内皮细胞诱导新生内膜平滑肌样细胞募集机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景移植物动脉病是目前器官移植发生慢性失功的共同病理变化,也是影响移植物长期存活的一个最重要因素。其主要的病理特征是移植物动脉广泛新生内膜增生,从而致使移植物动脉在移植后的数月至数年间出现管腔狭窄,引起移植器官的缺血缺氧和实质纤维化,最终导致移植器官功能丧失。近年来的研究发现,新生内膜绝大部分由平滑肌样细胞构成。新生内膜平滑肌样细胞和传统意义上的血管中膜平滑肌细胞不同,其中最为重要就是新生内膜中的平滑肌样细胞高度表达中膜平滑肌细胞表面没有的CCR1。多种动物模型研究显示,骨髓间充质干细胞、中膜平滑肌细胞、血管外膜细胞及血管周围基质等都有可能存在新生内膜平滑肌样细胞的前体细胞。这些前体细胞通过不同粘附或者迁移途径,定居在新生内膜,分裂增殖,引起新生内膜过度增生,移植物动脉管腔狭窄。有研究表明,IFN-γ能够刺激诱导内皮细胞分泌多种趋化因子,其中RANTES很可能参与了炎症反应时,各种炎症细胞的渗出过程;还有研究表明RANTES可能参与了移植物动脉病的发生发展。但是平滑肌样细胞的前体细胞迁移至新生内膜的机制,目前尚不清楚。因此研究新生内膜平滑肌样细胞的募集机制可以为今后治疗和预防移植物动脉病提供新的靶点。
     目的检测内皮细胞分泌的趋化因子RANTES能否诱导中膜平滑肌细胞或新生内膜平滑肌样细胞的迁移。探讨内皮细胞参与移植物动脉病内膜平滑肌样细胞募集的机制。
     方法采用酶消化法和磁珠分选法原代培养小鼠心脏内皮细胞和主动脉中膜平滑肌细胞,采用持续扩增法纯化内皮细胞和平滑肌细胞;建立小鼠主动脉移植模型,采用酶消化法和持续细胞扩增法分离纯化新生内膜平滑肌样细胞;流式细胞技术鉴定新生内膜平滑肌样细胞;采用微流体实验装置模拟在体血管各层细胞生长;并与细胞划痕实验、Boyden chamber实验相比较,确定微流装置的实用性和有效性;采用IFN-γ刺激内皮细胞,Elisa方法检测并确定内皮细胞分泌的趋化因子;微流装置内培养内皮细胞、平滑肌细胞和平滑肌样细胞,检测IFN-γ刺激内皮细胞后诱导平滑肌细胞和/或平滑肌样细胞的迁移;采用siRNA方法抑制内皮细胞分泌趋化因子并用Elisa方法检测抑制效果;采用微流体装置检测siRNA抑制内皮细胞分泌趋化因子后,IFN-γ激活的内皮细胞诱导平滑肌样细胞的迁移。
     结果酶消化法和磁珠分选法能够有效分离培养出小鼠心脏内皮细胞和主动脉中膜平滑肌细胞。小鼠动脉移植模型是得到内膜平滑肌样细胞很好的方法,并能达到实验要求的纯度。微流体装置相比传统观察细胞迁移的划痕实验和Boyden chamber实验对细胞迁移的研究更直观、更敏感、更准确。siRNA方法能够明显抑制IFN-γ刺激活化的内皮细胞分泌趋化因子。IFN-γ刺激活化的内皮细胞分泌的细胞因子RANTES能够诱导平滑肌样细胞迁移,但不能诱导中膜平滑肌细胞的迁移。
     结论IFN-γ能够刺激活化内皮细胞分泌趋化因子RANTES。趋化因子RANTES能够诱导移植物动脉新生内膜平滑肌样细胞而不是正常动脉中膜平滑肌细胞的迁移,活化内皮细胞分泌的趋化因子RANTES可能在移植物动脉新生内膜平滑肌样细胞募集的过程中有重要作用。
BACKGROUND: Graft vascular disease is a common pathological changes invarious organ graft chronic loss of function, is also one of the most important andindependent factors that affect the long-term survival. The main pathological featureis diffused arterial intimal hyperplasia within the graft artery, consequently resultingin stenosis of the transplant artery in a few months to years after transplantation,causing ischemia, hypoxia and parenchyma tissue fibrosis of transplant organs,eventually leading to the transplant organ dysfunction. Recent studies have shown thatmost of the neointimal cells are smooth muscle cells, however, these traditionalvascular medial smooth muscle cells are significantly different from those inneointimal. The main important difference is that neointimal smooth muscle cells canhighly expressed CCR1chemokine receptor but medial smooth muscle cells do not.According to different animal models, the precursor cells of neointimal smoothmuscle like cells probably are derived from bone marrow mesenchymal stem cells,medial smooth muscle cells, vascular adventitial cells and perivascular matrix. Theseprecursor cells migrate to neointimal and settle down through various pathways,overproliferating, finally resulting in neointimal hyperplasia, transplant arterystenosis. Recent studies have showm that IFN-gamma can induce endothelial cells tosecret many kinds of chemokines, and RANTES was probably involved ininflammatory exudation, and other researchers showed RANTES can affect thedevelopment of graft vascular disease. Nevertheless the mechanism of neointimalsmooth muscle like cells recruitment in graft vascular disease is still unknown. Thusour study can help elucidate the mechanism of smooth muscle cell recruitment andprovide an effective target for graft vascular disease therapeutic strategies in thefuture.
     OBJECTIVE: To find an effective approach to isolate and cultivate primaryendothelial cells, smooth muscle cells and smooth muscle like cells from mouse heart,aorta and artery transplant model. Use IFN-gamma to stimulate endothelial cells, thendetect whether the chemokines secreted by them can induce medial smooth musclecells or intimal smooth muscle-like cells migration. Elucidate endothelial cells effecton the mechanism of neointimal smooth muscle like cells recruitment in graft vasculardisease.
     METHODS: Primary culture of endothelial cells from mouse heart bycollagenase digestion method and magnetic beads sorting, purification of endothelialcells by continuous proliferation method; primary culture of smooth cells from mouseaorta by collagenase digestion method and magnetic beads sorting, purification ofendothelial cells by continuous proliferation method; primary culture of neointimalsmooth muscle like cells from transplant aorta of mouse transplant model, purificationof smooth muscle like cells by continuous proliferation method and identification ofsmooth like cells by FACS; use microfluidic device to co-culture endothelial cells andsmooth muscle cells or smooth muscle like cells; identify the efficacy of themicrofluidic device by comparison with scratch assay and Boyden chamber assay; useIFN-γ to treat endothelial cells, detect the migration induced by the chemokinessecreted by IFN-γ treated endothelial cells in microfluidic device.
     RESULTS: Collagenase digestion method and magnetic beads sorting are veryeffective for primary cell isolation; continuous proliferation method is good and easyto purify the primary cells; microfluidic device is the best for cell migration detectioncompared with scratch assay and Boyden chamber assay; siRNA can effectivelyreduce RANTES expression by IFN-γ treated endothelial cells; RANTES can inducesmooth muscle like cells migration but not smooth muscle cells.
     CONCLUSION: Microfluidic device is much better than scratch assay andBoyden chamber assay in detect cell migration towards a chemokine concentration gradients. RANTES secreted by IFN-γ treated endothelial cells can induce smoothmuscle cell migration but not smooth muscle cell in the microfluidic device.
引文
[1] Lechler RI, Sykes M, Thomson AW, et al. Organ transplantation--how muchof the promise has been realized?. Nat Med,2005,11:605-13.
    [2] Tantravahi J, Womer KL, Kaplan B. Why hasn't eliminating acute rejectionimproved graft survival?. Annu Rev Med,2007,58:369-85.
    [3] Richard N. Mitchell. Graft Vascular Disease: Immune Response Meets theVessel Wall. Annual Review of Pathology: Mechanisms of Disease,2009,4:19-47
    [4] Mitchell RN, Libby P. Vascular remodeling in transplant vasculopathy. CircRes,2007,100:967-78.
    [5] Al-khaldi A, Robbins RC. New directions in cardiac transplantation. AnnuRev Med,2006,57:455-71.
    [6] Hillebrands JL, Klatter FA, van den Hurk BM, et al. Origin of neointimalendothelium and alpha-actin-positive smooth muscle cells in transplantarteriosclerosis. J Clin Invest,2001,107:1411-22.
    [7] Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiateinto vascular cells that participate in the pathogenesis of atherosclerosis.Nat Med,2002,8:403-9.
    [8] Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitiacontribute to atherosclerosis of vein grafts in ApoE-deficient mice. J ClinInvest,2004,113:1258-65.
    [9] Sartore S, Chiavegato A, Faggin E, et al. Contribution of adventitialfibroblasts to neointima formation and vascular remodeling: from innocentbystander to active participant. Circ Res,2001,89:1111-21.
    [10] Beranek JT. Vascular endothelial cell is a stem cell for neointimal formationafter injury. J Thorac Cardiovasc Surg,2001,121:820-1.
    [11] Xu Q. Stem cells and transplant arteriosclerosis. Circ Res,2008,102:1011-24.
    [12] K. Shimizu,M. Minami,R. Shubiki,et al. CC chemokine receptor-1activates intimal smooth muscle-like cells in graft arterial disease.Circulation,2009,120:1800-1813
    [13] E. A. Starickova,D. I. Sokolov,S. A. Selkov,et al. Changes in the profilesof chemokines secreted by endothelial cells and monocytes under differentcoculturing conditions. Bull Exp Biol Med,2011,150:446-449
    [1] Hillebrands JL, Klatter FA, van den Hurk BM, et al. Origin of neointimalendothelium and alpha-actin-positive smooth muscle cells in transplantarteriosclerosis. J Clin Invest,2001,107:1411-22.
    [2] Kobayashi M, Inoue K, Warabi E, et al. A simple method of isolating mouseaortic endothelial cells. J Atheroscler Thromb,2005,12:138-42.
    [3]张迎红,胡豫,梅恒,等.三种分离大鼠主动脉内皮细胞方法的比较研究.微循环学杂志,2007,17:15-6.
    [4] Richard N. Mitchell. Graft Vascular Disease: Immune Response Meets theVessel Wall. Annual Review of Pathology: Mechanisms of Disease,2009,4:19-47
    [5] K. Shimizu,M. Minami,R. Shubiki,et al. CC chemokine receptor-1activatesintimal smooth muscle-like cells in graft arterial disease. Circulation,2009,120:1800-1813
    [1] J. Yang and R. A. Weinberg. Epithelial-mesenchymal transition: at thecrossroads of development and tumor metastasis. Dev Cell,2008,14:818-829
    [2] A. H. Sprague and R. A. Khalil. Inflammatory cytokines in vasculardysfunction and vascular disease. Biochem Pharmacol,2009,78:539-552
    [3] J. T. Price and E. W. Thompson. Mechanisms of tumour invasion andmetastasis: emerging targets for therapy. Expert Opin Ther Targets,2002,6:217-233
    [4] M. O'Hayre,C. L. Salanga,T. M. Handel,et al. Chemokines and cancer:migration, intracellular signalling and intercellular communication in themicroenvironment. Biochem J,2008,409:635-649
    [5] P. Friedl and B. Weigelin. Interstitial leukocyte migration and immunefunction. Nat Immunol,2008,9:960-969
    [6] Z. Yu,N. E. Willmarth,J. Zhou,et al. microRNA17/20inhibits cellularinvasion and tumor metastasis in breast cancer by heterotypic signaling. ProcNatl Acad Sci U S A,2010,107:8231-8236
    [7] J. C. Yarrow,Z. E. Perlman,N. J. Westwood,et al. A high-throughput cellmigration assay using scratch wound healing, a comparison of image-basedreadout methods. BMC Biotechnol,2004,4:21
    [8] D. J. Sieg,C. R. Hauck,D. Ilic,et al. FAK integrates growth-factor andintegrin signals to promote cell migration. Nat Cell Biol,2000,2:249-256
    [9] R. C. Savani,C. Wang,B. Yang,et al. Migration of bovine aortic smoothmuscle cells after wounding injury. The role of hyaluronan and RHAMM. JClin Invest,1995,95:1158-1168
    [10] S. Boyden. The chemotactic effect of mixtures of antibody and antigen onpolymorphonuclear leucocytes. J Exp Med,1962,115:453-466
    [11] S. Toetsch,P. Olwell,A. Prina-Mello,et al. The evolution of chemotaxisassays from static models to physiologically relevant platforms. Integr Biol(Camb),2009,1:170-181
    [12] A. Shamloo,N. Ma,M. M. Poo,et al. Endothelial cell polarization andchemotaxis in a microfluidic device. Lab Chip,2008,8:1292-1299
    [13] U. Haessler,Y. Kalinin,M. A. Swartz,et al. An agarose-based microfluidicplatform with a gradient buffer for3D chemotaxis studies. BiomedMicrodevices,2009,11:827-835
    [14] B. G. Chung,A. Manbachi,W. Saadi,et al. A gradient-generating microfluidicdevice for cell biology. J Vis Exp,2007,271
    [15] S. Y. Cheng,S. Heilman,M. Wasserman,et al. A hydrogel-based microfluidicdevice for the studies of directed cell migration. Lab Chip,2007,7:763-769
    [16] J. Atencia,G. A. Cooksey and L. E. Locascio. A robust diffusion-basedgradient generator for dynamic cell assays. Lab Chip,2012,12:309-316
    [17] O. C. Amadi,M. L. Steinhauser,Y. Nishi,et al. A low resistance microfluidicsystem for the creation of stable concentration gradients in a defined3Dmicroenvironment. Biomed Microdevices,2010,12:1027-1041
    [1] Hillebrands JL, Klatter FA, van den Hurk BM, et al. Origin of neointimalendotheliumand alpha-actin-positive smooth muscle cells in transplantarteriosclerosis. J ClinInvest,2001,107:1411-22.
    [2] Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiateintovascular cells that participate in the pathogenesis of atherosclerosis. NatMed,2002,8:403-9.
    [3] Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in theadventitiacontribute to atherosclerosis of vein grafts in ApoE-deficient mice. JClinInvest,2004,113:1258-65.
    [4] Sartore S, Chiavegato A, Faggin E, et al. Contribution of adventitialfibroblasts toneointima formation and vascular remodeling: from innocentbystander to activeparticipant. Circ Res,2001,89:1111-21.
    [5] Beranek JT. Vascular endothelial cell is a stem cell for neointimal formationafterinjury. J Thorac Cardiovasc Surg,2001,121:820-1.
    [6] Xu Q. Stem cells and transplant arteriosclerosis. Circ Res,2008,102:1011-24.
    [7] K. Shimizu and R. N. Mitchell. The role of chemokines in transplant graftarterial disease. Arterioscler Thromb Vasc Biol,2008,28:1937-1949
    [8] K. Shimizu,M. Aikawa,K. Takayama,et al. Direct anti-inflammatorymechanisms contribute to attenuation of experimental allograft arteriosclerosisby statins. Circulation,2003,108:2113-2120
    [9] M. W. Feinberg,K. Shimizu,M. Lebedeva,et al. Essential role for Smad3inregulating MCP-1expression and vascular inflammation. Circ Res,2004,94:601-608
    [10] P. von Hundelshausen,K. S. Weber,Y. Huo,et al. RANTES deposition byplatelets triggers monocyte arrest on inflamed and atherosclerotic endothelium.Circulation,2001,103:1772-1777
    [11] C. J. Wiedermann,E. Kowald,N. Reinisch,et al. Monocyte haptotaxisinduced by the RANTES chemokine. Curr Biol,1993,3:735-739
    [12] W. Gao,P. S. Topham,J. A. King,et al. Targeting of the chemokine receptorCCR1suppresses development of acute and chronic cardiac allograft rejection.J Clin Invest,2000,105:35-44
    [13] K. Shimizu,M. Minami,R. Shubiki,et al. CC chemokine receptor-1activatesintimal smooth muscle-like cells in graft arterial disease. Circulation,2009,120:1800-1813
    [14] M. Mellado,J. M. Rodriguez-Frade,S. Manes,et al. Chemokine signaling andfunctional responses: the role of receptor dimerization and TK pathwayactivation. Annu Rev Immunol,2001,19:397-421
    [15] K. Neote,D. DiGregorio,J. Y. Mak,et al. Molecular cloning, functionalexpression, and signaling characteristics of a C-C chemokine receptor. Cell,1993,72:415-425
    [16] J. L. Gao,D. B. Kuhns,H. L. Tiffany,et al. Structure and functionalexpression of the human macrophage inflammatory protein1alpha/RANTESreceptor. J Exp Med,1993,177:1421-1427
    [17] Richard N. Mitchell. Graft Vascular Disease: Immune Response Meets theVessel Wall. Annual Review of Pathology: Mechanisms of Disease,2009,4:19-47
    [18] T. Miyamoto,Y. Sasaguri,T. Sasaguri,et al. Expression of stem cell factor inhuman aortic endothelial and smooth muscle cells. Atherosclerosis,1997,129:207-213
    [19] D. Simper,P. G. Stalboerger,C. J. Panetta,et al. Smooth muscle progenitorcells in human blood. Circulation,2002,106:1199-1204
    [20] S. Sugiyama,K. Kugiyama,S. Nakamura,et al. Characterization of smoothmuscle-like cells in circulating human peripheral blood. Atherosclerosis,2006,187:351-362
    [21] S. P. Pinney and D. Mancini. Cardiac allograft vasculopathy: advances inunderstanding its pathophysiology, prevention, and treatment. Curr OpinCardiol,2004,19:170-176
    [22] D. Ramzy,V. Rao,J. Brahm,et al. Cardiac allograft vasculopathy: a review.Can J Surg,2005,48:319-327
    [1] Valantine H. Cardiac allograft vasculopathy after heart transplantation: riskfactors and management. J. Heart Lung Transpl.,2004,23:S187
    [2] Rahmani M,Cruz R,Granville DJ,et al.Allograft vasculopathy versusatherosclerosis. Circ. Res.,2006,99:801
    [3] Libby P and Pober J. Chronic rejection. Immunity,2001,14:387
    [4] McManus B,Horley K,Wilson J,et al.Prominence of coronary arterial walllipids in human heart allografts: implications for pathogenesis of allograftarteriopathy. Am. J. Pathol.,1995,147:293
    [5] Salomon R, Hughes C, Schoen F, et al.Human coronarytransplantation–associated arteriosclerosis: evidence for a chronic immunereaction to activated graft endothelial cells. Am. J. Pathol.,1991,138:791
    [6] Furukawa Y,Libby P,Stinn J,et al.Cold ischemia enhances cytokine/celladhesion molecule expression and induces graft arterial disease in isografts,but does not accentuate alloimmune responses of nonimmunosuppressed hosts.Am. J. Pathol.,2002,160:1077
    [7] Dhaliwal A and Thohan V. Cardiac allograft vasculopathy: the Achilles heel oflong-term survival after cardiac transplantation. Curr. Atheroscler. Rep.,2006,8:119
    [8] Costanzo M,Naftel D,Pritzker M,et al.Heart transplant coronary arterydisease detected by coronary angiography: a multi-institutional study ofpreoperative donor and recipient risk factors. J. Heart Lung Transpl.,1998,17:744
    [9] Libby P,Salomon R,Payne D,et al.Functions of vascular wall cells relatedto the development of transplant-associated coronary arteriosclerosis. Transpl.Proc.,1989,21:3677
    [10] Owens G. Regulation of differentiation of vascular smooth muscle cells.Physiol. Rev.,1995,75:487
    [11] Nagai R,Suzuki T,Aizawa K,et al.Phenotypic modulation of vascular smoothmuscle cells: dissection of transcriptional regulatory mechanisms. Ann. N.Y.Acad. Sci.,2001,947:56
    [12] Shah R and Mitchell R. The role of stem cells in the response to myocardialand vascular wall injury. Cardiovasc. Pathol.,2005,14:225
    [13] Tellides G and Pober J. Interferon-γ axis in graft arteriosclerosis. Circ. Res.,2007,100:622
    [14] Ramzy D,Rao V,Brahm J,et al.Cardiac allograft vasculopathy: a review. Can.J. Surg.,2005,48:319
    [15] Caforio A,Tona F,Fortina A,et al.Immune and nonimmune predictors ofcardiac allograft vasculopathy onset and severity: multivariate risk factoranalysis and role of immunosuppression. Am. J. Transpl.,2004,4:962
    [16] H. Park,M. Kim,G. T. Kwon,et al.A high-fat diet increases angiogenesis,solid tumor growth, and lung metastasis of CT26colon cancer cells inobesity-resistant BALB/c mice. Mol Carcinog,2011,
    [17] Gallucci S and Matzinger P. Danger signals: SOS to the immune system. Curr.Opin. Immunol.,2001,13:114
    [18] el-Sawy T,Fahmy N and Fairchild R. Chemokines: directing leukocyteinfiltration into allografts. Curr. Opin. Immunol.,2002,14:562
    [19] F. Poti,M. Bot,S. Costa,et al.Sphingosine kinase inhibition exerts both pro-and anti-atherogenic effects in low-density lipoprotein receptor-deficient(LDL-R(-/-)) mice. Thromb Haemost,2012,107:552-561
    [20] Shimizu K and Mitchell R. Stem cell origins of intimal cells in graft arterialdisease. Curr. Atheroscler. Rep.,2003,5:230
    [21] Hillebrands J,Klatter F and Rozing J. Origin of vascular smooth muscle cellsand the role of circulating stem cells in transplant arteriosclerosis. Arterioscler.Thromb. Vasc. Biol.,2003,23:380
    [22] Hillebrands J,Klatter F,van den Hurk BM,et al.Origin of neointimalendothelium and α-actin-positive smooth muscle cells in transplantarteriosclerosis. J. Clin. Invest.,2001,107:1411
    [23] Shimizu K,Sugiyama S,Aikawa M,et al.Host bone-marrow cells are a sourceof donor intimal smooth muscle–like cells in murine aortic transplantarteriopathy. Nat. Med.,2001,7:738
    [24] Simper D,Stalboerger P,Panetta C,et al.Smooth muscle progenitor cells inhuman blood. Circulation,2002,106:1199
    [25] Caplice N and Doyle B. Vascular progenitor cells: origin and mechanisms ofmobilization, differentiation, integration, and vasculogenesis. Stem Cells Dev.,2005,14:122
    [26] Caplice N,Bunch T,Stalboerger P,et al.Smooth muscle cells in humancoronary atherosclerosis can originate from cells administered at marrowtransplantation. Proc. Natl. Acad. Sci. USA,2003,100:4754
    [27] Glaser R,Lu M,Narula N,et al.Smooth muscle cells, but not myocytes, ofhost origin in transplanted human hearts. Circulation,2002,106:17
    [28] Minami E,Laflamme M,Saffitz J,et al.Extracardiac progenitor cellsrepopulate most major cell types in the transplanted human heart. Circulation,2005,112:2951
    [29] Grimm P,Nickerson P,Jeffery J,et al.Neointimal and tubulointerstitialinfiltration by recipient mesencymal cells in chronic renal-allograft rejection.N. Engl. J. Med.,2001,345:93
    [30] George J,Pinderski L,Litovsky S,et al.Of mice and men: mouse models andthe molecular mechanisms of post-transplant coronary artery disease. J. HeartLung Transpl.,2005,24:2003
    [31] Hedin U,Roy J and Tran P. Control of smooth muscle cell proliferation invascular disease. Curr. Opin. Lipidol.,2004,15:559
    [32] Fogelstrand P,Osterberg K and Mattsson E. Reduced neointima in vein graftsfollowing a blockage of cell recruitment from the vein and the surroundingtissue. Cardiovasc. Res.,2005,67:326
    [33] Sasaki Y,Suehiro S,Becker A,et al.Role of endothelial denudation andsmooth muscle cell dedifferentiation in neointimal formation of human veingrafts after coronary artery bypass grafting: therapeutic implications. Heart,2000,83:69
    [34] Feng S,Lu X,Resendiz J,et al.Pathological shear stress directly regulatesplatelet αII βIII signaling. Am. J. Physiol. Cell Physiol.,2006,291:1346
    [35] Fateh-Moghadam S,Bocksch W,Ruf A,et al.Changes in surface expressionof platelet membrane glycoproteins and progression of heart transplantvasculopathy. Circulation,2000,102:890
    [36] Abele S,Weyand M,Wollin M,et al.Clopidogrel reduces the development oftransplant arteriosclerosis. J. Thorac. Cardiovasc. Surg.,2006,131:1161
    [37] Hasegawa S,Becker G,Nagano H,et al.Pattern of graft-and host-specificMHC class II expression in long-term murine cardiac allografts. Origin ofinflammatory and vascular wall cells. Am. J. Pathol.,1998,153:1
    [38] Nagano H,Mitchell R,Taylor M,et al.Interferon-γ deficiency preventscoronary arteriosclerosis but not myocardial rejection in transplanted mousehearts. J. Clin. Invest.,1997,100:550
    [39] Weston M,LaBorde O and Yoganathan A. Estimation of the shear stress on thesurface of an aortic valve leaflet. Ann. Biomed. Eng.,1999,27:572
    [40] Zlotnik A and Yoshie O. Chemokines: a new classification system and theirrole in immunity. Immunity,2000,12:121
    [41] Allen S,Crown S and Handel T. Chemokine:receptor structure, interactions,and antagonism. Annu. Rev. Immunol.,2007,25:787
    [42] Nelson P and Krensky A. Chemokines, chemokine receptors, and allograftrejection. Immunity,2001,14:377
    [43] Luster A. Chemokines: chemotactic cytokines that mediate inflammation. N.Engl. J. Med.,1998,338:436
    [44] von Hundelshausen P,Weber K,Huo Y,et al.RANTES deposition by plateletstriggers monocyte arrest on inflamed and atherosclerotic endothelium.Circulation,2001,103:1772
    [45] E. A. Starickova,D. I. Sokolov,S. A. Selkov,et al.Changes in the profiles ofchemokines secreted by endothelial cells and monocytes under differentcoculturing conditions. Bull Exp Biol Med,2011,150:446-449
    [46] K. Shimizu,M. Minami,R. Shubiki,et al.CC chemokine receptor-1activatesintimal smooth muscle-like cells in graft arterial disease. Circulation,2009,120:1800-1813
    [47] Zhao D,Hu Y,Miller G,et al.Differential expression of the IFN-γ-inducibleCXCR3-binding chemokines, IFN-inducible protein10, monokine induced byIFN, and IFN-inducible T cell α chemoattractant in human cardiac allografts:association with cardiac allograft vasculopathy and acute rejection. J.Immunol.,2002,169:1556
    [48] van Loosdregt J,van Oosterhout M,Bruggink A,et al.The chemokine andchemokine receptor profile of infiltrating cells in the wall of arteries withcardiac allograft vasculopathy is indicative of a memory T–helper1response.Circulation,2006,114:1599
    [49] Boring L,Gosling J,Chensue S,et al.Impaired monocyte migration andreduced type–1(Th1) cytokine responses in CCR2knockout mice. J. Clin.Invest.,1997,100:2552
    [50] Gosling J,Slaymaker S,Gu L,et al.MCP-1deficiency reduces susceptibilityto atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin.Invest.,1999,103:773
    [51] Koga S,Auerbach M,Engeman T,et al.T cell infiltration into class IIMHC–disparate allografts and acute rejection is dependent on theIFN-γ-induced chemokine Mig. J. Immunol.,1999,163:4878
    [52] Robinson L,Nataraj C,Thomas D,et al.A role for fractalkine and its receptor(CX(3)CR1) in cardiac allograft rejection. J. Immunol.,2000,165:6067
    [53] Gao W,Topham P,King J,et al.Targeting of the chemokine receptor CCR1suppresses development of acute and chronic cardiac allograft rejection. J.Clin. Invest.,2000,105:35
    [54] Rossi D and Zlotnick A. The biology of chemokines and their receptors. Annu.Rev. Immunol.,2000,18:217
    [55] Schecter A,Calderon T,Berman A,et al.Human smooth muscle cells possessfunctional CCR5. J. Biol. Chem.,2000,275:5466
    [56] Goldberg S,van der Meer P,Hesselgesser J,et al.CXCR3expression inhuman central nervous system diseases. Neuropathol. Appl. Neurobiol.,2001,27:127
    [57] Schecter A,Berman A and Taubman M. Chemokine receptors in vascularsmooth muscle. Microcirculation,2003,10:265
    [58] Kodali R,Kim W,Galaria I,et al.CCL11(eotaxin) induces CCR3-dependentsmooth muscle cell migration. Arterioscler. Thromb. Vasc. Biol.,2004,24:1211
    [59] Veillard N,Steffens S,Pelli G,et al.Differential influence of chemokinereceptors CCR2and CXCR3in development of atherosclerosis in vivo.Circulation,2005,112:870
    [60] Shimizu K and Mitchell R. Chemokine-mediated recruitment of inflammatoryand smooth muscle cells in transplant-associated arteriosclerosis. Curr. Opin.Organ Transpl.,2003,8:55
    [61] Mitchell R and Libby P. Vascular remodeling in transplant vasculopathy. Circ.Res.,2007,100:967
    [62] Shimizu K, Aikawa M, Takayama K, et al.Cerivastatin hasimmunomodulatory effects on donor endothelial cells and host inflammatorycells and attenuates allograft arteriopathy. Circulation,2001,104:II212
    [63] Dietrich H,Hu Y,Zou Y,et al.Mouse model of transplant arteriosclerosis: roleof intercellular adhesion molecule–1. Arterioscler. Thromb. Vasc. Biol.,2000,20:343
    [64] Denton M,Davis S,Baum M,et al.The role of the graft endothelium intransplant rejection: evidence that endothelial activation may serve as aclinical marker for the development of chronic rejection. Pediatr. Transpl.,2000,4:252
    [65] Pribila J,Quale A,Mueller K,et al.Integrins and T cell–mediated immunity.Annu. Rev. Immunol.,2004,22:157
    [66] Lacy-Hulbert A,Ueno T,Ito T,et al.β3integrins regulate lymphocytemigration and cytokine responses in heart transplant rejection. Am. J. Transpl.,2007,7:1080
    [67] Moiseeva E. Adhesion receptors of vascular smooth muscle cells and theirfunctions. Cardiovasc. Res.,2001,52:372
    [68] Willis A,Pierre-Paul D,Sumpio B,et al.Vascular smooth muscle cellmigration: current research and clinical implications. Vasc. Endovasc. Surg.,2004,38:11
    [69] Pure E and Cuff C. A crucial role for CD44in inflammation. Trends Mol.Med.,2001,7:213
    [70] Goueffic Y,Guilluy C,Guerin P,et al.Hyaluronan induces vascular smoothmuscle cell migration through RHAMM-mediated PI3K-dependent Racactivation. Cardiovasc. Res.,2006,72:339
    [71] Jain M,He Q,Lee W-S,et al.Role of CD44in the reaction of vascular smoothmuscle cells to arterial wall injury. J. Clin. Invest.,1996,97:596
    [72] Routledge M, Rush D, McKenna R, et al.The receptor forhyaluronan-mediated motility is expressed in human renal allografts and iscorrelated with Banff chronic rejection scores. Transpl. Proc.,1997,29:2603
    [73] Cuff C,Kothapalli D,Azonobi I,et al.The adhesion receptor CD44promotesatherosclerosis by mediating inflammatory cell recruitment and vascular cellactivation. J. Clin. Invest.,2001,108:1031

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700