P38MAPK抑制剂对血管性痴呆大鼠海马细胞凋亡、Bcl-2、Caspase-3表达及其学习记忆能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     血管性痴呆(vascular dementia,VD)是由一系列脑血管因素(包括缺血性卒中、出血性卒中等)导致的脑组织损害引起的严重的认知功能障碍为特征的综合症,是仅次于阿尔茨海默病(AD)的第二大常见的痴呆类型。我国VD的患病率为1.1%~3.0%,年发病率在5-9/1000人,并且发病率呈逐年上升的趋势,VD不仅严重影响病人自身的生活质量,还对社会和家庭造成沉重的经济和社会负担,血管性痴呆的防治已成为当前急需解决的医学和社会问题。VD是目前老年期痴呆中可预防和有希望治疗的痴呆类型之一,但是目前血管性痴呆的具体发病机制尚不清楚,这方面的研究成为了目前的研究热点。大脑海马体是与人类的学习记忆等高级功能有密切关系的重要功能区,其对缺血低灌注损伤有易感性,海马区神经元凋亡可能在血管性痴呆的发病过程中具有重要作用。已有实验研究发现减少Bcl-2、增加Bax的表达可激活Caspase-3和p53,进一步诱发大鼠海马区神经元的凋亡。Bcl-2和Caspase-3是参与调节细胞凋亡的两个重要分子,Bcl-2的过量表达能有效地抑制Caspase-3激活,最终引起海马区细胞凋亡。p38MAPK (mitogen-activated protein kinase, MAPK)的激活是缺血低灌注损伤引起神经元凋亡的重要信号转导通路之一,P38MAPK可通过调节Bcl-2、Bax和Caspase-3的表达影响细胞凋亡。目前已有p38MAPK特异性的抑制剂SB202190减轻脑缺血再灌注损伤的报道,但SB202190对海马神经元凋亡因子表达和学习记忆能力的影响却少有报道,特别是SB202190对海马神经元凋亡和Bcl-2、Caspase-3表达影响的研究国内外未见有报道。本研究中我们通过观察血管性痴呆大鼠海马区p38MAPK磷酸化的变化,探讨p38MAPK在血管性痴呆发病机制中的作用,并利用p38MAPK抑制剂SB202190作为研究干预方式,血管性痴呆大鼠侧脑室注射SB202190抑制p38MAPK信号通路后,通过Western Blot蛋白印迹法、免疫荧光法和激光扫描共聚焦显微镜等技术观察血管性痴呆大鼠海马区神经元凋亡、Bcl-2和Caspase-3凋亡因子表达变化和大鼠学习记忆能力的改变,探讨p38MAPK信号通路对血管性痴呆大鼠学习记忆的影响,并初步探讨其作用机制。
     第一部分血管性痴呆大鼠模型的制备和P38MAPK抑制剂对血管性痴呆大鼠行为学测试的影响
     血管性痴呆(VD)是老年期痴呆的最常见重要病因之一,学习记忆功能作为大脑的高级神经生理活动,在临床及实验研究中成为了药物干预血管性痴呆动物的一项重要检测指标。在学习记忆的高级神经活动中,动物海马回是最重要的中枢结构,其对缺血缺氧等损伤很敏感,特别是慢性脑低灌注损伤,实验已证实大脑的慢性缺血-再灌注可引起海马结构损伤最终导致学习、记忆功能受损。慢性脑灌注不足是血管性痴呆发病的主要病因,故两血管法被公认是目前国内外进行血管性痴呆动物研究中较为经典的动物实验模型,假手术组只分离双侧颈总动脉并不结扎,作为两血管法VD模型的正常对照。Morris水迷宫实验广泛应用于实验动物行为学的研究,隐蔽平台实验中的逃避潜伏期反映了动物空间记忆的情况,即学习能力;探索实验是Morris水迷宫中学习记忆保持情况的测试方法,即测试动物的记忆能力。我们应用两血管法建立血管性痴呆大鼠模型,研究P38MAPK抑制剂对血管性痴呆大鼠学习记忆能力的影响。
     目的与方法
     本实验采用了双侧颈总动脉结扎法造成大鼠脑组织慢性缺血损伤,并经过进行行为学测试确定存在学习、记忆障碍,制作血管性痴呆大鼠模型,假手术组只分离出双侧颈总动脉并不结扎动脉,作为两血管法VD模型的正常对照。VD大鼠造模手术恢复后采用侧脑室注射给药方式给予P38MAPK抑制剂SB202190,注射药物2周后用Morris水迷宫法测试各组大鼠的学习记忆能力的变化。
     结果
     1.各组大鼠平台逃避潜伏期的比较
     在侧脑室注射结束后1周后以Morris水迷宫开始隐蔽平台实验观察大鼠学习能力,随着训练天数的增加,各组大鼠平台逃避潜伏期均缩短,从第1天起假手术组潜伏期为24.17±4.12Ss,模型组潜伏期明显延长,为82.71±8.27s,应用SB202190后潜伏期明显缩短为48.72±7.01s,假手术组和SB202190组与模型组比较差异有显著性意义(P<0.01),第2天和第3天假手术组和SB202190组与模型组比较仍有显著性差异
     2.各组小鼠探索实验结果比较
     在Morris水迷宫的第4天撤除隐蔽平台后,观察各组大鼠的空间探索能力,假手术组大鼠停留平台象限时间35.21±3.78s,SB202190组为26.45-4.66s,模型组18.67±5.39s,应用SB202190组与VD模型组比较原平台象限停留时间有显著性差异(P<0.01);各组大鼠当天的速度比较无明显差异(P>0.05);假手术组、模型组和SB202190组穿越原平台次数分别为3.2±1.4;1.3±0.5;1.8±0.9,各组大鼠间比较有显著性差异(P<0.01)。
     结论
     本实验记录了各组大鼠平台逃避潜伏期并进行比较,结果发现从第1天起连续3天观察发现模型组大鼠的逃避潜伏期明显长于假手术组,说明作为同一种系假手术组大鼠学习能力比模型组强,模型组大鼠结扎双侧颈总动脉后学习能力明显下降,同时也证实了VD模型的成功性。进一步结果显示给予SB202190治疗后,相比于模型组大鼠,SB202190组大鼠逃避潜伏期明显缩短,原平台象限停留时间明显延长,提示给予SB202190治疗后大鼠的学习能力得以改善。研究结果发现SB202190作为P38MAPK抑制剂之一,在改善血管性痴呆大鼠的学习记忆能力方面具有确切疗效。
     第二部分SB202190对血管性痴呆大鼠海马区P38MAPK磷酸化变化、细胞凋亡及Bcl-2和Caspase-3表达影响的研究
     细胞凋亡(Apoptosis)是细胞的一种基本的生物学现象,是一个多基因严格控制的过程,Bcl-2和Caspase-3分别是调节细胞凋亡分子家族中的两个重要成员之一,特别是Bcl-2和Caspase-3在调节脑细胞凋亡中的作用已得到广泛实验证实。研究表明Bcl-2表达与细胞存活关系非常密切,增加脑内Bcl-2的表达可减少脑梗死病灶的大小并对神经元有保护作用。Caspase-3为Bcl-2的下游调控蛋白,是引起凋亡的始发因子,Bcl-2的过量表达能有效地抑制Caspase-3激活和细胞凋亡的发生。p38MAPK信号转导通路在细胞凋亡中发挥着重要作用,p38MAPK可被磷酸化激活后调节基因转录,诱导一些特定基因的表达,引起细胞增殖、分化及各种细胞因子的合成等,诱导Bcl-2、Caspase-3介导的凋亡通路,引起一系列的生物学效应。SB202190抑制缺血后神经元凋亡可能是多途径多靶点的过程,可能是通过Bcl-2抑制Caspase3/Caspase2依赖的蛋白水解级联反应,从而抑制线粒体释放细胞色素C减少细胞凋亡的发生。有研究表明VD大鼠学习记忆能力与P38MAPK的表达密切相关,本研究不仅要证实上述学者的研究结果,并且还要再进一步证实P38MAPK通路可调控凋亡因子Bcl-2和Caspase-3的表达,这可能是P38MAPK通路影响VD大鼠学习记忆能力的途径。
     目的与方法
     应用两血管法(bilateral common carotid artery occlusion,2VO)建立血管性痴呆(VD)模型,将60只三月龄雄性Wistar大鼠随机分成假手术组、血管型痴呆模型组和P38MAPK抑制剂SB202190组。各组大鼠均采用侧脑室注射给药方式给药,SB202190组大鼠应用微量注射器将10μmol/LSB202190溶液5μL进行侧脑室注射,模型组和假手术组大鼠给予侧脑室注射等量的1%DMSO溶媒液,注射药物后应用TUNEL法检测海马区神经元凋亡,应用蛋白印迹(Western blot)法检测大鼠海马区P38MAPK磷酸化变化,免疫荧光法和激光共聚焦显微镜观察大鼠海马区Bcl-2和Caspase-3表达。
     结果
     荧光强度检测结果显示,TUNEL阳性细胞以绿色荧光表示。假手术组切片偶见TUNEL阳性(绿色荧光)细胞,模型组、SB202190组阳性细胞明显增多,差异有显著性意义;SB202190组与模型组相比,TUNEL染色阳性细胞明显减少。
     以免疫印迹法观察各组大鼠海马p38MAPK磷酸化变化,三组大鼠海马组织内磷酸化p38MAPK的表达比较有显著性差异,模型组的表达在明显升高,而p-p38MAPK在假手术组仅有少量的表达,SB202190组的p-p38MAPK表达较模型组明显降低,有显著性差异。
     Bcl-2蛋白在本实验中标记为绿色荧光。激光共聚焦显微镜观察假手术组切片仅见极少量神经细胞免疫荧光表达,模型组可见Bcl-2免疫荧光强度增加,SB202190组明显增加。SB202190组与模型组比较,Bcl-2免疫荧光强度明显增加,有统计学意义。Bcl-2阳性细胞以绿色荧光表示,假手术组切片偶见阳性绿色荧光细胞,模型组可见Bcl-2阳性细胞数增加,SB202190组明显增加。SB202190组与模型组比较,Bcl-2阳性细胞数明显增多,有统计学意义。
     Caspase-3蛋白在本实验中也标记为绿色荧光。激光共聚焦显微镜观察假手术组切片仅见极少量免疫荧光表达,SB202190组可见Caspase-3免疫荧光强度增加,模型组明显增加。SB202190组与模型组比较,Caspase-3免疫荧光强度明显减少,有统计学意义。Caspase-3阳性细胞以绿色荧光表示,假手术组切片偶见阳性细胞,模型组可见Caspase-3阳性细胞数明显增加,SB202190组阳性细胞数增加。SB202190组与模型组比较,Bcl-2阳性细胞数明显减少,有统计学意义。
     结论
     本研究证实了P38MAPK通路可调控凋亡因子Bcl-2和Caspase-3的表达,这可能是P38MAPK通路影响VD大鼠学习记忆能力的途径。应用P38MAPK抑制剂SB202190后可抑制血管性痴呆大鼠海马区细胞凋亡,可能是通过Bcl-2抑制Caspase3依赖的蛋白水解级联反应,减少细胞凋亡的发生,从而改善大鼠的学习记忆能力,这些变化进一步证实了SB202190对大鼠海马神经元的独特保护作用。
Backgrounds
     Vascular dementia (VD) is the second most common form of dementia after Alzheimer's disease (AD).VD is a syndrome includeing Severe cognitive impairment caused by a series of cerebral vascular factors(ischemic stroke, hemorrhagic stroke, etc). In China, the prevalence rate of VD was1.1%~3%, the annual incidence rate in5-9/1000, and the incidence rate increased year by year. VD not only seriously affects the life quality of the patients, but also caused heavy economic burden on society and family. The prevention and treatment of vascular dementia has become a serious medical and social problem.At present,VD is one of the dementia type which has the hope to get prevention and treatment,but the pathogenesis of vascular dementia is not clear,and the research in this area has become a research focus.Hippocampus is an important functional area which has close relationship with the human learning and memory, and it has susceptibility to ischemia hypoperfusion injury.The apoptosis of hippocampal neurons plays an important role in the pathogenesis of vascular dementia.
     The study found that decreased Bcl-2, increased the expression of Bax could activate Caspase-3and p53, consequently induce neuronal apoptosis in rat hippocampus.Bcl-2and Caspase-3are two important regulation molecular in apoptosis, overexpression of Bcl-2can effectively inhibit caspase-3activation and apoptosis.
     Activation of the p38MAPK (mitogen-activated protein kinase) signaling pathway by hypoxia may initiate neuronal apoptosis, leading to the functional deficits of VaD, P38MAPK signaling pathway can affect apoptosis by regulating the expression of Bcl-2, Bax and Caspase-3. At present, SB202190, the specific inhibitor of p38MAPK alleviate cerebral ischemia reperfusion injury were reported. No previous study has examined the effect of SB202190for sustaining hippocampus-dependent spatial memory or the effects of this inhibitor on the expression of apoptotic regulators under chronic ischemia, especially the expression of Bcl-2, Caspase-3.
     To these ends, we examined the effects of SB202190on hippocampal neuron apoptosis, Bcl-2and caspase-3expression, and p38MAPK phospho-activation in a rat model of VaD by Western blotting, immunofluorescence and confocal laser scanning microscopy, and tested whether p38MAPK inhibition can rescue deficits in hippocampus-dependent Morris water maze spatial learning and memory. Our results indicate that blockade of the p38MAPK signaling pathway can indeed protect hippocampal neurons against chronic ischemic injury and rescue spatial learning and memory deficits, at least in part by suppressing caspase-3-dependent apoptosis.
     Part1The making of vascular dementia rat model and the effect of P38MAPK inhibitor on the behavior test of vascular dementia rats
     Vascular dementia (VD) is a common cause of senile dementia, learning and memory function as the advanced neural physiological activity in the brain, has become important in experimental vascular dementia animal model.The hippocampus involved in learning and memory function, the advanced nerve activity. The hippocampus is very sensitive to ischemia and hypoxia, especially the chronic cerebral hypoperfusion. Previous experiments have confirmed that the ischemia-reperfusion of brain could damage the hippocampus,and lead to learning and memory impairment.
     Chronic cerebral hypoperfusion is the main cause of vascular dementia, and the making of vascular dementia experiment animal model by two vessels method is recognized the classical method at home and abroad.In our experiment the rat in sham operation group only been isolated bilateral common carotid artery without ligation. Morris water maze was used in the experimental animal behavior experiments, the hidden platform in escape latency denote the animal's spatial memory, learning ability; exploring experimental in Morris water maze is maintained to the test animal memory. We use two vessel method to establish vascular dementia rat model, the effects of P38MAPK inhibitors on the ability of learning and memory of vascular dementia rats.
     Objective and methods
     This experiment used the bilateral common carotid artery ligation caused by chronic ischemia injury of rat brain tissue, and through behavior tests were carried out to determine the existence of learning and memory disorders, make the model of vascular dementia rats, sham operation group only isolated bilateral common carotid artery ligation and normal control is not, as the two blood tube method VD model. The intracerebroventricular injection way to give P38MAPK inhibitor SB202190, affect learning and memory from the7day after the model was tested by Morris water maze in rats of each group.
     Result
     One week after ICV injection, hippocampus-dependent spatial learning was examined by the MWM hidden platform trail. On each of three testing days, the deficit in spatial learning as measured by escape latency was significantly longer in the model group than the sham-operated group (all P<0.01), suggesting successful induction of hippocampal deficits. Latencies were significantly lower in rats injected with SB202190compared to the model group on each day of testing (all P<0.01). indicating spatial learning, whilst latency in the VaD model group was not significantly reduced by training (from82.71±8.27s to77.74±6.33s, P>0.05). Escape latencies in the SB202190group decreased from48.72±7.01s to40.34±2.46s (P<0.05), indicating spatial learning improvement
     On day4, the hidden platform was removed from the MWM in order to conduct a probe test of spatial memory. sham operation group rats remain platform quadrant time was35.21±3.78s, SB202190group was26.45±4.66s,18.67±5.39s in model group, there were significant differences between the SB202190group and sham operation group and model the residence time of the original platform quadrant group (P<0.01); rats crossing the original platform times had significant difference (P<0.01);there was no significant difference between the speed of the rats in each group (P>0.05).
     Conclusion
     In this experiment, the platform escape latency of each rats was recorded and compared, in the first day, the escape latency of VDmodel group was significantly longer than that in sham operation group, indicate learning ability of fake operation group rats was better than the model group, the learning ability of VDmodel group by ligation of bilateral common carotid artery was significantly decreased, which confirmed the success of VD model. Furthermore after SB202190treatment, escape latent period of SB202190group rat is shortened obviously, the original platform quadrant time was significantly prolonged, indicate the learning ability of rats after SB202190treatment improved. SB202190, one of the P38MAPK inhibitors, which has definite effect on improve the learning memory ability in vascular dementia rats model.
     Part2The effect of P38MAPK inhibitor on P38MAPK phosphorylation、cell apoptosis、and the expression of Bcl-2、Caspase-3in hippocampus of vascular dementia rat
     Apoptosis as a basic biological phenomena in cell, is a multi gene controlled process.Bcl-2and Caspase-3are two important member in of apoptosis molecules family, especially the function in the regulatiing on brain cell apoptosis has been widely confirmed. Studies have shown that the expression of Bcl-2is closely related to cell survival, and increase the expression of Bcl-2in brain may reduce cerebral infarct size and has protective effects on neural cells. Caspase-3is a downstream regulated protein of Bcl-2, also is the initial factor of apoptosis. The overexpression of Bcl-2can effectively inhibit the activation of Caspase-3and the apoptosis.
     P38MAPK signal transduction pathway plays an important role in apoptosis. Phosphorylated p38MAPK,the activated form can regulate gene transcription, induce the expression of specific genes, cause cell proliferation、differentiation、apoptosis and cytokine synthesis, and induce p38-Caspase-3apoptosis pathway. The inhibition of neuronal apoptosis after ischemia by SB202190may be the multi-channel and multi targets.lt can inhibite mitochondrial cytochrome C release and reduce apoptosis by Caspase3/Caspase2dependent proteolytic cascade which inhibited by Bcl-2. Studies showed that learning memory ability and the expression of P38MAPK was closely related to the VD rats. Our study want to confirme that the P38MAPK pathway can regulate the expression of apoptosis factor Bcl-2and Caspase-3, by which P38MAPK pathway can affect the learning and memory ability of VD rats model.
     Objective and methods
     vascular dementia (VD) model was established by two vessels method (bilateral common carotid artery occlusion,2VO),60male Wistar rats3month old were randomly divided into sham operation group, vascular dementia model group and SB202190group. Rats were injected medication into the lateral ventricle, the rats of SB202190group injected5μL SB202190(10μmol/L)solution by a micro syringe into lateral ventricle. The model group and sham operation group rats were injected5μL1%DMSO solution The hippocampus cell apoptosis was detected by TUNEL method after the injection of drugs, western blot method was used to detect p-P38MAPK in the rat hippocampus, and mmunofluorescence and confocal laser scanning microscopy were used into observe Bcl-2and Caspase-3expression in hippocampus of rats.
     Result
     The results of the fluorescence intensity display, TUNEL positive cells expressed green fluorescence. The sham operation group slices express few TUNEL positive cells (green fluorescence), in the model group and the SB202190group positive cells increased obviously, there was significant difference; compared TUNEL positive cells decreased in SB202190group than in the model group.
     Observe the changes of p38MAPK phosphorylation in rats hippocampus by Western blot method, the expression of p-p38MAPK in different groups of rat hippocampus have obvious differences, the expression of p-p38MAPK increased significantly in the model group and a small amount of p-p38MAPK expression in sham operation group.the expression of p-p38MAPK in SB202190group decreased obviously compared with the model group, the difference was significant.
     Bcl-2protein in this experiment was marked as green fluorescence. The expression
     of Bcl-2protein in the sham operation group was only few immunofluorescence, Bcl-2fluorescence intensity in the model group increased, and fluorescence intensity in SB202190group significantly.Bcl-2immune fluorescence intensity increased significantly in SB202190group compared with model group. The Bcl-2positive cells expressed green fluorescent, positive cells could be occasionally found in sham operation group, and increased in model group, significantly increased in SB202190group. the number of Bcl-2positive cells increased obviously in SB202190group compared with the model group, there was statistical significance.
     Caspase-3protein in this experiment was also marked as green fluorescence. only few immunofluorescence expressed in sham operation group, fluorescence intensity of Caspase-3in SB202190group increased, and significantly increased in the model group. The fluorescence intensity of Caspase-3decreased significantly in SB202190group compared with model group, and there was statistical significance. The Caspase-3positive cells expressed as green fluorescent, positive cells in sham operation group were occasionally observed, the number of Caspase-3positive cells in the model group increased significantly, the number in SB202190group increased. SB202190group compared with the model group, the number of Caspase-3positive cells decreased significantly, there was statistical significance.
     Conclusion
     This study demonstrated that the P38MAPK pathway can regulate the expression of apoptosis factor Bcl-2and Caspase-3, which may be the way that P38MAPK pathway affect the learning and memory ability of VD rats. Application of P38MAPK inhibitor SB202190can inhibit the apoptosis of cells in hippocampus in vascular dementia rats model, may be a proteolytic cascade by the inhibition of Bcl-2on Caspase3, improving the ability of learning and memory in rats by the reduction of apoptosis.All of these changes confirmed the unique protective effect of SB202190on hippocampal neurons in VD rats model.
引文
[1]李梨,周岐新,石京山.血管性痴呆研究概况.中国老年学杂志,2005,10(25):1269.
    [2]Roman GC.Vascular dementia may be the most common form of dementia inthe elderly.J Neurol Sci 2002;203-204(15):7-10.
    [3]钱采韵.血管性痴呆与血管性认知功能障碍.中国医学科学院学报,2004,26(2):198-200.
    [4]Ford GA,Bryant CA,Mangoni AA,et al.Stroke,dementia,and drug delivery. BrJ Clin Pharmacol 2004;57(1):15-26.
    [5]蔺心敬,胡长林,李吕力等.血管性痴呆发生机制的研究.脑与神经疾病杂志,2003,11(4):235-6.
    [6]Sekhon LH,Morgan MK,Spence I,et al.Chronic cerebral hypoperfusion: pathological and behavioral consequences.Neurosurgery.1997,40(3):548-556.
    [7]Wiard RP,Dickerson MC,Beek O,et al.Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia.Stroke.1995;26(3):466-472.
    [8]Q. Zeng,J. Han,B. Wang,et al. Water Maze Spatial Learning Enhances Social Recognition Ability in Aged Rats. Behavioural Pharmacology.2012; 23(7): 669-677.
    [9]Banik,Avijit,Anand,et al. Loss of learning in mice when exposed to rat odor:A water maze study. Behavioural Brain Research.2011; 216(1):466-471.
    [10]姜彩肖,张丽梅,杭景仙,等.血管性痴呆大鼠学习记忆障碍及发病机制.中国老年学杂志,2009;29:1940-1942
    [11]Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. ArchNeurol,2009,66:1210-1215.
    [I2]Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer's disease and vasculardementia in developing countries:prevalence, management, and risk factors. Lancet Neurol, 2008,7:812-826.
    [13]Ohnishi T,Hoshi H,Nagamachi S.High-resolution SPECT to assess hippocampalperfusion in neuropsychiatric diseases. J Nucl Med,1995,36: 1163-1169.
    [14]Kazuya S. A model of proximol middle cerebral artery occlusion inrat [J]. Neurosci Methods,1989,30:169-173.
    [15]De Jong GI, De Vos RA, Steur EN, et al. Cerebrovascular hypoperfusion:a risk factor for Alzheimer's disease? Animal model and postmortem human studies [J]. Ann NY Acad Sci,1997,826:56-74.
    [16]Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusionin the rat:A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev,2007,54:162-180.
    [17]D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews.2001,36(1):60-90.
    [18]Brandeis R, Brandys Y, Yehuda S. The use of the Morris water maze in the study of memory and learning. International Journal of Neuroscience.1989;48(1-2):29-69.
    [19]McNamara RK, Skelton RW. The neuropharmaco logical and neurochemical basis of place learning in the Morris water maze. Brain Research Reviews.1993;18(1):33-49.
    [20]Logue SF, Paylor R, Wehner JM. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behavioral neuroscience.1997;111(1):104-113.
    [1]Bin Lu;Hong-Duo Chen;Hong-Guang Hong-Guang. The relationship between apoptosis and aging. Advances in Bioscience and Biotechnology,2012,3(6) 705-711.
    [2]Zhang L,Kokonen G,Roth GS.Identification of neuronalprogrammed cell death in sim in the striatum of normaladult rat brain and its relationship to neuronal death duringaging.Brain Res,1995,677:177.
    [3]Hill IE,Memanns JP,Rasquinha I,et al.Mechanisms ofdelayed cell death following hypoxic-ischemic injury in theimmature rat.Brain Res,1995,676:177.
    [4]朱炬,王纪佐.大鼠局灶性脑缺血再灌注后Bcl-2和Bax的表达[J].天津医科大学学报,2003,9(1):43.
    [5]J Prosser-Loose E, E Smith S, G Paterson P, et al.Experimental model considerations for the study of protein-energy malnutrition co-existing with ischemic brain injury. Current Neurovascular Research.2011;8(2):170-182.
    [6]Cross TG, Scheel-Toellner D, Henriquez NV, et al.Serine/threonine protein kinases and apoptosis. Experimental cell research.2000;256(1):34-41.
    [7]Kong ANT, Yu R, Chen C, et al. Signal transduction events elicited by natural products:role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Archives of pharmacal research.2000;23(1):1-16.
    [8]Rachael Rutkowski,Robin Dickinson,Graeme Stewart,et al. Regulation of Caenorhabditis elegans p53/CEP-1-Dependent Germ Cell Apoptosis by Ras/MAPK Signaling. PLoS Genetics.2011;7(8):e1002238.
    [9]Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochimica et biophysica acta.2005;1754(1-2):253-262.
    [10]Seger R, Krebs E. The MAPK signaling cascade. The faseb journal. 1995;9(9):726-735.
    [11]Russo AE, Torrisi E, Bevelacqua Y, et al. Melanoma:molecular pathogenesis and emerging target therapies (Review). International journal of oncology. 2009;34(6):1481-1489.
    [12]Irving EA, Baron e FC, Reith AD, et al. Differential activation of MAPK/ERK and p38MAPK in neurons and glia following focal cerebral ischemia in the rat.Mol Brain Res.2004; 77(1):65-75.
    [13]Takagi Y,Nozaki K,Sugino T, et al.Phosphorylation of c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase after transient forebrain ischemia in mice. Neuroscience Letter.2000; 294(2):117-120.
    [14]LIU B, MAO W, LI A, et al. Effect of Shenxiong Huayu Capsule on Expression of p38MAPK in CA1 Area of Hippocampus in Vascular Dementia Rats. Chinese Journal of Experimental Traditional Medical Formulae.2010;8:161-165.
    [15]Yuan H, Yang S, Zhou W, et al. MAPK cascade signaling and long-term potentiation. Chinese Pharmacological Bulletin.2006;22(7):769-769.
    [16]Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review). International journal of oncology.2003;22(1):15-20.
    [17]Nagata S. Apoptosis by Death Factor Review. cell.1997;88(3):355-365.
    [18]Elmore S. Apoptosis:a review of programmed cell death. Toxicologic pathology. 2007;35(4):495-516.
    [19]Mehic B.Apoptosis-is it good or bad. Bosn J Basic Med Sci.2012;12(3):1-1.
    [20]Hua F, Cornejo MG, Cardone MH, et al. Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation:molecular genetic tests of computational model predictions. J Immunol.2005; 175(2):985-995.
    [21]Hata R, Gillardon F, Michaelidis TM, et al. Tar-geted disruption of the Bcl-2 gene in mice exacerbates focalischemic brain injury. Metab Brain Dis.l999;14(2):117-124.
    [22]Yang Y, Zhang SM, Fan SY, et al. Effects of activation of caspase-3 in cerebral ischemicreperfusion injury. Chin Med J.2004; 84(12):1035-1037.
    [23]Namura S,zhu J,Fink K,et al.Activation and cleavage of Caspase-3 in apoptosis induced by experimential cerebral ischemia. J Neosci.l998;18(10):3659-3668.
    [24]Chen J,Nagayama T,Jin K,et al.Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia.J Neurosci.l998,18(13):4914-4928
    [25]ZHOU HY,MA YF. Effect of magnesium sulfate on neuron apoptosis and expression of caspase-3,bax and Bcl-2 after cerebral ischemia reperfusion injury.Chin MED J.2003;116(10):1532-1534.
    [26]Liang Y, Nylander KD, Yan C, et al.Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Mol Pharmacol.2002; 61(2):142-149.
    [27]Hua F, Cornejo MG, Cardone MH, et al. Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation:molecular genetic tests of com-putational model predictions. J Immunol.2005; 175(2):985-995
    [28]Yan L, Yu SZ, An TL, et al.Relationship between variations of caspase-3 expression and activity, and the neuronal apoptosis in ischemia-reperfusionregion of rat forebrain. Chin J Neurol.2005; 38(1):25-29.
    [29]Swanton E,Savory P,Cosulich S,et al. Bcl-2 regulates a capase-3/capase-2 apoptotic cascade in cytosolic extracts. Oncogene.1999;18(10):1781-1787
    [30]Su JH,Nichol KE,Sitch T,et al.DNA damage and activated caspase-3 expression in neurons and astrocytes:evidence for apoptosis in frontotemporal dementia..Exp Neurol.2000;163(1):9-19.
    [31]Chen L, Zeng Z. Effects of tetrandrine on learning and memory dysfunction and neuronal apoptosis in hippocampus of rats with vascular dementia. Paper presented at: Natural Computation (ICNC),2012 Eighth International Conference on2012.
    [32]Hui W, Dong J, Yue Q, et al. Effect of Huoxueyizhi slice on memory impairment and Bcl-2 gene expression in hippocampus of vascular dementia rats. The Chinese Journal of Clinical Pharmacology.2010;(2):129-132.
    [1]Ferrer I,Friguls B,Dalfo E,et al.Early modifications in the expression of mitogen-activated protein kinase(MAPKERK).stress-activated kinasesSAPK JNK and p38and their phosphorylated substrates following focal cerebral ischemia[J]. ActaNeuropathol(Berl),2003,105(5):425-437.
    [2]Kyriakis JM, Avruch J. Mammalian mitogen_activated protein kinase signal transduction pathways activated by st ress and inflammat ion[J]. Physiol Rev, 2001,81(2):807-869.
    [3]Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway inmelanoma[J]. CurrOp inOncol,2008,20 (2):1832189.
    [4]Brewster JL,De Valoir T,Dwyer NC et al.An osmosensing signal transduction pathway in yeast[J].Science,1993,259(5102):760-1763.
    [5]Han J,lee JD,Bibbs L,et al.Science,1994,265(5173):808.
    [6]Kanaji N, Nelson A, Allen-Gipson D S, et al. The p38 mitogen-activated protein kinases modulateendothelial cell survival and tissue repair[J]. Inflamm Res,2012, 61(3):233-244.
    [7]Goedert M, Cuenda A, Craxton M, et al. Activation of the novelstress-activated protein kinaseSAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases[J]. EMBO J,1997,16(12):3563-3571.
    [8]Gillespie M A, Le Grand F, Scime A, et al. p38-{gamma}-dependent gene silencing restricts entryinto the myogenic differentiation program [J]. J Cell Biol,2009,187(7): 991-1005.
    [9]Jiang Y,Chen CH,Li ZJ,et al.characterization lf the structure and function of a new mitlgen-activated protein kinase (p38β)[J].J Biol Chem,1996;271(30):17920-17926.
    [10]Han J,Lee JD,Bibbs I,et al.A MAP kinase targeted by endotoin and hyperosmo-larity in mammaliancells[J].Science,1994;265(5173):808-811.
    [11]Chan P S, Koon H K, Wu Z G, et al. Role of p38 MAPKs in hypericin photodynamic therapy-induced apoptosis of nasopharyngeal carcinoma cells[J]. Photochem Photobiol,2009,85(5):1207-1217
    [12]Filomeni G, Piccirillo S, Rotilio G, et al. p38(MAPK) and ERK 1/2 dictate cell death/survivalresponse to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y[J].Biochem Pharmacol,2012,48(15):56-63.
    [13]M orel C, Ibarz G, Oiry C, et al. Cross2interactions of two p38 mitogen activated protein (MAP) kinase inhibitors and two cholecystokin in(CCK) receptor ant agoniss with the CCK1 receptor and p38 MAP kina[J]. J Biol Chem,2005, 280(22):21384-21393.
    [14]Galan-Moya E M, de la Cruz-Morcillo M A, Llanos Valero M, et al. Balance between MKK6 andMKK3 mediates p38 MAPK associated resistance to cisplatin in NSCLC[J]. PLoS One,2011,6(12):e28406。
    [15]Johnson GL,Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK,JNK,and p38proteinkinases[J].Science,2002,298(5600):1911-1912.
    [16]Eva M. Galan-Moya,Miguel A. de la Cruz-Morcillo;Maria Llanos Valero, et al. Balance between MKK6 and MKK3 Mediates p38 MAPK Associated Resistance to Cisplatin in NSCLC.PLoS ONE,2011,6 (12):e28406.
    [17]Su-Feng Chen,Shin Nieh,Shu-Wen Jao,et al.Quercetin Suppresses Drug-Resistant Spheres via the p38 MAPK-Hsp27 Apoptotic Pathway in Oral Cancer Cells. PLOS ONE2012,7(11) e49275.
    [18]Marais E;Genade S;Salie R;et al.The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning[J]. Basic Research in Cardiology.2005,100(1):35-47.
    [19]T A Navas,A N Nguyen,T Hideshima,et al.Inhibition of p38 MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-XL, Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo [J].LEUKEMIA.2006,20(6):1017-1027.
    [20]Burgess DJ.Apoptosis:Refined and lethal. Nat Rev Cancer[J].2012,13 (2):79.
    [21]Goodsell DS.The molecular perspective:Bcl-2 and apoptosis[J].2002,20(4): 355-356.
    [22]Payam BEHZADI;Elham BEHZADI. Apoptosis-Triggering Effects:UVB- irradiation and Saccharomyces cerevisiae.Maedica Buchar[J].2012,7(4):315-318
    [23]Bulavin DV, Higashimoto Y, Popoff IJ, et al. Initiation of a G2/M checkpoint after ultraviolet tadiat ion require p38 kinase[J]. Nature,2001,411:102-107.
    [24]MOOSAVI M A, YAZDANPARAST R, LOTFI A. ERK1P2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5-triphosphate-mediated terminalerythroid differentiation of K562 cells[J]. Int J Biochem Cell Biol,2007,39(9):1685-1697.
    [25]Johnson GL,Lapadat R.Mitogen activated protein kinase pathways mediated by ERK,JNK and p38proteinkinases[J].Science,2002,298(5600):1911-1912.
    [26]Xichao Wang;Qun Chen;Da Xing.Focal Adhesion Kinase Activates NF-κB via the ERK1/2 and p38MAPK Pathways in Amyloid-β25-35-Induced Apoptosis in PC12 Cells[J]. Journal of Alzheimer's Disease,2012,32(1):77-94.
    [27]Ji C,Ren F,Xu M.Caspase-8 and p38MAPK in DATS-induced apoptosis of human CNE2 cells[J]. Brazilian Journal of Medical and Biological Research,2010,43(9): 821.
    [28]Ghatan S, Larner S, Kinoshita Y, et al. p 38 MAP kinase mediates bax translo-cation in nitric oxide_induced apoptosis in neurons[J].J Cell Biol,2000,150(2): 335-347.
    [29]Walton KM,DiRocco R,Bartlett BA, et al. Activation of p38MAPKin microglia after ischemia [J] J Neurochem,1998,70 (4):1764-1767.
    [30]Maroney AC,Finn JP,Bozyczko-coyne D,et al.GEP-134(KT7515),an inhibitor of JNK activation,rescues sympatheticneurons and neuronally differentiated PC 12 cells from death evokedby three distinct insults [J].J Neurochem,1999,73 (5):1901-1902.
    [31]Tang LH,Xia ZY,Zhao B,et al.Phosphocreatine preconditioning attenuates apoptosis in ischemia-reperfusion injury of rat brain. Journal Of Biomedicine & Biotechnology [J].2011,107091.
    [32]Legos JJ,Mclaughlin B,Skaper SD, et al.The selective p38 inhibitor SB239063 protects primary neurons from mild to moderate excitotoxicinjury [J].Eur J Pharmacyol,2002,447(1):37-42.
    [33]Schauer RJ,Grebes AL,Voneir D, et al. Induction of cellular resistanceagainst kuffer cell-derived oxidant stress:a novelconcept of hepatoprotection by ischemic preconditioning [J]. Hepatology,2003,37(2):286-295.
    [34]Barone FC,Irving EA,Ray AM,et al.Inhibition of p38MAPK mitogen-activated protein kinase provides neuroprotection in cerebralfocal ischemia [J] Med Res Rev,2001,21(2):129-145.
    [35]Hua F, Cornejo MG, Cardone MH, et al. Effects of Bcl-2 levels on Fas signaling-induced Caspase-3 activation:molecular genetic tests of computational model predictions. J Immunol.2005; 175(2):985-995.
    [36]Yang Y, Zhang SM, Fan SY, et al. Effects of activation of Caspase-3 in cerebral ischemicreperfusion injury. Chin Med J.2004; 84(12):1035-1037.
    [37]Thurmond RL, Wadsworth SA, Schafer PH,et al. Kinetics of a small molecule inhibitor binding to p38 kinase[J].Eur J Biochem,2001,268(22):5747-5754.
    [38]Lisnock J, Tebben A, Frantz B,et al. Molecular basis for p38 protein kinase inhibitor specificity[J].Biochemistry,1998,3(47):16573-16581.
    [39]Pan SL, TaoKY, Guh JH,et al. The p38 mitoen-activated protein kinase pathway plays a critical role in PAR2-induced endothelial IL-8 production and leukocyte adhesion [J].Shock,2008,30(5):496-502.
    [40]M. Saito and Y. Miki.P38 Detection of angiogenic micrometastases in the drainage vein of breast by using RT PCR [J]. The Breast,2005,14(Suppl 1):S26.
    [41]ZHANG Li-Sheng,CHEN Da-Yuan.RNA. interference and its promising future[J].Hereditas,2003,25(3):341-343.
    [42]Feng Z,Deng H,Du J,et al. Lentiviral-mediated RNAi targeting p38MAPK ameliorates high glucose-induced apoptosis in osteoblast MC3T3-E1 cell line[J].Indian J Exp Biol,2011,49(2):94-104.
    [1]Kramer JH,Wetzel ME.Vascular dementia[J].Neurovasc Neuropsychol,2009;62 (5):87-102.
    [2]Paul RH,Cohen RA,Moser DJ,et al.Clinical correlates of cognitive dedine in vascular dementia[J].Cogu Behav Neurol,2003;16(1):40-6.
    [3]Gorelick PB.Status of risk factors for dementia associated with stroke[J].Stroke, 1977,28(2):459-463.
    [4]Woolf NJ,Butcher LL.Cholinergic systems mediate action from movement to higher consciousness.Behav Brain Res,2011,221:488-498.
    [5]Yukinisa M,Qi Z,Kousuke H,et al. Choto-san,a kampo formula,improves chronic cerebral hypoperfusion induced spatial learning deficit via stimulation of muscarinic Ml receptor.Pharmacology Biochemistry Behavior,2005;81(3):616-25.
    [6]Roman GC,Kallaria RN.Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia[J].Neurobiol Aging,2006;27(12):1769-85.
    [7]Jia JP, Jia JM,Zhou WD,et al. Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer's disease and vascular dementia[J].Chin Med J (Engl),2004,117(8):1161-1164.
    [8]于宝成,王玉敏,魏士贤.脑血管危险因素与Alzheimer病[J].国外医学·脑血管疾病分册,2003,11(5):374-376.
    [9]王征,李运曼,龚晓健,等.脑脉泰胶囊对脑缺血再灌注大鼠学习记忆功能及脑组织乙酰胆碱含量的影响[J].中国中药杂志,2005;30(6):459-62.
    [10]Wallin A,Sjogren M,Blennow K,et al.Decreased cerebrospinal fluid acetyl cholinesterase in patients with subcortical ischemic vascular demenfia[J].Dement Ceraatr Cogn disord,2003;16(4):200-7.
    [11]Boncristiano S,Calhoun ME,Kelly PH,et al.Chohnergic changes in theAPP23 transgenic monse model of cerebral amyloidosis[J].J Neurosci,2002,22(8): 32342-431.
    [12]Roman GC.Cholinergic dysfunction in vascular dementia[J].Curt Psychiatry Rep,2005,7(1):18-26
    [13]Saze-Valero J,Gonzalez-Garcia C,Cefia V.Acetylcholinesterase activity and molecular isoform distribution are altered after focal cerebral ischemia[J].Brain Res Mol BrainRes.2003,117(2):240-244.
    [14]Hu T,Fu Q,Liu X,et al. Increased acetylcholinesterase and caspase-3 expression in the brain and peripheral immune system of focal cerebralischemicrats[J].J Neuro-immunol,2009,211 (1-2):84-91.
    [15]范文辉,李露斯,刘之荣.血管性痴呆的动物模型、神经病理及其胆碱能机制[J].中国临床康复复,2002,6(21):3172-3.
    [16]樊敬峰,王伟斌,吕佩源,等.血管性痴呆小鼠海马胆碱乙酰转移酶1mRNA表达特征研究[J].中华神经医学杂志,2006,5(10):986-9.
    [17]Nagaya M,Endo H,Kachi T,et al.Recreational rehabilitation improvedcognitive function in vascular dementia[J].J Am GeriatrSoc,2005,53(5):911-912.
    [18]Collingridge GL,Singer W.Excitatory amino acid receptors and synaptic plasticity.Trends in Pharmacol Sci,1990,11(6):290-296.
    [19]Caroline Le Duigou,Dimitri M. Kullmann Group I mGluR Agonist-Evoked Long-Term Potentiation in Hippocampal Oriens Interneurons. The Journal of Neuroscience.2011,31(15):5777-5781.
    [20]Mayer ML,Westborok GL.The physiology of excitatory aminoacids in the vertebrate central nervous system.Prog Neurobiol,1987,28(3):197-276.
    [21]Vasanthi Jayaraman,Anu Rambhadran. Mechanism of Activation in NMDA Receptors. Biophysical Journal,2012,102(3 Suppl1):418a.
    [22]Benoit A,Boumediene K,Philoxene B,et al.Hippocampal NMDA receptors modulation in vestibulo-lesioned rat. FUNDAMENTAL and CLINICAL PHARMACOLOGY.2012,26 (Suppl1):61.
    [23]Stuart A. Lipton, Paul A, Rosenberg. Excitatory amino acids as a final common pathway for neurologic disordes.New Engl Med,1994,330(9):613-622.
    [24]王文,徐天乐.NMDA受体通道的结构与功能.生物化学与生物物理进展,1997,24(4):321-325.
    [25]于德山,陈惟昌.NMDA与学习、记忆.生理科学进展,1990,21(4):375-376.
    [26]Morris RG. Synaptic plasticity and leanring:selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methy 1-D-aspartate receptor antagonist A P5.J Neurosci,1989,9(9):3040-3057.
    [27]Wenjun Li,Renqi Huang,Ritu A. Shetty,et al.Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model.Neurobiology of Disease.2013,59:18-25.
    [28]Obrietan K;vandenPol AN.GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+elevating to depressing. The Journal of Neuroscience,1995,15(7Pt1):5065-5077.
    [29]Sternau LL, Lust WD, Ricci AJ, et al. Role for gamma-aminobutyric acid in selective vulnerability in gerbils. Stroke,1989,20(2):281-287.
    [30]Chan P H. Oxygen radicals in focal cerebral ischemia[J]. Brain Pathol,1994,4: 59-65.
    [31]柯庆,邓常青,刘志龙,等.家兔脑缺血再灌注损伤机制的研究[J].中国危重病急救医学,1994,6:324-327.
    [32]Wu Y,Wen YL,Du L.Effect of Shengmaisan on learning and memory abilities and hippocampal nitric oxide synthase expression and neuronal apoptosis in rats with vascular dementia. Journal Of Southern Medical University,2010,30(6):1327-1332.
    [33]张孟红,郭赛珊.补肾活血方对拟血管性痴呆小鼠脑NM-DA受体和一氧化氮合酶的影响[J].中医杂志,2000;41(12):745-747.
    [34]秦信贵,肖顺武.脑缺血再灌注损伤大鼠血清及脑组织NO/NOS变化研究[J].中国现代医生,2009;47(6):34-35.
    [35]赵华,钟丽珍,王剑锋,et al依达拉奉联合高压氧治疗血管性痴呆的疗效观察及对患者血浆一氧化氮合成酶的影响[J].求医问药(学术版),2012,6.
    [36]Watson JB,Khorasani H,Persson A,et al. agerelated deficits in long-term potentiation are insensitive to hydrogen peroxide:coincidence with enhanced autophosphorylation of Ca2+/calmodulin dependent protein kinase Ⅱ[J].J NeurosciRes,2002,70(3):298-308
    [37]Sola C,Barron S,Tusell JM.et al.The Ca2+/calmodulin system in neuronal hyperexcitability [J].Biochem Cell Biol,2001,33(5:)439-455.
    [38]Jones CR,Hiley CR,Pelton JT,et al.Autoradilgraphic visualization of the binding sites for [1251] endothelin in rat and human brain.NeurosciLett,1989,97(3):276-279.
    [39]Lu PY,Li WB,Yin Y,[The changes of resting [Ca2+]i level and expression of CaM mRNA, CaMPK Ⅱ mRNA in hippocampal neurons of the mice with vascular dementia]. hongguo Ying Yong Sheng Li Xue Za Zhi,2004,20(2):146-149.
    [40]Hudmon A,Schulman H.Structure-function of the multifunctional Ca2+/calmodulin dependent protein kinase Ⅱ.BiochemJ,2002,364(3):593-611.
    [41]吕佩源,李文斌,尹昱等血管性痴呆小鼠海马神经细胞静息态[Ca2+]i及CaM、 CaMPKⅡ mRNA表达的变化Chin J Appl Physiol 2004;20(2):146-149.
    [42]BURDA J,MATIASOVA M,GOTILIEB M,et al.Evidence for a role of second pathophysiological stress in prevention of delayed neuronal death in the hippocampal CA1 region[J]. Neurochem Res,2005;30(11):1397-1405.
    [43]罗永坚,蔺心敬,李吕力,等.血管性痴呆模型大鼠海马神经元凋亡和病理改变的实验研究[J].中国老年学杂志,2008;28(18):1788一1790.
    [44]CHIARUGI v,MAGNELLI L,C1NELLI M.Complex interplay among apoptosis factors:RB,p53,E2F,TGF-Brta,cell cycle inhibitors and the bcl-2 gene family[J]. Pharmacol Res,1997;35(4):257-261.
    [45]Tsukahara S,Yamamoto S,Tin-Tin-Win-Shwe,et al.Inhalation of low-level formal-dehyde increases the bcl-2/Bax expression ratio in the hippocampus of immunologically sensitized mice [J]. Neuroimmunomodulation,2006;13(2):63-68.
    [46]Dinarello CA. The biological properties of IL-1. Eur Cytokine Netw,1994,5: 517-531
    [47]Friedlander RM, Gagliardini V, Rotell RJ, et al. Functional role of interleukin-1β (IL-1β)in β-converting enzyme-mediated apoptosis. Exp Med,1996,184(2):717-724.
    [48]黄新武,李国春,熊玉霞,等.大鼠血管性痴呆模型动物中海马神经元凋亡和蛋白表达的研究[J].神经解剖学杂志,2011;27(3):331-334.
    [49]TICHY A.Apoptotic machinery:the Bcl-2 family protein in the role of inspectors and superintendents[J].Acta Medica,2006;49(l):13-18.
    [50]Wada A,Yokoo H,Yanagita T,et al. Lithium:potential therapeutics against acute brain injuries and chronic neurodegenerative diseases[J].J Pharmacol Sci,2005;99 (4):307-321.
    [51]Adams JM,Huang DC,Strasser A,et al.Subversion of the bcl-2 life/death switch in cancer development and therapy[J].Cold Spring Harb Symp QuantBiol,2005;70: 469-477.
    [52]蔺心敬,李吕力,杨德刚,等.血管性痴呆大鼠海马神经元凋亡和蛋白表达实验研究[J].中国现代医学杂志,2007;17(9):2326-2329.
    [53]薛荣亮,吕建瑞,蔡英敏,李伟,吴刚,雷晓鸣.bcl-2转基因表达载体的构建对脑缺血再灌注损伤保护机制的意义[J].中国临床康复杂志,2003,26,3592-3593.
    [54]田金洲.血管性痴呆[M].北京:人民卫生出版社,2003,56-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700