角膜植片慢性失功发生机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     采用抗原半相合小鼠建立免疫因素逐渐减弱的小鼠角膜移植模型,从中筛选与临床角膜植片慢性失功(chronic corneal allograft dysfunction,CCAD)接近的模型。利用角膜植片慢性失功模型研究免疫与非免疫因素在CCAD发生及发展过程中的作用,揭示CCAD的发生机理。
     方法
     第一部分:小鼠角膜植片慢性失功模型(CCAD模型)的建立
     1)小鼠角膜移植模型建立:雄性C57BL/6(H-2b)小鼠与雌性BALB/c(H-2d)小鼠杂交,获得抗原半相合CB6F1代(简称F1代)小鼠(H-2b/d)。分别以C57BL/6、F1代、BALB/c小鼠为供体,以BALB/c小鼠为受体,建立免疫因素逐渐减弱的小鼠穿透性角膜移植(penetrating keratoplasty,PK)模型。2)实验分组:共分4组,每组18只小鼠。A组为异系移植组,供体来自C57BL/6小鼠;B组为F1代(抗原半相合)移植组,供体来自F1代小鼠;C组为同系移植组,供体来自BALB/c小鼠。D组为正常对照组,正常BALB/c小鼠不作任何处理。3)术后观察与实验室检查:术后观察>100天,每周2次采用裂隙灯显微镜观察各组角膜植片情况并进行评分,记录植片发生混浊(失功)的时间;术后1个月采用茜素红联合PI/Hoechst双标法观察角膜内皮细胞形态、凋亡与坏死情况:移植术后3周、2个月、3个月,免疫组化法检测各组植片CD~(4+)、CD8~+T淋巴细胞浸润情况;电镜观察各组角膜片超微结构改变。
     第二部分:免疫与非免疫因素在CCAD发生过程中作用的研究
     1)实验动物分组:同实验第一部分。2)实验室检查:移植术后3周、2个月、3个月,免疫组化法检测植片中F4/80、转化生长因子-β(TGF-β)、碱性成纤维细胞生长因子(bFGF)、α平滑肌肌动蛋白(α-SMA)表达情况;RT-PCR法检测各组小鼠角膜植片中F4/80、TGF-β表达情况;原位末端标记(TUNEL)法检测各组角膜细胞凋亡情况。
     结果
     第一部分:小鼠角膜植片慢性失功模型(CCAD模型)的建立
     角膜植片观察:各移植组小鼠角膜移植术后均有新生血管长入植床,伴有植片轻度水肿。异系移植组于术后2~4周内植片全部发生混浊;F1代移植组角膜拆线后结膜充血和角膜新生血管逐渐消退,植片恢复透明,之后临床未发现明显的免疫排斥反应,13只小鼠于术后2~3个月逐渐出现角膜混浊;同系移植组角膜拆线后结膜充血和角膜新生血管逐渐消退,植片恢复透明。之后始终无新生血管长入,1只小鼠观察期内出现植片混浊,其余小鼠植片混浊程度始终未超过2分;正常对照组小鼠角膜始终维持透明。四组植片发生混浊时间的中位数分别为17d、85.5d、>100d、>100d。
     免疫组化检查:异系移植组于术后3周发生植片混浊时,植片基质中见大量CD4~+T淋巴细胞浸润,较多CD8~+T淋巴细胞浸润;F1代移植组和同系移植组术后3周时偶见CD4~+T淋巴细胞浸润,未见CD8~+T淋巴细胞浸润;正常对照组未见CD4~+及CD8~+T淋巴细胞浸润;术后2个月,异系移植组仍可见较多CD4~+及少量CD8~+T淋巴细胞浸润,F1代移植组角膜基质内偶见CD4~+及CD8~+T淋巴细胞,同系移植组和正常对照组未见CD4~+及CD8~+T淋巴细胞浸润。术后3个月,除异系移植组基质内偶见CD4~+T淋巴细胞外,其余各组均未发现CD4~+、CD8~+T淋巴细胞浸润。
     茜素红联合PI/Hoechst双标法检查:异系移植组角膜植片内皮细胞成像不清,存在较多坏死和凋亡的内皮细胞;F1代移植组内皮细胞减少,失去正常的六边形结构,可见散在凋亡的内皮细胞,未见坏死的内皮细胞;同系移植组角膜内皮细胞较正常减少,六边形结构规则,偶见凋亡的内皮细胞,未见坏死的内皮细胞;正常对照组内皮细胞六边形结构规则,未见坏死和凋亡的内皮细胞。
     透射电镜检查:各移植组小鼠角膜植片内皮细胞存在萎缩性改变,异系移植组角膜基质内可以见到较多炎性细胞浸润,内皮细胞层发生萎缩性改变;F1代移植组和同系移植组未见明显炎性细胞浸润;异系移植组和F1代移植组在植片发生混浊时可见纤维增殖。
     第二部分:免疫与非免疫因素在CCAD发生过程中作用的研究
     1)免疫组化检查:异系移植组、F1代移植组及同系移植组术后3周、2个月和3个月时,免疫组化检查角膜基质内均可见F4/80、TGF-β、bFGF阳性表达。异系移植组和F1代移植组植片发生混浊时,角膜基质内可见α-SMA阳性表达,同系移植组呈弱阳性表达,正常对照组未见阳性表达。
     2)RT-PCR检查:F4/80在移植组均有表达,术后早期表达量低,晚期表达量增高,正常对照组F4/80未见表达;TGF-β四组不同时间点均有表达,移植组早期表达量较多,晚期表达量下降,正常对照组各时间点均为低表达。
     3)TUNEL检查:术后3周,各移植组植片上皮基底层柱状细胞和基质层内均可见阳性细胞,内皮细胞未见明显阳性表达;术后2个月,各移植组上皮基底细胞仍可见阳性细胞,数量较3周时少;术后3个月,各移植组上皮层和内皮层均未见明显阳性细胞,基质层内偶见阳性细胞:正常对照组角膜各层组织在各时间点均未见阳性细胞。
     结论
     1)F1代移植组与同系移植组角膜移植术后植片出现与临床慢性失功相似的变化,可以作为研究CCAD的动物模型;前者主要用于研究免疫和非免疫因素共同作用导致慢性植片失功发生的模型,后者主要用于研究排除免疫因素,在非免疫因素作用下植片发生慢性失功的模型。
     2)抗原依赖的致敏淋巴细胞浸润以与非抗原依赖的炎性细胞浸润及相关细胞因子异常表达在CCAD发生和发展过程中发挥重要的作用。
Purpose
     To establish a murine model of chronic corneal allograft dysfunction (CCAD) thatpermits molecular evaluation of alloantigen specific factors and non-alloantigenspecific factors in the process of chronic allograft dysfunction after cornealtransplantation.
     Methods
     PartⅠ: Establishment of murine model of CCAD
     1) Penetrating keratoplasty (PK) model in mice: Semiallogeneic CB6F1 (BALB/c×C57BL/6) mice (H-b/d) were obtained from matching of female BALB/c (H-2d)mice and male C57BL/6 mice. C57BL/6, CB6F1 and BALB/c corneal grafts weretransplanted orthotopically to BALB/c recipients respectively. 2)Groups: Seventy-twoBLAB/c mice were randomly divided into four groups (18 mice per group): Group A,allogenic transplantion group, C57BL/6 corneal grafts were transplanted to BALB/crecipients; Goups B, semiallogeneic transplantation group, CB6F 1 corneal grafts weretransplanted to BALB/c recipients; Group C, syngeneic transplantation group,BALB/c corneal grafts were transplanted to BALB/c recipients. Group D, controlgroup, BALB/c mice without corneal transplantation. 3) Postoperative examination:The follow-up time was more than 100 days, and the graft was evaluated by slit-lampbiomicroscopy two times every week. Graft survival time and corneal opacity scorewere monitored, and corneal endothelium were examined by alizarin red andPI/Hoechst stain. CD4~+ and CD8~+ T lymphocytes were examined byimmunohistochemistry. Ultrastructure changes of the grafts were examined byelectromicroscopy.
     PartⅡ: Effect of ailoantigen specific and non-alloantigen specific factors inCCAD
     1) Animal model: Animals were divided into 4 groups and consult partⅠinexperiment. 2) Lab examination: F4/80, TGF-βand bFGF were examined byimmunohistochemistry, F4/80 and TGF-βwere examined by RT-PCR, and cellapoptosis was examined by TUNEL analysis at 3 weeks, 2 and 3 monthspostoperation.
     Results
     PartⅠ: Establishment of murine model of CCAD
     Allograft examination: Mild corneal edema and opacity occurred in the grafts in allgroups immediately after PK, and then disappeared after removal of corneal sutures.Corneal grafts opacity combined with angiogenesis reoccurred in group A, andresulted in grafts dysfunction within 12 to 28 days postoperation ultimately. In groupB, the grafts became transparent completely at 1 to 2 months, and then mostly becameopacity gradually without corneal angiogenesis at 2 to 3 months. In group C, thegrafts remained transparent and survived over 100 days. All the corneas remainedtransparent in group D. Median graft survival times were 17d, 85.5d,>100d and>100d in 4 groups, respectively.
     Immunohistochemistry examination: A large amount of CD4~+ and CD8~+ Tlymphocyte infiltration was present in allografts in group A at 3 weeks after PK, withmore expressions at 2 months, and hardly seen at 3 months; Few CD4~+ and CD8~+ Tlymphocytes were observed in allografts in group B and C at 3 weeks after PK, andno can be seen at 2 and 3 months; CD4~+ and CD8~+ T lymphocyte infiltration was notobserved in group D.
     The endothelium can not be counted because the blurred image after the alizarin redcombined PI/Hoechst stain and apoptotic and necrotic cells can be seen in group A;The endothelial cell density decreased and few apoptosis can be detected in group Band C. No apoptotic and necrotic endothelial cells were found in group D.
     Ultrastructural characteristic changes mainly include fibrosis formation andendothelium atrophy and degeneration in failed grafts in group A, B and C by electronmicroscopy examination.
     PartⅡ: Effect of alloantigen specific and non-alloantigen specific factors inCCAD
     1) Immunohistochemistry examination: F4/80, TGF-β, bFGF were detected at 3weeks, 2 and 3 months in group A, B and C. Alpha-SMA could only be detected at thelate stage in group A, B and C. 2) RT-PCR examination: F4/80 was positiveexpression in group A, B and C, and the relative expression amount was low at earlystage and increased at the late stage; Positive expression of TGF-βwas present in allgroups, and the relative expression amount was high at early stage and decreased atthe late stage. 3) TUNEL analysis: TUNEL positive cells could be seen in thecolumnar epithelium and in the stroma at 3 weeks and 2 months in group A, B and C,but not in group D. No TUNEL positive endothelial cells could be found in all groups.
     Conclusions
     1) Semiallogeneic and syngeneic transplantation groups present the changessimilar to CCAD in clinical study, and both can be regarded as the model that permitsmolecular evaluation of CCAD. The former model is applicable for the research ofalloantigen specific and non-alloantigen specific factors, and the latter is applicablefor study of non-alloantigen specific factors.
     2) Early infiltration of immune and inflammatory cells and production ofnon-immune related cytokines might take part in the pathogenesis of chronicdysfunction of corneal allograft.
引文
1. Womer KL, VeUa JP, Sayegh MH. Chronic allograft dysfunction: mechanisms and new approaches to therapy. Semin Nephrol 2000;20:126-147
    2. Kouwenhoven EA, JN IJ, de Bruin RW. Etiology and pathophysiology of chronic transplant dysfunction. Transpl Int 2000;13:385-401
    3. Coster DJ, Williams KA. Transplantation of the cornea. Med J Aust 1992;157:405-408
    4. George AJ, Larkin DF. Corneal transplantation: the forgotten graft. Am J Transplant 2004;4:678-685
    5. Hawa-Montiel H. [Cornea transplantation. Clinical surgical criteria]. Rev Invest Clin 2005;57:358-367
    6. Cosar CB, Laibson PR, Cohen EJ, Rapuano CJ. Topical cyclosporine in pediatric keratoplasty. Eye Contact Lens 2003;29:103-107
    7. Xie L, Shi W, Wang Z, et ai. Effect of a cyclosporine A delivery system in corneal transplantation. Chin Med J (Engl) 2002;115:110-113
    8. Reis A, Megahed M, Reinhard T, et al. Synergism of RAD and cyclosporin A in prevention of acute rat corneal aliograft rejection. Cornea 2002;21:81-84
    9. Sloper CM, Powell RJ, Dua HS. Tacrolimus (FK506) in the management of high-risk corneal and limbal grafts. Ophthalmology 2001; 108:1838-1844
    10. Mills RA, Jones DB, Winkler CR, et al. Topical FK-506 prevents experimental corneal allograft rejection. Cornea 1995; 14:157-160
    11. Shi W, Liu T, Xie L, Wang S. FK506 in a biodegradable glycolide-co-clatide-co-caprolactone polymer for prolongation of corneal allograft survival. Curr Eye Res 2005;30:969-976
    12. Shi W, Gao H, Xie L, Wang S. Sustained intraocular rapamycin delivery effectively prevents high-risk corneal allograft rejection and neovascularization in rabbits. Invest Ophthalmol Vis Sci 2006;47:3339-3344
    13. Sangwan VS, Ramamurthy B, Shah U, et al. Outcome of corneal transplant rejection: a 10-year study. Clin Experiment Ophthalmol 2005;33:623-627
    14. Mahmood MA, Wagoner MD. Penetrating keratoplasty in eyes with keratoconus and vernal keratoconjunctivitis. Cornea 2000; 19:468-470
    15. Ing JJ, Ing HH, Nelson LR, et al. Ten-year postoperative results of penetrating keratoplasty. Ophthalmology 1998;105:1855-1865
    16. Naacke HG, Borderie VM, Bourcier T, et al. Outcome of Corneal transplantation rejection. Cornea 2001; 20:350-353
    17. Nguyen NX, Langenbueher A, Cursiefen C, et al. [Visual rehabilitation and intraocular pressure elevation due to immunological graft rejection following penetrating keratoplasty]. Kiln Monatsbl Augenheilkd 2001;218:492-497
    18. Girard LJ, Esnaola N, Rao R, et al. Aliograft rejection after penetrating keratoplasty for keratoconus. Ophthalmic Surg 1993;24:40-43
    19. Waldock A, Cook SD. Corneal transplantation: how successful are we? Br J Ophthalmol 2000;84:813-815
    20.宫华青,高华,谢立信,史伟云.穿透性角膜移植术后慢性失功移植片的超微结构观察.中华眼科杂志 2007307-312
    21. Bourne WM, Hodge DO, Nelson LR. Corneal endothelium five years after transplantation. Am J Ophthalmol 1994;118:185-196
    22. Nishimura JK, Hodge DO, Bourne WM. Initial endothelial cell density and chronic endothelial cell loss rate in corneal transplants with late endothelial failure. Ophthalmology 1999;106:1962-1965
    23. Bell KD, Campbell RJ, Bourne WM. Pathology of late endothelial failure: late endothelial failure of penetrating keratoplasty: study with light and electron microscopy. Cornea 2000; 19:40-46
    24. Patel SV, Hodge DO, Bourne WM. Corneal endothelium and postoperative outcomes 15 years after penetrating keratoplasty. Am J Ophthalmol 2005; 139:311-319
    25.谢立信,康风英,董晓光,et al.穿透性角膜移植术后植片内皮细胞变化的动态观察.中华眼科杂志 1988:24:76-78
    26.谢立信,康凤英,袁南勇.穿透性角膜移植术的植片内皮研究初步报告.中华眼科杂志 1986:22:69-72
    27. Koch M, Joosten SA, Mengel M, et al. Adoptive transfer of primed CD4+ T-lymphocytes induces pattern of chronic allograft nephropathy in a nude rat model. Transplantation 2005;79:753-761
    28. Aragao E, Moura LA, Pacheco-Silva A. Monitoring anti-HLA Class Ⅰ IgG antibodies in renal transplant recipients. Transplant Proc 2004;36:836-837
    29. Paul LC, Muralidharan J, Muzaffar SA, et al. Antibodies against mesangial cells and their secretory products in chronic renal allograft rejection in the rat. Am J Pathol 1998; 152:1209-1223
    30. Hargrave SL, Mayhew E, Hegde S, Niederkom J. Are corneal cells susceptible to antibody-mediated killing in corneal aliograft rejection? Transpl Immunol 2003; 11:79-89
    31. Cornell LD, Colvin RB. Chronic allograft nephropathy. Curt Opin Nephrol Hypertens 2005; 14:229-234
    32. Eikmans M, Sijpkens YW, Baelde HJ, et al. High transforming growth factor-beta and extracellular matrix mRNA response in renal ailografts during early acute rejection is associated with absence of chronic rejection. Transplantation 2002;73:573-579
    33. Ishimura T, Fujisawa M, Isotani S, et al. Transforming growth factor-betal expression in early biopsy specimen predicts long-term graft function following pediatric renal transplantation. Clin Transplant 2001;15:185-191
    34. Jain S, Furness PN, Nicholson ML. The role of transforming growth factor beta in chronic renal allograft nephropathy. Transplantation 2000;69:1759-1766
    35. Cursiefen C, Cao J, Chen L, et al. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 2004;45:2666-2673
    36.谢立信.角膜移植学.人民卫生出版社 2001,256-268.
    37.谢立信.角膜病学.人民卫生出版社 2007427-429
    38. Wynshaw-Boris A. Model mice and human disease. Nat Genet 1996;13:259-260
    39. Dietrich WF, Copeland NG, Gilbert DJ, et al. Mapping the mouse genome: current status and future prospects. Proc Natl Acad Sci U S A 1995;92:10849-10853
    40. White E, Hildemann WH. Allografts in genetically defined rats: difference in survival between kidney and skin. Science 1968;162:1293-1295
    41. White E, Hiidemann WH, Muilen Y. Chronic kidney allograft reactions in rats. Transplantation I969;8:602-617
    42. Diamond JR, Tilney NL, Frye J, et al. Progressive albuminuria and glomerulosclerosis in a rat model of chronic renal allograft rejection. Transplantation 1992; 54: 710-716
    43. Hamar P, Liptak P, Heemann U, Ivanyi B. Ultrastructural analysis of the Fisher to Lewis rat model of chronic allograft nephropathy. Transpl lnt 2005; 18: 863-870
    44. Tullius SG, Rentzel-Selke A, Egermann F, et al. Contribution of prolonged ischemia and donor age to chronic renal allograft dysfunction. J Am Soc Nephrol 2000; 11: 1317-1324
    45. Martins PN, Reutzel-Selke A, Jurisch A, et al. Induction of carbon monoxide in donor animals prior to organ procurement reduces graft immunogenicity and inhibits chronic aiiograft dysfunction. Transplantation 2006; 82: 938-944
    46. Nishi M, Herbort CP, Matsubara M, et al. Effects of the immunosuppressant FK506 on a penetrating keratoplasty rejection model in the rat. Invest Ophthalmol Vis Sci 1993; 34: 2477-2486
    47. Tucciarone LM, Lanclos KD. Evidence for the involvement of transglutaminase in the uptake of vitellogenin by Xenopus laevis oocytes. Biochem Biophys Res Commun 1981; 99:221-227
    48. Shi WY, Xie LX.[The corneal allograft rejection features in CD4 and CD8 knock-out mice]. Zhonghua Yan Ke Za Zhi 2005; 41: 350-354
    49.史伟云,谢立信.Cd4和cd8基因敲除鼠行穿透性角膜移植术后免疫排斥特征的研究.中华眼科杂志 2005 350-354
    50. She SC, Steahly LP, Moticka EJ. A method for performing full-thickness, orthotopic, penetrating keratoplasty in the mouse. Ophthalmic Surg 1990; 21: 781-785
    51. Yamada J, Streilein JW. Fate of orthotopic corneal allografls in C57BL/6 mice. Transpl Immunol 1998; 6: 161-168
    52. Joo CK, Pepose JS, Stuart PM. T-cell mediated responses in a murine model of orthotopic corneal transplantation. Invest Ophthaimoi Vis Sci 1995; 36: 1530-1540
    53. Niederkorn JY, Mellon J. Anterior chamber-associated immune deviation promotes corneal allograft survival. Invest Ophthalmol Vis Sci 1996; 37: 2700-2707
    54. Piskova J, Kuffova L, Holan V, et al. Evaluation of corneal graft rejection in a mouse model. Br J Ophthalmo12002; 86: 108-113
    55. Tham VM, Abbott RL. Corneal graft rejection: recent updates, Int Ophthalmol Clin 2002; 42: 105-113
    56. Gebhardt BM, Shi W. Experimental corneal allograft rejection. Immunol Res 2002; 25: 1-26
    57. Boisgerault F, Liu Y, Anosova N, et al. Role of CD4+ and CDS+ T calls in allorecognition: lessons from corneal transplantation. J Immunol 2001; 167:1891-1899
    58. Vitova A, Filipec M, Zajicova A, et al. Prevention of corneal allograft rejection in a mouse model of high risk recipients. Br J Ophthalmol 2004; 88: 1338-1342
    59. Bourne WM. Biology of the corneal endothelium in health and disease. Eye 2003; 17: 912-918
    60. Yuen HK, Rassier CE, Jardeleza MS, et al. A morphologic study of Fuchs dystrophy and bullous keratopathy. Cornea 2005; 24: 319-327
    61. Kanai A, Kaufman HE. Further electron microscopic study of hereditary corneal edema. Invest Ophthalmol 1971; 10: 545-554
    62. Verkman AS. Aquaporin water channels and endothelial cell function. J Anat 2002; 200: 617-627
    63. Armitage W J, Dick AD, Bourne WM. Predicting endothelial cell loss and long-term corneal graft survival. Invest Ophthalmoi Vis Sci 2003; 44: 3326-3331
    64. Matsuda M, Manabe R. The corneal endothelium following autokeratoplasty. A case report. Acta Ophthalmol (Copenh) 1988;66:54-57
    65. Khaireddin R, Wachtlin J, Hopfenmuller W, Hoffmann F. HLA-A, HLA-B and HLA-DR matching reduces the rate of corneal allograft rejection. Graefes Arch Clin Exp Ophthalmol 2003;241:1020-1028
    66. Reinhard T, Bohringer D, Enczmann J, et al. HLA class I and II matching improves prognosis in penetrating normal-risk keratoplasty. Dev Ophthalmol 2003;36:42-49
    67. Schmid C, Heemann U, Tilney NL. Retransplantation reverses mononuclear infiltration but not myointimal proliferation in a rat model of chronic cardiac allograft rejection. Transplantation 1996;61:1695-1699
    68. Verma N, Melengas S, Garap JA. Ipsilateral rotational autokeratoplasty for the management of corneal opacities. Aust N Z J Ophthalmol 1999,27:21-25
    69. Bourges JL, Valamanesh F, Torriglia A, et al. Cornea graft endothelial cells undergo apoptosis by way of an alternate (caspase-independent) pathway. Transplantation 2004;78:316-323
    1 Womer KL, Vella JP, Sayegh MH. Chronic allograft dysfunction: mechanisms and new approaches to therapy. Semin Nephrol, 2000,20:126-147.
    2 Kouwenhoven EA, IJzermans JN, de Bruin RW. Etiology and pathophysiology of chronic transplant dysfunction. Transpl Int, 2000,13:385-401
    3 United Kingdom Transplant Support Service Authority Renal Transplant Audit 1984-1993. Bristol, 199535-49.
    4 Waldock A, Cook SD. Corneal transplantation: how successful are we? Br J Ophthalmol, 2000, 84:813-815.
    5 Chapman JR, O'connell PJ, Nankivell BJ. Chronic renal allograft dysfunction. J Am Soc Nephrol, 2005,16:3015-3026.
    6 Sangwan VS, Ramamurthy B, Shah U, et al. Outcome of corneal transplant rejection: a 10-year study. Clin Experiment Ophthalmol, 2005, 33:623-627.
    7 Nishimura JK, Hodge DO, Bourne WM. Initial endothelial cell density and chronic endothelial cell loss rate in corneal transplants with late endothelial failure. Ophthalmology, 1999,106:1962-1965.
    8 Armitage WJ, Dick AD, Bourne WM. Predicting endothelial cell loss and long-term corneal graft survival. Invest Ophthalmol Vis Sci, 2003,44:3326-3331.
    9 Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci, 1997,38:779-782.
    10 Bourne WM. Cellular changes in transplanted human corneas. Cornea, 2001, 20:560-569.
    11 Bell KD, Campbell RJ, Bourne WM. Pathology of late endothelial failure: late endothelial failure of penetrating keratoplasty: study with light and electron microscopy. Cornea, 2000, 19:40-46.
    12 Basadonna GP, Matas AJ, Gillingham KJ, et al. Early versus late acute renal allograft rejection: impact on chronic rejection. Transplantation, 1993,55:993-995.
    13 Furness PN. Histopathology of chronic renal allograft dysfunction. Transplantation, 2001, 71:SS31-36.
    14 Musch DC, Schwartz AE, Fitzgerald-Shelton K, et al. The effect of allograft rejection after penetrating keratoplasty on central endothelial cell density. Am J Ophthalmol, 1991, 111:739-742.
    15 Takemoto S, Port FK, Claas FH, et al. HLA matching for kidney transplantation. Hum Immunol, 2004, 65:1489-1505.
    16 Volker-Dieben HJ, Claas FH, Schreuder GM, et al. Beneficial effect of HLA-DR matching on the survival of corneal allografts. Transplantation, 2000, 70:640-648.
    17 谢立信,李绍伟,董晓光,等.HLA-DRB_1基因配型与高危角膜移植排斥关系的回顾性研究.眼科新进展,2001,21:75-77.
    18 Stark WJ, Stulting RD, Bias WB, et al. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol, 1992, 110:1392-1403.
    19 Aragao E, Moura LA, Pacheco-Silva A. Monitoring anti-HLA Class Ⅰ IgG antibodies in renal transplant recipients. Transplant Proc, 2004, 36:836-837.
    20 Paul LC, Muralidharan J, Muzaffar SA, et al. Antibodies against mesangial cells and their secretory products in chronic renal allograft rejection in the rat. Am J Pathol, 1998, 152:1209-1223.
    21 Hargrave SL, Mayhew E, Hegde S, et al. Are corneal cells susceptible to antibody-mediated killing in corneal allograft rejection? Transpl Immunol, 2003, 11:79-89.
    22 Schmid C, Heemann U, Tilney NL. Retransplantation reverses mononuclear infiltration but not myointimal proliferation in a rat model of chronic cardiac allograft rejection. Transplantation, 1996, 61:1695-1699.
    23 Boom H, Mallat MJ, de Fijter JW, et al. Delayed graft function influences renal function, but not survival. Kidney Int, 2000, 58:859-866.
    24 Bourne WM, Nelson LR, Maguire LJ, et al. Comparison of Chen Medium and Optisol-GS for human corneal preservation at 4 degrees C: results of transplantation. Cornea, 2001, 20:683-686.
    25 Harper CL, Boulton ME, Marcyniuk B, Tullo AB, Ridgway AE. Endothelial viability of organ-cultured corneas following penetrating keratoplasty. Eye. 1998;12 (Pt 5):834-8. PMID: 10070520
    26 Salvadori M, Rosati A, Di Maria L, et al. Immunosuppression in renal transplantation: viral diseases and chronic allograft nephropathy. Transplant Proc, 2005,37:2500-2501.
    27 Wilson SE, Pedroza L, Beuerman R, et al. Herpes simplex virus type-1 infection of corneal epithelial cells induces apoptosis of the underlying keratocytes. Exp Eye Res, 1997, 64:775-779.
    28 Qian H, Atherton S. Apoptosis and increased expression of Fas ligand after uniocular anterior chamber (AC) inoculation of HSV-1. Curr Eye Res, 2003, 26:195-203.
    29 Costanzo MR, Naftel DC, Pritzker MR, et al. Heart transplant coronary artery disease detected by coronary angiography: a multiinstitutional study of preoperative donor and recipient risk factors. Cardiac Transplant Research Database. J Heart Lung Transplant, 1998, 17:744-753.
    30 Bohringer D, Reinhard T, Spelsberg H, et al. Influencing factors on chronic endothelial cell loss characterised in a homogeneous group of patients. Br J Ophthalmol, 2002, 86:35-38.
    31 Wang W, Wu J, Zhang Z, et al. Characterization of regulatory elements on the promoter region of pl6(INK4a) that contribute to overexpression of pl6 in senescent fibroblasts. J Biol Chem, 2001,276:48655-48661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700