统计学上的影响。二是PFC、海马CA1和CA3亚区相比较来说,加味四逆散对SD大鼠PFC区影响最为明显,特别是对PFC区学习记忆相关受体蛋白质表达的变化。三是加味四逆散(疏肝补肾养心法)改善SD大鼠学习记忆能力障碍,与增加SD大鼠PFC和海马CA3神经元PSD厚度,增加PFC区NMDA受体NR2B亚基和NR2B (Y1472)蛋白质的表达,上调海马CA3区NMDA受体NR2B亚基和EphB2受体蛋白质的表达,上调海马CA1区NR2B和EphB2的mRNA的表达有关。四是疏肝法和补肾养心法都参与了学习记忆过程的调控,是调控学习记忆过程的重要参与者,但不能独立发挥作用。
Learning and memory is the highest function of the brain——an important component of intelligence. To Individual, learning refers to the process of acquisition of new knowledge. Memory is on access to knowledge encoding, consolidation, retrieval. In advanced animals and humans, learning and memory are the most important kind of method in order to adapt to the environment. Sleep is closely related to learning and memory.ln this subject, the researcher would observe the changes of the ability of learning and memory of sleep deprived rats and the effect of three Chinese formulas.
     PartⅠthe Theoretical Study
     By literature study, the relation of Chinese Five Viscera containing God.and learning and memory was discussed.The narrow god of Chinese medicine can be divided into five directional gods and Emotions. The God of Chinese Five Viscera influence each other, and regulate the process of learning and memory. Sleep-wake cycle is controlled by the God of Chinese Five Viscera.Sleep deprivation can damage the function of the God of Chinese Five Viscera.
     PartⅡExperimental Studies
     In this part, we focus on the researches of mechanism of molecular biology of learning and memory capacity changes caused by Sleep deprivation. The learning and memory capacity through establishing animal models of Sleep deprivation was evaluated. Using western blot and fluorescence quantitative PCR methods, the changes of protein and gene xpression of NMDA and EphB2 receptors in different brain regions of model rats were observed. The changes of the ultrastructure of rat prefrontal cortex and hippocampus were observed using transmission electron microscopy. Different Chinese herbs were used to intervene for animal models, and their roles in medicine mechanisms were investigated. Main content and the results are as follows:
     Experiment One:Evaluation of the Abilities of Learning and Memory of Sleep Deprived Rats.
     Objective:To observe the changes of the ability of learning and memory of sleep deprived rats and the effect of three Chinese formulas.Methods:Changes of learning and memory capacity were observed using Y maze.Results:Compared with the control group, the Y maze correct percentage in the model group obviously decreased (P<0.05). Compared with the model group, the Jiawei Sini Powder group can obviously increase the Y maze correct response rate(P<0.05).
     Conclusion:Jiawei Sini Powder could improve sleep deprived rats'ability of learning and memory.
     Experiment Two:Study of Effect of Jiawei Sini Powder on the Changes of behaviour of Sleep Deprived Rats.
     Objective:To investigate the behavioral changes of 168h of sleep deprived rats and the effect of three Chinese formulas(Sini Powder, Shenghui Decoction and Jiawei Sini Powder).Methods:The rats were deprived sleep for 168 hours using multi-platform method. Experimental rats were randomly divided into the control group, the model group, the Sini Powder group, the Shenghui Decoction group and the Jiawei Sini Powder group, fifteen in each.Corresponding medicines and distilled water were given to them every day.The intervention groups were fed with Sini Powder,Shenghui Decoction and jiawei Sini Powder, and the dosages are 2.5g/kg-1,13.75g/kg-1,16.25g·kg-1.To observe the behavioral changes of rats using open field and elevated plus-maze test.Results:After 168h of sleep deprivation, rats made significantly more entries into the open arms and inner zone than control group in the elevated plus maze and standard open field tests. Rats of Jiawei Sini Powder group spent significantly less time in the open arms and inner zone than sleep deprivation group.Conclusion:The study indicates Jiawei Sini Powder can significantly influence abnormal changes of anxiety-like behavior and explore behavior of sleep deprived rats.
     Experiment Three:Experimental Study of Effect of Jiawei Sini Powder on the Changes of Synaptic Plasticity in PFC and hippocampus in Sleep Deprived Rats.
     Objective:To observe the effect of jiawei Sini Powder on learning and memory and the changes of synaptic plasticity in PFC and hippocampal CA3 subfield in sleep deprived rats. Methods:The changes of the ultrastructure of rat prefrontal cortex was observed using transmission electron microscopy.Results:Compared with control group, the percentage of correct responses of model group was significantly decreased (P<0.05).The percentage of correct responses of Jiawei Sini Powder group was significantly higher than model group (P<0.05).Compared with control group, in PFC and hippocampal CA3 area of the model group,the thickness of PSD was significantly declined (P<0.05) and Synaptic cleft was significantly widened (P<0.05).Compared with model group, in hippocampal CA3 area of the Jiawei Sini Powder group,the thickness of PSD was significantly added (P<0.05) and Synaptic cleft was narrowed (P<0.05).Compared with model group, in PFC area of the Jiawei Sini Powder group,the thickness of PSD was significantly added (P<0.05)). Compared with model group, in hippocampal CA3 area of the Sini Powder group and Shenghui Decoction group,Synaptic cleft was significantly narrowed (P<0.05).Conclusion:By influencing synaptic Structural plasticity in PFC and hippocampal CA3 area, Jiawei Sini Powder can improve the ability of learning and memory in sleep deprived rats.
     Experiment Four:Effect of Jiawei Sini Powder on Protein
     Expressions of PFC and Hippocampal CA3 area NMDA and EphB2 Receptor in Sleep Deprived Rats
     Objective:To study protein expressions of PFC and hippocampal CA3 area NMDA and EphB2 receptor in sleep deprived rats, and observe effects of Sini Powder, Shenghui Decoction, and Jiawei Sini Powder on them. Methods:Protein expressions of NR2A, NR2B, NR2B(Tyr1472) and EphB2 receptor in sleep deprived rats were quantitatively analyzed using Western blot technology.Results: Compared with the control group, protein expressions of NR2A, NR2B, NR2B(Tyr1472) and EphB2 receptor in PFC area obviously decreased (P< 0.05),and protein expressions of NR2B in hippocampal CA3 area aslo decreased(P <0.05). Compared with the model group, Jiawei Sini Powder group could obviously improve protein expressions of NR2A, NR2B, NR2B(Tyr1472) and EphB2 receptor in PFC area (P<0.05), and increase protein expressions of NR2B, in hippocampal CA3 area (P<0.05). Compared with the model group, both Sini Powder group and Shenghui Decoction group could obviously improve protein expressions of EphB2 receptor in PFC area (P<0.05).Conclusion:Sleep deprivation could reduce protein expressions of NR2B, NR2B(Tyr1472)and EphB2 receptor in PFC area, and decrease protein expressions of NR2B in hippocampal CA1 area. Jiawei Sini Powder could improve rats'ability of learning and memory, which might be possibly achieved through up-regulating protein expression of EphB2 and NR2B receptor, and changing the synaptic plasticity of hippocampus and PFC.
     Experiment Five:Effect of Jiawei Sini Powder on mRNA
     Expressions of Hippocampal CA1 area NMDA Subunit NR2A and NR2B, and EphB2 Receptor in Sleep Deprived Rats
     Objective:To study mRNA expressions of hippocampal N-methyl D-aspartate (NMDA)receptor subunit NR2A and NR2B, and EphB2 receptor in sleep deprived rats, and observe effects of Sini Powder, Shenghui Decoction, and Jiawei Sini Powder on them. Methods:Gene expressions of NMDA subunit NR2A and NR2B, and EphB2 receptor in sleep deprived rats were quantitatively analyzed using fluorescence quantitative PCR.Results:Compared with the control group,mRNA expressions of NR2B and EphB2 receptor in hippocampal CA1 area obviously decreased (P<0.01), with no obvious change of NR2A Compared with the model group, Jiawei Sini Powder group could obviously improve mRNA expressions of NR2A, NR2B and EphB2 receptor(P<0.01).No statistical difference was found between the Sini Powder group and the Shenghui Decoction group.In hippocampal CA1 area,mRNA expression of NR2A could be more obviously increased in the Shenghui Decoction group than in the model group (P<0.01).Conclusion:Sleep deprivation could reduce gene expressions of NR2B and EphB2 receptor in hippocampal CA1 area. Jiawei Sini Powder could improve rats' ability of learning and memory, which might be possibly achieved through up-regulating mRNA expression of EphB2 and NR2B receptor in hippocampal CA1 area, and changing the synaptic plasticity of hippocampus.
     Summary
     Jiawei Sini Powder could improve rats' ability of learning and memory, which might be possibly achieved through changing the synaptic plasticity of PFC and hippocampus. Smoothing Liver Qi and replenishing Kidney play an important role in the process of regulating learning and memory, but can't independently operate this process. When nourishing Heart, smoothing Liver Qi and replenishing Kidney were taken together, the ability of learning and memory would be improved.
引文
[1]Pihlajamaki M,Tanila H.Encoding of novel picture pairs activates the perirhinal cortex:An Fmri study.[J]. Hippocampus,2003,13(1):67-80.
    [2]Epstein R,Harris A.The parahippocampal place area:Recognition,navigation,or encoding?.[J]. Neuron,1999,23:115-125.
    [3]Norman KA,O'Reilly RC.Modeling hippocampal and neocortical contributions to recognition memory:A complementary-learning-systems approach.[J]. Psychol Rev,2003,110(4):611-646.
    [4]Squire LR,Stark CE.The medial temporal lobe.[J]. Annu RevNeurosci,2004, 27:279-306.
    [5]Gabrieli JD. Cognitive neuroscience of human memory. [J]. Annu Rev Psychol,1998,49:87-115.
    [6]Milner B. Interhemispheric differences in the localization of psychological processes in man. [J]. Br Med Bull,1971,27(3):272-277.
    [7]Gebrieli JD. Cognitive neuroscience of human memory. [J]. Annu Rev Psychol,1998,49:87-115.
    [8]McClelland JC,McNaughton BL.Why there are complementary learning systems in the hippocampus and neocortex:In sights from the successes and failures of connectionist models of learning and memory. [J]. Psycholo Rev,1995, 102:410-457.
    [9]Rempel-Clower NL,Zola SM.Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. [J].Neurosci, 1996,16:5233-5255.
    [10]Manns JR,Hopkins RO.Recognition memory and the human hippocampus. [J].Neuron,1971,37(1):171-180.
    [11]Brown MW, Aggleton JP.Recognition memory:What are the roles of the perirhinal cortex and hippocampus?. [J]. Nature Review Neuroscience, 2001,2:51-61.
    [12]O'Reilly RC,Rudy JW.Conjunctive representations in learning and memory principles of cortical and hippocampal function. [J].Psychol Rev,2001, 108:311-345.
    [13]Nakazawa K,Quirk MC.Requirement for hippocampal C. A3 NMDA receptors in associative memory recall[J].science,2002,297(5579):211-218.
    [14]Gold AE,Kesner RP.The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completeion in the rat. [J]. Hippocampus,2005,14(1):5-8.
    [15]Haier RJ, Jung R E, Yeo RA. Structural brain variation and general intelligence. [J]. Neuroimage,2004,23(2):425-433.
    [16]Bussey TJ,Wise SP,Murray EA. The role of ventral and orbital PFC in conditionalvisuomotor learning and strategy use in rhesus monkeys(Nacaca mulatta). BehavNeurosci,2001,115(6):971-982
    [17]Funahashi S,KubotaK. Workingmemory andPFC. Neurosci Res,1994, 21(1):1-11
    [18]Otten LJ,RuggMD. Task-dependency of the neural correlates of episodicencoding as measured byfMRI. Cereb Cortex,2001,(11):1150-1160
    [19]D'Esposito M,Aguirre GK,Zarahn E,et al. Functional MRI studies of spatial and nonspatialworkingmemory. BrainRes Cogn BrainRes,1998, 7(1):1-13
    [20]Tulving E, Kapur S, Caik FIM, et al. Hemispheric encoding/ retrievalasymmetry in episodic memory:positron emission tomography finding.Proc Natl Acad Sci USA,1994,91:201622020.
    [21]O'Reilly R C, Munakata Y. Computational Explorations in Cognitive Neuroscience:Understanding the Mind.Cambridge,MA:MIT Press
    [22]Pasupathy A, Miller EK.Different time course of learning-related activity in the prefornatal cortex and striatum.[J]. Nature,2005,433:873-876.
    [23]Muhammad R, Wallis JD,Mille EK.A comparision of abstract rules in the prefrontal cortex, premotor cortex,the inferior temporal cortex and the striatum. [J]. Cogn Neurosci,2006,18:974-989.
    [24]McDonald RJ,Hong NS.A dissociation of dorsolateral striatum and amygdale function on the same stimulus-response habit task. [J].Neuroscience,2004,124:507-513.
    [25]Cammarota M,Bevilaqua LR,Kohler C.Learning twice is different from learning once and from learning once and from learn ingmore.[J].Neuroscience,2005,132:273-279.
    [26]Yin HH,Knowlton BJ,Balleine BW.Lesions of the dorsolateral striatum preserve out-come expectancy but disrupt habit formation in instrumental learning.[J].European Journal of Neuroscience,2004,19:181-189.
    [27]White NM, Salinas JA.Mnemonic function of dorsal striatum and hippocampus in aversive conditioning.[J].Behavioural Brain Research,2003,142:99-107.
    [28]Pych JC,Chang Q,Colon-Rivera C. Acetylcholine release in hippocampus and striatum during a rewarded spontaneous alternation task.[J].Neurosciencebiology of Learning and Memory,2005,84:93-101.
    [29]Kesner RP,Bolland BL,Dakis M.Memory for spatial locations,motor responses,and objects:Triple dissociation among the hippocampus,caudate nucleus,and extrastriate visual cortex[J].Experimental Brain Research,1993,93:462-470.
    [30]DeCoteau WE,Hoang L,Huff L.Effects of hippocampal and medial caudate nucleus lesions on memory for directional information in rats.[J].Behavioral Neuroscience,2004,118:540-545.
    [31]Featherstone RE,McDonald RJ.Dorsal striatum and stimulus-response learning:Lesions of the dorsolater,but not dorsomedial,striatum impair acquisition of a stimulus response based instrumental discrimination task,while sparing conditioned palce preference learning. [J]. Neuroscience,2004a,124:23-31.
    [32]Ragozzino ME.The effects of dopamine D1 receptor blockade in the prelimbic-infralimbic area on behavioral flexibility.[J].Learning and Memory,2002,9:18-28.
    [33]Pisa M, Cyr J.Regionally selective roles of the rat's striatum in modality-specific discrimination learning and forelimb.reaching[J].Behavioural Brain Research,1990,37:281-292.
    [34]Ragozzino ME,Detrick S,Kesner RP.Involvement of the prelimbic-infralimbic areas in shifting between place and response strategies.[J].Journal of Neuroscience,1999,19:4585-4594
    [35]Devan BD, McDonald RJ, White NM.Effects of medial and lateral caudateputamen lesions on place-and cue-guided behaviors in the water maze:Relation to thigmotaxis.[J].Behavioural Brain Research,1999,100:1-14.
    [36]DeCoteau WE, Kesner RP.A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge.[J].Behavioral Neuroscience,2000,114:1096-1108.
    [37]Ragozzino ME,Choi D.Dynamic changes in medial striatal acetylcholine output during place reversal learning.[J].Learning and Memory,2004,14:70-77.
    [38]SandnerG,OberlingP,SilveiraMC,et al. What brainstructures are active during emotions? Effects of brain stimulation elicited aversion on c-fos immunoreactivity and behavior. Behav Brain Res,1993,58(1-2):9-1
    [39]Kim JJ,Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci,1997,20(4):177-181
    [40]Gold PE. Modulation of emotional and non-emotional memories:Same pharmacological system,different neuroanatomical systems.in:JL McGaugh, NM Weinberger (Eds),Brain and Memory:Modulation and Mediation of Neural Plasticity,Oxford Press,NY,PP41-74.
    [41]Miyashita T and Williams CL. Peripheral arousal-related hormones modulate norepinephrine release in the hippocampus via influences on brainstem nuclei.[J]. Behavioral Brain Research,2004,153:87-95.
    [42]McNay EC,and Gold PE.Food for thought:Fluctuations in brain extracellular glucose provide insight into the mechanisms of memory modulation.[J]. Behavioral and Cognitive Neuroscience Reviews,2002,1:264-280.
    [43]Canal C,Stutz SJ, Gold PE.Glucose injections into the hippocampus or striatum of rats prior to T-maze training:Modulation of learning rates and strategy selection.[J].learning and memory,2005,12:367-374.
    [44]Erickson EJ,Watts KD,Paent MD.Septal co-infusions of glucose with a GABAB agonist impair memory.[J].Neurobiology of Learning and Memory,2006,85:66-70.
    [45]Okuda S,Roozendaal B.Glucocorticoid effects on object recognition memory require training-associated emotional arousal [J].Proceedings of the National Academy of Science,2004,101:835-858.
    [46]Akirav I,Kozenicky M.A facilitative role for corticosterone in the acquisition of a spatial task under moderate stress [J].Learning and Memory,2004,11:188-195.
    [47]Roozendaal B. Stress and memory:Opposing effects of glucocorticoids on memory consolidation and memory retrieval [J].Proceedings of the National Academy of Science,2002,99:3996-4001.
    [48]Korol DL,and Korol LL. Estrogen-induced changes in place and response learning in young adult female rats[J].Behavioral Neuroscience,2002,116:411-420.
    [49]Belchner SM,and Zsarnovsky A.Estrogenic actions in the brain:Estrogen,ph ytoestrogens and rapid intracellular signaling mechanisms [J].Perspectives in Ph arm acology,2001,299:408-414.
    [50]Dohanich GP.Gonadal steroids,learning and memory.In:Hormones,Brain and Behavior,D.W. Pfaff,A.P.Arnold(eds).Academic Press,San Diego,pp265-327.
    [51]Johansson IM,Birzniece V.Allopregnanlolone inhibits learning in the Morris water maze.[J].Brain Research,2002,934:125-131.
    [52]Popescu G.. Mechanism-based targeting of NMDA receptor functions [J]. Cell. Mol. Life Sci,2005,62:2100-2111
    [53]Barria, A., Malinow, R.. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J]. Neuron,2005,48: 289-301.
    [54]Barria, A., Malinow, R.Subunit-specific NMDA receptor trafficking tosynapses [J].Neuron,2002,35:345-353.
    [55]Zhao MG, Toyoda H, Lee YS,et al. Roles of NMDA NR2B Subtype Receptor in Prefrontal Long-Term Potentiation and Contextual Fear Memory [J].Neuron, 2005,47(6):859-872.
    [56]Tang YP, Shimizu E, Dube GR,et al.Genetic enhancement of learning and memory in mice [J].Nature,1999,401(6748):63-69.
    [57]Zhou Y, Takahashi E, Li W,et al. Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning [J].Neurosci,2007,27(50):13843-13853.
    [58]Liu, L., Wong, T.P., Pozza, M.F..Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity [J]. Science,2004a,304: 1021-1024.
    [59]Massey, P.V., Johnson, B.E., Moult, P.R. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. [J]. Neurosci,2004,24:7821-7828
    [60]Philpot BD, Bear MF, Abraham WC. Metaplasticity:the plasticity of synaptic plasticity[M]. In:Katz, P.S. (Ed.). Beyond Neurotransmission:Neuromodul-tion and its Importance for Information Flow. Oxford:Oxford University Press,U.K.,1999:38-43.
    [61]Erreger, K., Dravid, S.M., Banke, T.G. ubunitspecific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling pro files [J]. Physiol,2005,563:345-358.
    [62]Sobczyk, A.; Scheuss, V., Svoboda, K. NMDA receptor subunit-dependent [Ca2t] signaling in individual hippocampal dendritic spines. [J]. Neurosci, 2005,25:6037-6046.
    [63]Takasu, M.A., Dalva, M.B., Zigmond, R.E., Greenberg, M.E.,2002. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295,491-495
    [64]Salter, M.W., Kalia, L.V.,2004. Src kinases:a hub for NMDA receptor regula tion.Nature Reviews 5,317-328
    [65]Prybylowski, K., Chang, K., Sans, N., Kan, L., Vicini, S., Wenthold, R.J.,2005. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47,845-857.
    [66]Lavezzari, G., McCallum, J., Lee, R., Roche, K.W.,2003. Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA recep tor subunit NR2B regulates surface expression. Neuropharmacology 45, 729-737.
    [67]Andrasfalvy BK, Smith MA, Borchardt T.et al. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice. J Physiol,2003,552:35-45.
    [68]Lee HK, Takamiya K, Han JS.et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell,2003,112:631-643
    [69]Shimshek DR, Jensen V, Celikel T.et al. Forebrain-specific glutamate receptor B deletion impairs spatial memory but not hippocampal field long-term po tentiation. J Neurosci,2006,26:8428-9440.
    [70]Farr SA, Uezu K, Creonte TA, et al. Modulation of memory processing in the cingulate cortex of mice [J]. Pharmacol Biochem Behav,2000,65(3): 363-368.
    [71]Getova DP, Bowery NG. Effects of high affinity GABAB receptor antagonists onactive and passive avoidance responding in rodents with gamm hydrox ybutyrolactone-induced absence syndrome [J]. Psychopharmacology (Berl), 2001,157(1):89-95.
    [72]Albert MartinezT, Eduardo Soriano. Functions of ephrin/Eph interactions in the development of the nervous system:Emphasis on the hippocampal sys temB. [J].brain research reviews,2005,49:211-226.
    [73]Grunwald, I.C., Korte, M., Wolfer, D. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity [J]. Neuron,2001, 32:1027-1040.
    [74]R.Torres,B.L.Firestein, H.Dong,J. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands, Neuron 21 (1998) 1453-1463.
    [75]Jason Aoto, Lu Chen. Bidirectional ephrin/Eph signaling in synaptic functions. [J].brain research,2007,1184:72-80.
    [76]Takasu MA, Dalva MB, Zigmond RE. Modulation of NMDAreceptor-dependent calcium influx and gene expression through EphB receptors.[J].Science,2002, 295(5554):491-495.
    [77]Grunwald IC, Korte M, Wolfer D. Kinase-independent requirement of receptors in hippocampal synaptic plasticity [J]. Neuron,2001, 32(6):1027-1040.
    [78]Henderson, J.T., Georgiou, J., Jia, Z. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. [J].Neuron,2001, 32:1041-1056.
    [79]Contractor A, Rogers C, Maron C. Trans-synaptic Eph receptor-ephrin signal ing in hippocampal mossy fiber LTP [J].Science,2002,296(5574) :1864-1869.
    [80]R. Gerlai, N. Shinsky, A. Shih, P.Regulation of learning by EphA receptors:a protein targeting study, J. Neurosci.19 (1999) 9538-9549.
    [81]Bennett EL,Orme AE,Hebert M.Cerebral protein synthesis inhibition and amnesia produced by scopolamine, cycloheximide, stretovitacinA,anisomycin, and emetine in rat. [J]. Federation Proceedings,1972,31:838
    [82]Mizumori SJY,Rosenzweig MR,Bennet EL.Long-term working memory in the rat:Effects of hippocampally applied anisomycin. [J]. Behavioral Neuroscience,1985,99:220-232.
    [83]Athos,J.,S.Impey,V.V.Pineda,et al. Hippocampal CRE-meiated geneexpression is required for contextual memory formation. [J]. Nat Neurosci,2002,5(11): 1119-1120.
    [84]Pittenger,C.,Y.Y.Huang,R.F.Paletzki,et.Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dosal hippocampus disrupts hippocampus-dependent spatial memory. [J].Neuron,2002,34:447-462.
    [85]Guzowski,J.F.and J.L.McGaugh.Antisense oligodeoxynucleotide-mediated disruption memory for water maze training. [J].Proc Natl Acad Sci USA,1997,94:2693-2698.
    [86]Josselyn,S.A.and A.J.Silva.Inducible repression of CREB function disrupts and future challenges. [J].Neurobiol Learning Memory,2004,82:159-163.
    [1]Walker MP,Stickgold R.Sleep-dependent learning and memory consolidation. Neuron 2004;44(1):121-33.
    [2]De Koninck J,Lorrain D,Christ G,Proulx G,Coulombe D.Intensive language learning and increases in rapid eye movement sleep:evidence of a performance factor.Int J Psychophysiol 1989;8(1):43-7.
    [3]Walker M P,Brakefield T,Morgan A,Hobson JA,Stickgold R.Practice with sleep makes perfect:sleep-dependent motor skill learning.Neuron 2002;35(1):205-11.
    [4]Roehrs T,Roth T.Sleep-wake state and memory function.Sleep, 2000,23:S64-68
    [5]M atthew P.Walker.Cognitive consequences of sleep and sleep loss.Sleep medicine 2008;9(1):s29-S34.
    [6]Smith C.Sleep states and learning:a review of the animal literature.Neurosci. Biobehav.Rev,1985,9:157-168
    [7]Smith C,Conway JM,Rose GM.Brief paradoxical sleep deprivation im-pairs reference,but not working,memory in the radical arm maze task. Neubiol-Learn-Mem,1998,69:211-217
    [8]Wilson MA,McNaughton BL.Reactivation of hippocampal ensemble memories during sleep.Science,1994,265:676-679
    [9]宋国萍,苗丹民,皇甫恩.睡眠和记忆之间关系的研究[J].心理科学,2004, 27 (6):1454-1465
    [10]Karni A,Tanne D,Rubenstein BS,et al.Dependence on REM sleep of overnight improvement of a perceptual skill.Science,1994,265:679-682
    [11]宋国萍,皇甫恩,苗丹民,等.学习后不同时间睡眠剥夺对大鼠记忆能力的影响.中国行为科学杂志,2000,9(1):4-6
    [12]张福康,侯一平,宋焱峰,等.剥夺异相睡眠对大鼠空间参考记忆的影响.中国临床康复,2003,7(31):4216-4219
    [13]宋国萍,皇甫恩,苗丹民,等.睡眠剥夺对工作记忆的影响.第四军医大学学报,2005,25(18):1707-710
    [14]王升旭,李求实.睡眠剥夺对大鼠脑组织氨基酸类神经递质含量的影响.第军医大学学报,2002,22(10):888-89
    [15]Mu rck,-H et al.Increase in amino acids in the pons after sleep deprivation:a pilot study using proton magnetic resonance spectroscopy. Neuropsychobiology.2002,45(3) :120-123
    [16]杨国愉,冯正直,皇甫恩,等.人参皂甙对睡眠剥夺下大鼠脑干中缝核群5一HT的影响.第三军医大学学报,2002,24(2):158-160
    [17]吴兴曲,杨来启,王晓峰,等.睡眠剥夺后大鼠5-HTlAH和5-HT 2A受体的表达.中国行为医学科学,2002,11(4):364-365
    [18]Blanco-Centurion,-C-A et al. Extracellular serotonin levels in the medullary reticular formation during normal sleep and after REM sleep de-privation. Brain-Res.2001,923(1-2):128-136
    [19]刘彤,徐淑梅等.睡眠剥夺对大鼠学习能力和海马乙酰胆碱含量的影响[J].临床和实验医学杂志,2007,6(3):13-15
    [20]刘长云,王海明,陈坚,等.大鼠睡眠剥夺后行为及下丘脑诱生型一氧化氮合酶mRNA表达的变化.第二军医大学学报,2002,23(3):281-283
    [21]吴兴曲,杨来启,王晓峰,等.睡眠剥夺对大鼠一氧化氮和一氧化氮合酶的影响.中国临床心理学杂志,2002,10(2):106-107
    [22]钟明奎,朱国庆,张景行,等.基底外侧杏仁核内一氧化氮对大鼠睡眠及行为活动的影响.中国行为医学科学,2002,11(3):247-249
    [23]Ribeiro S, Goyal V, Mello CV, Pavlides C (1999) Brain gene expression during REM sleep depends on prior waking experience. Learn Mem 6:500-508.
    [24]Herry C, Mons N (2004) Resistance to extinction is associated with impaired immediate early gene induction in medial prefrontal cortex and amygdala. Eur J Neurosci 20:781-790
    [25]J.Fu,P.LI,X.OUYANG/Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus independent task in rats. Neuroscience 144 (2007) 1186-1192
    [26]Maloney,-K-J et al. c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur-J-Neurosci,2002 Feb; 15(4):774-778
    [27]宋国萍.不同时段睡眠剥夺对大鼠脑内c-fos表达的影响.中国临床心理学杂,2002,10(2):103-105
    [1]侯建平,张恩户,胡悦等.酸枣仁对小鼠学习记忆能力的影响[J].广西中医学院学报,2002,5(3):11-13
    [2]吴尚霖,袁秉祥,马志义.酸枣仁对小鼠学习记忆能力的影响[J].中草药,2001,32(3):246-247
    [3]张耀春,王立为.远志提取物对小鼠学习记忆的影响[J].中国新药杂志,2006,15(15):1254-1257
    [4]谈运良,王美婵,刘汴生.远志醇提物对小鼠学习记忆的影响[J].中国中西医结合杂志,1997,17(7):186-187
    [5]杨国愉,皇甫恩,张大均等.人参皂甙对睡眠剥夺大鼠学习记忆和活动性的影响[J].中国临床心理学杂志,2007,15(1):81-84
    [6]陈声武,王丽娟,王岩等.人参皂苷Rb1和Rd对不同类型记忆障碍模型小鼠学习记忆功能的影响[J].中国药理学与毒理学杂志,2001,15(5):330-332
    [7]杨军,王静,张继训等.赤芍总苷对小鼠学习记忆能力的改善作用[J].中国药 理学通报,2000,16(1):46-49
    [8]瞿礼萍,曾南,梁珂等.逍遥散对慢性温和应激模型小鼠行为学及空间学习记忆能力的影响[J].中药药理与临床,2007,23(5):18-20
    [9]詹莹,张世平,瞿融.当归芍药散化学成分、剂量配比与药效学研究——改善学习记忆功能的配伍比例研究[J].中药药理与临床,1999,15(1):1-3
    [10]谢明村,褚俊杰,彭文煌.定志丸对东莨菪碱诱发大鼠被动回避反应的影响[J].中国中药杂志,1996,21(8):490-493
    [11]游冬青,邹鲁峰,陈杞.红景天复方对小鼠学习记忆影响及抗缺氧实验[J].珍国医国药,2000,11(5):392-393
    [12]孙华,胡愉,张建民等.一种对阿尔茨海默病模型小鼠认知和记忆功能具有明显改善作用的中药方剂[J].中国中药杂志,2003,28(8):751-754
    [13]赵玲,徐秋萍,李林.聪圣胶囊对脑缺血大鼠学习记忆和神经细胞膜完整性的影响[J].中国行为医学科学,2003,12(2):131-133
    [14]刘素蓉,潘斌,成涛.不同治则方药对拟血管性痴呆鼠学习与记忆的作用[J].西安交通大学学报(医学版),2002,23(4):412-414
    [15]钱会南,沈丽波,胡雪等.脾虚模型大鼠学习记忆障碍及归脾汤的改善作用[J].中国行为医学科学,2006,15(3):202-204
    [16]畅洪,孙建宁,石任兵等.四逆散有效部位对嗅球损毁大鼠探索行为及学习记忆功能的影响[J].北京中医药大学学报,2005,28(4):39-41
    [17]南丽红,白武福,吴符火等.加减柴胡龙骨牡砺汤对AD模型小鼠学习记忆能力的影响[J].辽宁中医药大学学报,2007,9(9):150-153
    [18]沈云辉,曹玉净,崔瑛等.熟地黄对拟痴呆模型小鼠记忆力的影响及机制研究[J].上海中医药杂志,2007,41(4):67-68
    [19]田枫,姜勇,张阔等.远志总苷对快速老化模型SAM-P/8小鼠学习记忆能力的作用及其机理研究[J].老年医学与保健,2004,10(3):137-139
    [20]穆俊霞,李新.中药远志对阿尔茨海默病大鼠模型学习记忆和胆碱酯酶活性的影响[J].世界中西医结合杂志,2007,2(1):18-19
    [21]王晓英,陈霁,张均田.人参皂苷Rg1对β一淀粉样肽(25-35)侧脑室注射所致小鼠学习记忆障碍的改善作用及其机制[J].药学学报,2001,36(1):1-4
    [22]杨军,王静,姜文等.赤芍总苷对D一半乳糖衰老小鼠学习记忆及代谢产物的影响[J].中国药理学通报,2001,17(6):697-00
    [23]林志宏,朱丹妮,严永清等.当归芍药散防治老年期痴呆的物质基础与作用机理研究Ⅱ[J].中国实验方剂学杂志,2002,8(4):18-20
    [24]赵伟康,戴向东,申屠淑钧.调心方对“痴呆”及记忆障碍动物模型的作用研究[J].上海中医药杂志,1998,12(2):59-62
    [25]丛伟红,刘建勋,徐立等.人参、银杏叶提取物对PDAPPv7171转基因小鼠海马乙酰胆碱和单胺类神经递质水平的影响[J].中国中西医结合杂志,2007,27(9):810-813
    [26]Liu J, Cong W, Xu L, et al. Effect of combination of ex-tracts of ginseng and ginkgo biloba on acetylcholine in amyloidbeta-peptide-treated rats determined by an improved HPLC.Acta Pharmacol Sin2004;25(9):1118-1123
    [27]王爱民,曹颖林,王玉冲等.中国人参根、茎叶皂贰对大鼠的学习记忆及脑内单胺类递质含量的影响[J].中国中药杂志,1995,20(8):493-496
    [28]徐建林,周颖斌,徐珞等.酸枣仁合剂对隔离大鼠学习记忆的影响[J].青岛医学院学报,1997,33(2):136-138
    [29]张敏,徐丽,刘黎星等.人参皂苷Rg2对脑缺血再灌注大鼠学习记忆及海马神经元Glu和NMDA受体亚单位表达的影响[J].齐鲁医学杂志,2006,21(4):286-288
    [30]金红,欧芹,王迪迪等.山茱萸多糖对衰老模型大鼠学习记忆能力影响的研究[J].中药材,2009,29(12):1467-1469
    [31]陈利平,韩志涛,王发渭等.参龙汤对D一半乳糖诱导衰老大鼠学习记忆功能的影响[J].中国康复理论与实践,2007,13(5):419—420.
    [32]成文利,江振友,王修银等.四君子汤及拆方对D一半乳糖诱导衰老小鼠学习记忆调节作用的影响[J].中药材,2008,31(7):1039-1041
    [33]吴红彦,王虎.逍遥散及其拆方对老年性痴呆模型小鼠学习记忆能力及抗氧化能力的影响[J].中国实验方剂学杂志,2009,15(10):102-104
    [34]尹兆宝,王健,吴洪梅等.调神方对实验性类AD痴呆大鼠记忆行为和血清细胞因子含量的影响[J].上海中医药大学学报,2000,14(3):42-44
    [35]徐志伟,敖海清,严灿等.逍遥散对慢性心理应激大鼠空间学习记忆能力的影响[J].中药药理与临床,2004,13(5):484-485
    [36]徐志伟,敖海清,严灿等.逍遥散对慢性心理应激大鼠海马突触体内Ca2+浓度的影响[J].广州中医药大学学报,2005,22(1):42-44
    [37]金国琴,邱宏,孙泉.调心方对氧化损伤型类AD模型大鼠“有害网络”作用的研究[J].上海中医药杂志,2003,37(7):39-42
    [38]敖海清,徐志伟,严灿等.逍遥散对慢性应激大鼠海马突触体结构可塑性的影响[J].中成药,2006,28(5):697-700
    [39]张敏,图娅.中药YN-3号对慢性应激大鼠学习记忆能力及海马CREB的影响[J].中国中药,2008,33(2):180-183
    [40]崔瑛,彦正华,侯士良等.熟地黄对毁损下丘脑弓状核大鼠学习记忆及下丘脑-垂体-肾上腺-海马轴的影响[J].中药材,2004,27(8):589-592
    [41]李峰,王洪彬,谭涛等.疲劳时大鼠智力的变化及中药的调节作用[J].中国运动医学杂志,2001,20(3):275-277
    [42]李维,孔烈,李峰.四逆散对运动性疲劳大鼠海马突触素的调节作用.中国康复理论与实践[J],2009,15(8):739-741
    [43]张博爱,高林,陈烈冉等.中成药天智颗粒对血管性痴呆大鼠脑内神经细胞增殖的影响[J].中国现代神经病杂志,2006,6(5):393-395
    [44]张兰,李林,李斌.中药参乌胶囊对老年大鼠学习记忆及海马组织学的影响[J].中国康复理论与实践,2002,8(9):516-519
    [45]李龙宣,赵斌,许志恩等.熟地黄抑制阿尔茨海默病样大鼠海马神经元凋亡的作用[J].中华神经医学杂志,2006,5(1):10-13
    [1]蔡永春,李凤文.中药及其复方对小鼠学习记忆影响的研究进展[J].中国中医基础医学杂志,1998,4(8):58-62
    [2]何裕民.中国传统精神病理学.上海:上海科学普及出版社,1995.33
    [3]烟建华.《内经》“神”概念研究[J].河南中医,2006,26(1):4-8
    [4]翟双庆,王长宇,孔军辉:论五神、七情的五行五脏归属[J].北京中医药大学学报,2002,25(5):1-4
    [5]谷峰,鞠宝兆.《内经》对“五神”的认识[J].中国中医基础医学杂志,2006,12(10):724-725
    [6]杨维益,王天芳,李峰,等.肝脏在五脏中的地位演变.中国医药学报,1995,10(3):10-13
    [7]李维贤.谈谈《内经》志意学说[J].中国中医基础医学杂志,1999,5(7):7-8
    [8]烟建华.《内经》“神”概念研究[J].河南中医,2006,26(1):4-8
    [9]翟双庆,王洪图.试论心主神志观念的形成.北京中医药大学学报,2001,24(1):13-16
    [10]朱邦贤.溯源穷本论敷和——六经制化决乎肝胆[J].上海中医药杂志,1983,9:58-62
    [11]翟双庆,孔军辉,王长宇.论心主神与五脏藏神的异同.北京中医药大学学报,2001,26(2):9-11
    [12]张蓉.运动性疲劳所致学习记忆能力改变的证候特点及分子生物学机制[D].2008:34-35
    [13]谢静涛,王米渠.试论脾藏意主思的心理病理基础[J].湖南中医药大学学报2008,28(4):10-12
    [14]孙洪生,严季澜.《内经》“神”概念研究[J].北京中医药大学学报,2005,28(1):20-22
    [15]烟建华.《内经》“神”概念研究[J].河南中医,2006,26(1):4-8
    [16]杨威,刘寨华,于峥.寤寐与藏象理论.中医理论临床应用学术研讨会论文集[C],2007:67-70
    [1]Suchecki D, Tufik S. Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat[J]. Physiol Behav,2000,68(3):309-316.
    [2]王跃春,王子栋,孙黎明等.动物学习记忆能力的Y—型迷宫测试法.暨南大学学报:自然科学与医学版,2001,22:137-140.
    [3]冯连世.运动与血清酶活性的变化.中国运动医学杂志,1991,10(2):88-89.
    [4]张蕴琨,焦颖,郑书勤.力竭性游泳对小鼠脑、肝、肌组织自由基代谢和血清CK、LDH活性的影响.中国运动医学杂志,1991,10(2):88-89.
    [5]胡镜清,温泽淮,赖世隆.Morris水迷宫检测的记忆属性与方法学初探.广州中医药大学学报,2000,17(2):117-121.
    [1]Uhde, TW. Anxiety disorders. In:Kryger, MH., Roth, T., Demet, WC., editors. Sleep medicine.Philadelphia:W. B. Saunders Company; 2000. p.1123-39.
    [2]Wu JC, Bunney WE.The biological basis of an antidepressant response to sleep deprivation andrelapse:review and hypothesis. Am J Psychiatry 1990; 147:14-21.
    [3]Gessa GL,Pani L, Fadda P Fratta W.Sleep deprivation in the rat:an animal model of mania. EurNeuropsychopharmacol 1995; 5:89-93.
    [4]Jaime L.Tartar,Christopher P.Ward.,Experimental sleep fragmentation and sleep deprivation in rats increases exploration in an open field test of anxiety while increasing plasma corticosterone levels. Behav Brain Res.2009; 197(2):450-453.
    [5]Alexander R.D.The search for a general theory of behavior. Behavior Science,1975,20:77-100
    [6]Van Hulzen ZJ, Coenen AM. Paradoxical sleep deprivation and locomotor activity in rats.Physiol Behav 1981;27(4):741-4.
    [7]D. Suchecki,P.A.Tiba and S. Tufik. Hormonal and Behavioural Responses of Paradoxical Sleep-Deprived Rats to the Elevated Plus Maze. Journal of Neuroendocrinology,2002,14,549-554
    [8]Silva RH, Kameda SR,Carvalho RC, Takatsu-Coleman AL, Niigaki ST, Abilio VC, et al. Anxiogeniceffect of sleep deprivation in the elevated plus-maze test in mice.Psychopharmacology 2004; 176:115-22.
    [9]Patchev V, Felszeghy K, Kora'nyi L. Neuroendocrine and neurochemical consequences of a long-term sleep deprivation in rats:similarities to some features of depression. Homeostasis 1991; 33:97-108.
    [10]Suchecki D, Tufik S. Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiol Behav 2000; 69:309-316.
    [1]Paymond P. Kesner, Joe L. Martinesz,JR学习与记忆的神经生物学.第二版.北京:科技出版社,2008
    [2]Rui-Hua Yang San-Jue Hu.Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus. [J].Brain Res.2008;1230:224-232
    [3]Lopez J, Roffwarg HP, Dreher A, Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. [J]Neuroscience. 2008,153(1):44-53.
    [4]Jones DG, Decon RM. An ultra-structural study into the effects of pentobarbital on synaptic organization. Brain Res,1978,147:47
    [5]Gulder F-H. Increase in postsynaptic density material in optictarget neuron of the rat suprachiasmatic nucleus after bilateral enucleation. Neurosci,Lett,1980,17 (1-2):27-31
    [6]罗兰,陆汉新,吴馥梅等。脱甘氨酞胺精氨酸加压素引起脑内突触可塑性变化的定量观察.解剖学报,1991,22:93-97.
    [7]吴馥梅,杜红燕,章子贵.突触界面曲率及其生理意义.神经解剖学杂志,1994,10(1):89-92
    [8]Ziff EB. Enlightening the postsynap tic density. Neuron,1997; 19 (6):1163-1174
    [9]KennedyMB. Signal p rocessingmachines at the postsynap tic density. Science, 2000; 290 (5492):750-754
    [10]Castejo'n O J, Fuller L, DaileyM E. Localization of synap sin-I and PSD-95 in develop ing postnatal rat cerebellar cortex Developmental Brain Research, 2004,151:25-32
    [11]Li H, ZhangW Q. The conform effect of PSD-95 on NMDA receptor and their signaling functions (in Chinese). Progress in Physiological Sciences,2001,32 (4):343-346
    [12]章子贵,徐晓虹,吴馥梅.突触穿孔现象及其生理意义,J.四川解剖杂志,1995;3(3):169
    [13]韩太真,吴馥梅主编.学习与记忆的神经生物学,M.北京:北京医科大学、中国协和医科大学联合出版社,1998:237
    [14]章子贵,陆汉新,李振武,等.小鼠记忆保持力与海马CA3区与脑内突触界面结构的相关性J.神经科学,1995;2(3):136.
    [15]杨维益,王天芳,李峰,等.肝脏在五脏中的地位演变.中国医药学报,1995,10(3):10-13
    [1]Bussey TJ, Wise SP, Murray EA. The role of ventral and orbital PFC in conditionalvisuomotor learning and strategy use in rhesus monkeys(Nacacamulatta). BehavNeurosci,2001,115 (6):971-982
    [2]Funahashi S,KubotaK. Workingmemory andPFC. Neurosci Res,1994, 21(1):1 - 11
    [3]Otten LJ,RuggMD. Task-dependency of the neural correlates of episodicencoding as measured byfMRI. Cereb Cortex,2001, (11) :1150-1160
    [4]D'Esposito M,Aguirre GK,Zarahn E, et al. Functional MRI studies of spatial and nonspatialworkingmemory. BrainRes Cogn BrainRes,1998, 7(1):1-13
    [5]0'Reilly R C, Munakata Y. Computational Explorations in Cognitive Neuroscience:Understanding the Mind.Cambridge, MA:MIT Press
    [6]Pasupathy A, Miller EK.Different time course of learning-related activity in the prefornatal cortex and striatum. [J]. Nature,2005, 433:873-876.
    [7]0'Reilly RC,Rudy JW.Conjunctive representations in learning and memory principles of cortical and hippocampal function. [J].Psychol Rev,2001,108:311-345.
    [8]Nakazawa K, Quirk MC. Requirement for hippocampal C. A3 NMDA receptors in associative memory recall [J].science,2002,297(5579):211-218.
    [9]Gold AE,Kesner RP.The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completeion in the rat. [J]. Hippocampus,2005,14(1):5-8.
    [10]Prybylowski, K., Chang, K., Sans, N., Kan, L., Vicini, S., Wenthold, R.J.,2005.The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47,845-857.
    [11]Lavezzari, G., McCallum, J., Lee, R., Roche, K. W.,2003. Different ial binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology 45,729-737.
    [1]Collingridge GL,Kehl SJ,McLennan H.Excitatory amino acids in synaptic transmission in the Schaffer col lateral-commissural pathway of the rat hippocampus. [J].Physiol,1983,334(2):33-46.
    [2]Huang YY, Zakharenko SS, Schoch S, et al.Genetic evidence for a protein kinase-A presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation[J]. Proc Natl Acad Sci USA,2005,102(26):9365-9370.
    [3]Stanton PK, Winterer J, Bailey CP, et al.Long-term depression of presynaptic release from the readily-releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide [J].Neurosci,2003,23(13):5936-5944.
    [4]Takasu MA, Dalva MB, Zigmond RE. Modulation of NMDA receptor-depe.ndent calcium influx and gene expression through EphB receptors. [J].Science,2002,295(5554):491-495.
    [5]Contractor A, Rogers C, Maron C. Trans-synaptic Eph recep tor-ephrinsignaling in hippocampal mossy fiber LTP [J].Science, 2002,296(5574):1864-1869.
    [6]Suchecki D, Tufik S. Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat[J]. Physiol Behav,2000,68(3):309-316.
    [7]Zhao MG, Toyoda H, Lee YS, et al. Roles of NMDA NR2B Subtype Receptor in Prefrontal Long-Term Potentiation and Contextual Fear Memory [J].Neuron,2005,47 (6):859-872.
    [8]Tang YP, Shimizu E, Dube GR, et al.Genetic enhancement of learning and memory in mice [J]. Nature,1999,401 (6748):63-69.
    [9]Zhou Y.Takahashi E,Li W, et al.Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning [J]. Neurosci,2007,27(50):13843-13853.
    [10]Philpot BD,Bear MF,Abraham WC.Metaplasticity:the plasticity of synapticplasticity[M]. In:Katz, P. S. (Ed.).BeyonNeurotransmission:Neuromodulationand its Importance for Information Flow. Oxford:Oxford University Press, U.K.,1999:38-43.
    [11]Jason Aoto, Lu Chen. Bidirectional ephrin/Eph signaling in synaptic functions [J]. Brain Res,2007,1184(2007):72-80.
    [12]Grunwald IC, Korte M, Wolfer D. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity[J].Neuron,2001,32(6):1027-1040.
    [13]Yang RH,Hu SJ.Paradoxical sleep deprivation impairs spatial learning andaffects membrane excitability and mitochondrial protein in the hippocampus[J]. Brain Res,2008,1230(2008):224-232.
    [14]Lopez J, Roffwarg HP, Dreher A, Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal develop ment [J]. Neuroscience,2008,153(1):44-53.
    [15]Schuman EM, Medison DV. A requirement for the intercellularmessenger nitricoxide in LTP. Science.1991,254:1503.
    [16]Morris R and Collingridge G. Expending the potential. Nature,1993,364:104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700