运动和EGCG对Ⅱ型糖尿病大鼠海马线粒体功能的改善作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:线粒体功能损伤是神经元损伤和产生认知障碍的重要机制之一,对病理状态下神经元线粒体功能损伤改善研究有着重要的意义。本研究通过运动和EGCG给药单独或共同干预,从SIRT1/PGC-1通路及下游蛋白表达的角度探讨不同干预方式在改善II型糖尿病大鼠海马线粒体功能损伤中的作用,从线粒体的生物合成、线粒体的抗氧化应激能力、线粒体融合/分裂和线粒体自噬等方面讨论其改善作用和机制,为运动和EGCG的神经保护作用提供理论和实验依据。
     研究方法:同批次SPF级6周龄雄性SD大鼠152只,随机分成正常对照组(42只)和高脂饮食组(110只);正常对照组随机分为三组:4周正常对照组(12只)、8周正常对照组(12只)和12周正常对照组(18只);高脂饮食组通过6周高脂饮食加小剂量链脲佐菌素(STZ,30mg/kgbw)诱导II型糖尿病(T2DM)大鼠模型,观察4周、8周和12周的大鼠海马线粒体呼吸链复合物Ⅰ、Ⅱ、Ⅲ、Ⅳ和Na+-K+-ATP酶、Ca2+-ATP酶活性的变化。将诱导产生的II型糖尿病大鼠分为糖尿病对照组(16只)、糖尿病运动组(18只)、糖尿病给药组(19只)和糖尿病运动给药组(18只)四组,进行12周游泳运动和EGCG给药单独或共同干预,采用western blot检测大鼠海马SIRT1、PGC-1、NRF1、NRF2、TFAM、HO-1、NIX、BNIP3、PINK1和Parkin蛋白表达量;采用RT-PCR检测海马mtDNA的拷贝量;检测线粒体呼吸链复合物Ⅰ、Ⅱ、Ⅲ、Ⅳ和Na+-K+-ATP酶、Ca2+-ATP酶活性的变化。
     研究结果:
     112周的糖尿病大鼠海马线粒体呼吸链复合酶Ⅰ、Ⅱ、Ⅲ、Ⅳ以及Na+-K+-ATP酶、Ca2+-ATP酶活性较正常对照组均显著降低(P<0.01);运动和EGCG给药单独或共同干预能不同程度提高II型糖尿病大鼠海马线粒体呼吸链复合酶Ⅰ、Ⅱ、Ⅲ、Ⅳ和Na+-K+-ATP酶、Ca2+-ATP酶活性(P<0.05或P<0.01)。
     2糖尿病对照组大鼠海马SIRT1、PGC-1、NRF1、TFAM、NRF2、HO-1和mtDNA均显著低于正常对照组(P<0.01);运动和EGCG给药单独或共同干预能不同程度提高SIRT1、PGC-1、NRF1、TFAM、NRF2、HO-1蛋白的表达和mtDNA拷贝量。
     3糖尿病对照组大鼠海马Mfn2、OPA1蛋白表达显著低于正常对照组(P<0.01),Drp1和Fis1蛋白表达显著高于正常对照组(P<0.01);运动和EGCG给药单独或共同干预可不同程度提高大鼠海马Mfn2和OPA1蛋白表达(P<0.05或P<0.01),运动和EGCG给药单独或共同干预可不同程度降低Drp1和Fis1蛋白表达(P<0.05或P<0.01)。
     4糖尿病对照组大鼠海马NIX、BNIP3较正常对照组均显著降低(P<0.05),Parkin较正常对照组显著升高(P<0.05),PINK1较正常对照组无显著差异(P>0.05);运动和EGCG给药单独或共同干预可不同程度提高海马NIX、BNIP3蛋白表达(P<0.05或P<0.01),而PINK1、Parkin蛋白表达较糖尿病对照组无显著差异(P>0.05)。
     512周的游泳训练和EGCG给药单独或共同干预对II型糖尿病大鼠海马线粒体呼吸链酶和ATP酶活性下降均有不同程度的改善作用,且二者共同干预的改善效果明显好于单一因素干预,表明二者有叠加作用。
     结论:
     1运动和EGCG给药单独或共同干预,能不同程度改善II型糖尿病大鼠海马线粒体呼吸链复合物酶活性和能量代谢功能。
     2运动和EGCG给药单独或共同干预能不同程度的提高II型糖尿病大鼠海马SIRT1/PGC-1通路效应,改善了海马线粒体生物合成能力,提高了线粒体抗氧化酶表达。
     3运动和EGCG给药单独或共同干预能提高II型糖尿病大鼠海马Mfn2和OPA1蛋白的表达,降低Drp1和Fis1蛋白表达,改善海马线粒体的融合/分裂失衡状态。
     4运动和EGCG给药单独或共同干预能够提高II型糖尿病大鼠海马NIX和BNIP3蛋白表达,改善海马线粒体自噬能力。
     5运动联合EGCG是干预糖尿病中枢神经系统线粒体功能障碍的有效策略;SIRT1/PGC-1通路可作为运动和药物改善II型糖尿病海马线粒体功能的靶点。
Objective:
     Reduced mitochondrial function is a major cause damage to the central nervoussystem and produces cognitive impairment. Research on improving the function ofneuronal mitochondrial damage under pathological conditions has importantsignificance. In this research,type2diabetic rats were induced by6weeks high-fat dietand low-dose streptozotocin-treated (STZ,30mg/kg),to study the eimprovement of12weeks of swimming training and EGCG separately or jointly intervention on on type2diabetic rats hippocampal mitochondrial dysfunction, studid theSIRT1/PGC-1pathway and downstream protein effects in it. discussed the effect andmechanism from Biosynthesis of mitochondria, oxidative stress resistance,mitochondrial fission and fusion, mitochondrial Autophagy to discuss its effect andmechanisms. The experimental results of present study support the neuroprotection ofexercise and EGCG,and also provide a new strategy of preventing and curingdiabetic encephalopathy.
     Methods:Type2diabetic rat model was successfully established,4weeks,8weeksand12weeks of rat hippocampus mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ,Ⅳ and Na+-K+-ATPase、Ca2+-ATPase activity was explored. The diabetic rats weredivided into diabetic control group,the diabetes exercise group,the diabetes druggroup,the diabetes exercise and drug jiotly group, For12weeks of exercise and EGCGseparately or jointly intervention. Western blot was used to detect the rat hippocampalSIRT1, PGC-1, NRF1, NRF2, TFAM, HO-1, NIX, BNIP3, PINK1and Parkin proteinexpression; RT-PCR was used to detect hippocampal mtDNA copy amount.The changesof rathippocampal mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ, Ⅳ and Na+ -K+atpase, Ca2+atpase activity were researched.
     Results:
     112weeks diabetic rats hippocampus mitochondrial respiratory chain enzyme Ⅰ、Ⅱ、Ⅲ、Ⅳ, Ca2+-ATPase activity and Na+-K+-ATP ase were showing a significantreduction in decline (P<0.01);Exercise and EGCG medication, separately or jointlyintervention,could improve diabetes rats,hippocampus mitochondrial respiratorychain complex enzymes Ⅰ, Ⅱ, Ⅲ, Ⅳ and Na+-k+ATPase, Ca2+-ATPase activity indifferent level (P <0.05or P <0.01).
     2Diabetes control group rats,hippocampal SIRT1, PGC-1, NRF1, TFAM andmtDNA, NRF2, HO-1were significantly lower than normal control group(P <0.01);Exercise and EGCG medication separately or jointly intervention could improve theSIRT1, PGC-1, NRF1, TFAM, NRF2, HO-1protein expression and mtDNA copies indifferent level.
     3Diabetes control group rats hippocampal Mfn2, OPA1protein expression wassignificantly lower than normal control group (P <0.01), and Drp1Fis1proteinexpression was significantly higher than that of normal control group (P <0.01);Exercise and EGCG medication separately or jointly intervention could improve therat hippocampal Mfn2and OPA1protein expression in different level(P <0.05or P <0.01), could reduce Drp1and Fis1protein expression in different level (P <0.05orP <0.01).
     4Diabetes control group rats hippocampal NIX, BNIP3protein expressioncompared with were significantly lower (P <0.05), Parkin significantly increasedcompared with normal control group (P <0.05), PINK1protein expression comparedwith normal control group was no significant difference (P>0.05); Exercise andEGCG medication separately or jointly intervention could improve the hippocampusNIX, different level BNIP3protein expression (P <0.05or P <0.01), PINK1, Parkinprotein expression was no significant difference than diabetes control group(P>0.05).
     512weeks of exercise and EGCG medication separately or jointly interventioncould improve Type2diabetes rat hippocampal mitochondria function. the jointlyintervention was ignificantly better than a single factor, indicating the jointly intervention have additive effects.
     Conclusions:
     112weeks of exercise training and EGCG medication separately or jointlyintervention can improve diabetes rat hippocampus mitochondrial respiratory chaincomplex enzymes activity,increase the ATP enzyme activity,improve the energymetabolism of mitochondria.
     2Exercise and EGCG medication separately or jointly intervention couldinhance type2diabetic rats hippocampal SIRT1/PGC-1pathway effect, improve theability of the biosynthesis of mitochondria and mitochondrial antioxidant capacity.
     312weeks of exercise and EGCG medication separately or jointly interventioncan improve the type2diabetic rats hippocampal Mfn2and OPA1protein expression,reduce Drp1and Fis1protein expression and improve diabetic rats hippocampalmitochondria imbalance of fusion and fission protein.
     412weeks of exercise training and EGCG medication separately or jointlyintervention could enhance the type2diabetic rats hippocampal NIX and BNIP3expression, improve rats,hippocampus mitochondrial autophagy ability,maintain thestability of the mitochondrial quality and quantity.
     5Exercise and EGCG medication jointly intervention may be an effectiveintervention strategies in mitochondrial dysfunction. SIRT1/PGC-1biologicalpathways could be an important target for regulation of mitochondrial function to thediabete,s prevention and treatment of the nervous system.
引文
[1] Ahmed AM. History of diabetes mellitus. Saudi Med J,2002,23(4):373-378.
    [2] Global burden of diabetes. International Diabetes federation. Diabetic atlasfifth edition2011, Brussels[J]. Available at http://www. idf. org/diabetesatlas.
    [3] Chamnan P, Simmons RK, Forouhi NG, et al. Incidence of type2diabetesusing proposed HbA1c diagnostic criteria in the EPIC-Norflok cohort: Implication forpreventive strategies[J]. Diabetes Care,2011,34(4):950-956.
    [4] Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetesepidemic[J]. Nature,2001,414(6865):782-787.
    [5]王陇德,齐小秋,陈船宏,等.中国居民营养与健康状况调查报告之一,2002综合报告[M].北京:人民卫生出版社,2005,59.
    [6] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women inChina[J]. N Engl J Med,2010,362(12):1090-1101.
    [7]付莹坤.清润方对糖尿病的治疗作用及其机制的实验研究[D].中国中医科学院,2012:11.
    [8] Department of Health and Human Services. Centres for Disease Control andPrevention,2011. National diabetes fact sheet: national estimates and generalinformation on diabetes and prediabetes in the United States,2011[J]. Available at http://www. cdc. gov/diabetes/pubs/pdf/ndfs_2011. pdf.
    [9] Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimate forthe year2000and projections for2030[J]. Diabetes Care,2004,127(5):1047-1053.
    [10] Alkhenizan AH, Alswes MA. The role of renin Mockers in the prevention ofdiabete[J]. Saudi Med J,2007,28(1):91-95.
    [11]陈玉静.阿尔茨海默病是另外一种形式的糖尿病[J].中国老年学杂志,2008,28:402-404.
    [12] Schrijvers EM, Witteman JC, Sijbrands EJ, et al. Insulin metabolism and therisk of Alzheimer disease: the Rotterdam Study[J]. Neurology,2010,75(22):1982-1987.
    [13] Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensivedrugs: a network meta-analysis[J]. Lancet,2007,369:201-207.
    [14] Kim B, Backus C, Oh S, et al. Increased tau phosphorylation and cleavage inmouse models of type1and type2diabetes[J]. Endocrinology,2009,150(12):5294-5301.
    [15] Ronnemaa E, Zethelius B, Sundelof J, et al. lmpaired insulin Secretionincreases the risk of Alzheimer disease[J]. Neurology,2008,71:1065-1071.
    [16] Kalaria RN. Neurodegenerative disease: Diabetes, microvascular pathologyand Alzheimer disease[J]. Nat Rev Neurol,2009,5(6):305-306.
    [17]刘式威,刘政华,吕霞,等. rhEPO对糖尿病大鼠内皮屏障抗原EBA及血脑屏障通透性的影响[J].第三军医大学学报,2011,33(17):1878-1890.
    [18] Takeuchi M, Yamagishi S. Involvement of toxic AGES (TAGS) inthe pathogenesis of diabetic vascular complications and Alzheimer's disease[J]. JAlzheimers Dis,2009,16(4):845-858.
    [19]孙娟,李伟.血糖波动对糖尿病大鼠海马神经元凋亡的影响[J].中国老年学杂志,2012,32(5):987-988.
    [20] McNay EC, Recknagel AK. Brain insulin signaling: a key component ofcognitive processes and a potential basis for cognitive impairment in type2diabetes[J].Neurobiol Learn Mem,2011,96(3):432-442.
    [21] Holscher C. Diabetes as a risk factor for Alzheimer's disease: insulinsignalling impairment in the brain as an alternative model of Alzheimer's disease[J].Biochem Soc Trans,2011,39(4):891-897.
    [22] Jolivalt CG, Lee CA, Beiswenger KK, et al. Defective insulin signalingpathway and increased glycogen synthase kinase-3activity in the brain of diabetic mice:parallels with Alzheimer's disease and correction by insulin[J]. J Neurosci Res,2008,86(15):3265-3274.
    [23] Qu Z, Jiao Z, Sun X, et al. Effects of streptozotocin-in-duced diabetes on tauphosphorylation in the rat brain[J]. Brain Res,2011,1383:300-306.
    [24] Wang XH, Li L. ValB-glucagon-like peptide-1protects againstA131-40-induced impairment of hippocampal late-phase long-term potentiationand spatial learning in rats[J]. Neuroscience,2010,170(4):1239-1248.
    [25] Beeler N, Riederer BM, et al. Role of the JNK-interacting protein1/islet brain1in cell degeneration in Alzheimer disease and diabetes[J]. Brain Res Bull,2009,80(4-5):274-281.
    [26]张卫华,刘舟,石富国,等.黄连温胆汤对2型糖尿病小鼠学习记忆及海马神经细胞形态的影响[J].时珍国医国药,2012,23(4):948-949.
    [27] Revsin Y, Saravia F, Roig P, Lima A, de Kloet ER, Homo-Delarche F, DeNicola AF: Neuronal and astroglial alterations in the hippocampus of a mouse model fortype1diabetes[J]. Brain Res,2005:1038:22-31.
    [28]高原,肖谦,赵柯湘,等.应用体视学方法比较糖尿病大鼠和正常大鼠海马的体积[J].中国老年学杂志,2010,30(2):2959-2960.
    [29] Steiner J, Rafols D, Park HK, et a1. Attenuation of iNOS mRNAexacerbates hypoper fusion and upregulates endothelin-1expression in hippocampusand cortex after brain trauma[J]. Nitric Oxide,2004,10(3):162-169.
    [30]曾永保,梅志刚,王明智,等.耳针对糖尿病大鼠脑微血管炎症损伤保护作用机制研究[J].时珍国医国药,2012,23(11):2886-2891.
    [31] Novak V, Last D, Alsop DC, Abduljalil AM, Hu K, Lepicovsky L,Cavallerano J, Lipsitz LA: Cerebral blood flow velocity and periventricularwhite matter hyperintensities in type2diabetes[J]. Diabetes Care,2006,29:1529-1534.
    [32] Muranyi M, Ding C, He Q, Lin Y, Li PA: Streptozotocin-induced diabetescauses astrocyte death after ischemia and reperfusion injur[J]. Diabetes,2006,55:349-355.
    [33] Li ZG ZW, Sima AA. The role of impaired insulin/IGF action in primarydiabetic encephalopathy[J]. Brain Res,2005,1037:12-24.
    [34] Huber JD, VanGilder RL, Houser KA: Streptozotocin-induced diabetesprogressively increases blood-brain barrier permeability in specific brain regions inrats[J]. Am J Physiol Heart Circ Physiol,2006,291: H2660-2668.
    [35] Kapalla M, Yeghiazaryan K, Hricova M, Moenkemann H, Pirek A, Schild HH,Golubnitschaja O: Combined analysis of biochemical parameters in serum anddifferential gene expression in circulating leukocytes may serve as an exvivomonitoring system to estimate risk factors for complications in Diabetes mellitus[J].Amino Acids,2005,28:221-227.
    [36] Malone J, Hanna S, Saporta S, et al. Hyperglycemia not hyporglycemia altersneuronal dendrities and imparis spatial memory[J]. Pediatr Diabetes,2008;9(6):531-539.
    [37] Zhou J W. Recent progress in neurodegenerative disorder research in China[J].Sci China Life Sci,2010,53:348-355.
    [38]吕丹丹,尹洁,穆继英,等.糖尿病小鼠学习记忆能力减退与海马锥体细胞树突棘变化的相关性[J].中国老年学杂志,2012,32(2):300-302.
    [39] Josephine M, Coughlan MT, Cooper ME. Oxidative as a major culprit inKidney disease in diabete[J]. Diabetes,2008,57(6):1446-1454.
    [40] Hiroki F. Hiromi F. Shinsuke C, et al. Reduction of renal superoxidedismutase in progressive diabetic nephropathy[J]. JASN.2009,20(6):1303-1313.
    [41] Calabrese V, Mancuso C, Sapienza M, et al. Oxidative stress and cellularstress response in diabetic nephropathy[J]. Cell Stress Chaperones,2007,12(4):299-306.
    [42] Kowluru RA, Abbas SN, Odenbach S. Reversal of hyperglycaemia anddiabetic nephropathy: effect of reinstitution of good metabolic control on oxidativestress in the kidney of diabetic rats[J]. J Diabetes Complications,2004,18:282-288.
    [43]张利华,张薇,韦广洪,等.-亚麻酸对糖尿病大鼠炎症介质和氧化应激的影响[J].中国应用生理学杂志,2012,28(1):64-67.
    [44] Nishikawa T, ArakiE. Impactofmitochondrial ROS production in thepathogenesis of diabetesmellitus and its complications[J]. Antioxid Redox Signa, l2007,9(3):343-353.
    [45] Nishikawa T, KukidomeD, SonodaK, et al. Impactofmitochon drialROSproduction on diabetic vascular complications [J]. DiabetesResClin Pract,2007,77(3):S41-S45.
    [46] Lee SH, Nam BY. Kang EW, et al. Effects of an oral adsorbent on oxidativestress and Libronectin expression in experimental diabetic nephropathy[J]. Nephrol DialTransplant,2010,2507:2134-2141
    [47]陈善源,徐勤. II型糖尿病中胰岛β细胞氧化应激损伤机制与相关治疗药物的研究进展[J].中国药房,2011,22(37):3533-3535.
    [48] Amaral S, Oliveira PJ, Ramalho-Santos J. Diabetes and the impairment ofreproductive function: possible role of mitochondria and reactive oxygen species [J].Curr Diabetes Rev,2008,4(1):46-54.
    [49] Vassort G, Turan B. Protective role of antioxidants in diabetes-inducedcardiac dysfunction[J]. Cardiovasc Toxicol,2010,10(2):73-86.
    [50] Powers SK, Duarte J, Kavazis AN, et al. Reactive oxygen species aresignalling molecules for skeletal muscle adaptation[J]. Exp Physiol,2010,95(1):1-9.
    [51]陈国庆,吕坤如,杨月琴,等.糖尿病大鼠骨骼肌氧化应激与肌特异性环脂蛋白1表达关系的研究[J].四川大学学报(医学版),2011;42(3):349-352.
    [52]范秋灵,李卅立,蒲实,等.坎地沙坦抑制2型糖尿病KK/Ta小鼠肾脏氧化应激反应[J].中国医科大学学报,2012,41(5):391-395.
    [53]肖园园,曾朝阳,田晓年,等.2型糖尿病肾病患者血清脂联素、血管内皮生长因子水平与氧化应激的相关性[J].武汉大学学报(医学版),2012,33(2):228-231.
    [54] Boudina S, Abel E D. Diabetic cardiomyopathy revisited [J]. Circulation,2007,115(25):3213-3223.
    [55]李小鑫,邱雪峰,余文,等.糖尿病大鼠阴茎海绵体线粒体氧化应激损伤与保护[J].北京大学学报(医学版),2011,43(2):189-193.
    [56] Borradaile N M, Pickering J G. Nicotinamide phosphoribosyltransferaseimparts human endothelial cells with extended replicative lifespan and enhancedangiogenic capacity in a high glucose environment[J]. Aging Cell,2009,8:100–112.
    [57]陈厚早,万言珍,周爽,等.内皮细胞特异性SIRT1过表达抑制高血糖诱导的血管细胞衰老[J].中国科学:生命科学,2012,42(6):473-479.
    [58]蔡谋善,黄肖群,曾令海,等.脑安胶囊对糖尿病大鼠海马Tau蛋白超磷酸化及氧化应激的影响[J].中国实验方剂学杂志,2012,18(3):169-193.
    [59]郭宏伟,张武昌,杨金凤,等.晚期糖基化终末产物在阿尔茨海默病患者中的变化及影响因素的分析[J].中风与神经疾病杂志,2012,29(9):808-811.
    [60] Singh R, Barden A, Mort T, et al. Advanced glycation end products: areview[J]. Diabetologia,2001,44:129-146.
    [61] Takeuchi M, Yamagishi S. Possible involvement of advanced glycation endproducts(AGEs) in the pathogenesis of Alzheimer’s disease[J]. Curr Pharrn Des,2008,14(10):973-978.
    [62]赵路清,王鲁宁.糖尿病与阿尔茨海默病关系的基础研究进展[J].中华内科杂志,2007.12(46):1043.
    [63] Harashima A, Yamamoto Y, Cheng C, Tsuneyama K, Myint KM, Takeuchi A,Yoshimura K, Li H, Watanabe T, Takasawa S, Okamoto H, Yonekura H, Yamamoto H:Identification of mouse orthologue of endogenous secretory receptor for advancedglycation end-products: structure, function and expression[J]. Biochem J,2006,396:109-115.
    [64] Miura J, Yamagishi S, Uchigata Y, Takeuchi M, Yamamoto H, Makita Z,Iwamoto Y: Serum levels of non-carboxymethyllysine advanced glycation endproductsare correlated to severity of microvascular complications in patients with Type1diabetes[J]. J Diabetes Complications,2003,17:16-21.
    [65]许梦琪,秦侨西,任芮,等.胶质细胞参与糖尿病所致高级脑功能的损害[J].神经解剖学杂志,2012,28(1):93-96.
    [66] Lebed YV, Orlovsky MA, Nikonenko AG, et al. Early reaction of astroglialcells in rat hippocampus to streptozotocin-induced diabetes[J]. Neurosci Lett,2008,444:181-185.
    [67]蔡志友,晏勇,张骏,等.糖尿病大鼠认知功能及海马组织GFAP、IL21β、TNF2和Aβ表达[J].上海交通大学学报(医学版),2009,29:130-134.
    [68] Coleman ES, Dennis JC, Braden TD, et al. Insulin treatment preventsdiabetes-induced alterations in astrocyte glutamate uptake and GFAP content in rats at4and8weeks of diabetes duration[J]. Brain Res,2010,1306:131-141.
    [69] Henning J, Strauss U, Wree A, et al. Differential astroglial activation in6-hydroxydopamine models of Parkinson’s disease[J]. Neurosci Res,2008,62:246-253.
    [70]陈艳,王光楠,金英.小胶质细胞及其炎性细胞因子参与阿尔兹海默病因果关系的研究[J].中国医药导报,2008,5:16-18.
    [71]王静华,肖泽萍,肖世富,等.慢性应激大鼠脑源性营养因子的表达分析[J].上海交通大学学报(医学版),2012,32(4):440-445.
    [72] Zhao H, Bao XJ, Wang RZ, et al. Post-acute ischemia vascular endothelialgrowth factor transfer by transferrin-tar-geted liposomes attenuates ischemic braininjury after experimental stroke in rats[J]. Hum Gene Ther,2011,22(2):207-215.
    [73]赵竞,金可可,吴亮,等.银杏叶提取物对糖尿病大鼠学习记忆能力及海马神经元NGF、NT-3表达的影响[J].中国应用生理学杂志,2012,28(5):467-471.
    [74] Radecki DT, Brown LM, Martinez J, et al. BDNF protects againststress-induced impairments in spatial learning and memory and LTP[J]. Hippocampus,2005,15(2):246-253.
    [75]李清山,杨威,潘艳芳,等.脑源性神经营养因子拮抗B淀粉样蛋白所致大鼠在体海马长时程增强的伤害[J].中国应用生理学杂志,2012,28(5):425-429.
    [76] Zheng Z, Sabirzhanov B, Keifer J. Oligomeric amyloid(beta) inhibits theproteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptortrafficking, and classical conditioning[J]. J Biol Chem,2010,285(45):34708-34717.
    [77] Caccamo A, Maldonado MA, Bokov AF, et al. CBP gene transfer increasesBDNF levels and ameliorates learning and memory deficits in a mouse modelofAlzheimer. s disease[J]. Proc NatlAcad Sci USA,2010,107(52):22687-22692.
    [78] NittaA, MuraiR, SuzukiN, et a. l Diabetic neuropathies in brain are inducedby deficiency ofBDNF[J]. NeurotoxicolTerato, l2002,24(5):695-701.
    [79] Garcia N, Santafé M M, Tomàs M, et al. Involvement of brain-de-rivedneurotrophic factor (BDNF) in the functional elimination of synaptic contacts atpolyinnervated neuromuscular synapses during development[J]. J Neurosci Res,2010,88(7):1406-1419.
    [80]宋莉莉,王文昭,邵福源.糖尿病对血管性痴呆大鼠海马CA1区脑源性神经营养因子的影响[J].第四军医大学学报,2007,28(8):685-687.
    [81] Kraemer R, Baker P L, Kent K C, et al. Decreased neurotroph in TrkBreceptor expression reduces lesion size in the apolipoprote in Enull mutant mouse[J].Circulation,2005,112(23):3644-3653.
    [82]柳超,郭军. Exendar4与神经退行性疾病的关系[J].中国药理学通报,2010,26(5):566-569.
    [83] Guo ZH, Li F, Wang WZ. The mechanisms of brain ischemic insult andpotential protective interventions[J]. J Neurosci Bull,2009,25(3):139-152.
    [84]侯筱宇,张光毅.中枢神经系统L-型电压门控钙通道的功能调控与脑缺血[J].生理科学进展,2004,35(1):77-80.
    [85]方迎艳,郭晓磊,高琴,等.糖尿病大鼠膈肌功能损伤及钙调控蛋白基因表达的改变[J].南方医科大学学报,2013,33(2):177-181.
    [86]邢影,张文杰,方芳,等. L-电压门控钙通道在糖尿病大鼠局灶性脑缺血中的变化及意义[J].中国病理生理杂志,2011,27(10):1922-1926.
    [87] Dogru Pekiner B, Das Evcimen N, Nebioglu S: Diabetes-induced decrease inrat brain microsomal Ca2+-ATPase activity[J]. Cell Biochem Funct,2005,23:239-243.
    [88] Li E, Kim DH, Cai M, Lee S, Kim Y, Lim E, Hoon Ryu J, Unterman TG, ParkS. Hippocampus-dependent spatial learning and memory are impaired in growthhormone-defi-cient spontaneous dwarf rats[J]. Endocr J,2011,58(4):257-267.
    [89] De Bartolo P, Cutuli D, Ricceri L, Gelfo F, Foti F, Laricchiuta D, Scattoni ML,Calamandrei G, Petrosini L. Does age matter? Behavioral and neuroanatomical effectsof neonatal and adult basal forebrain cholinergic lesions[J]. J Alzheimers Dis,2010,20(1):207–227.
    [90] Schliebs R, Arendt T. The cholinergic system in aging and neuronaldegeneration[J]. Behav Brain Res,2011,221(2):555–563.
    [91]唐曦,唐成林,谢洪武,等.电针改善低雌激素性认知功能障碍大鼠的学习记忆[J].生理学报,2013,65(1):26-32.
    [92] Jadavji NM, Deng L, Leclerc D, Malysheva O, Bedell BJ, Caudill MA,Rozen R. Severe methylenetetrahydrofolate reductase deficiency in mice results inbehavioral anomalies with morphological and biochemical changes in hippocampus[J].Mol Genet Metab,2012,106(2):149–159.
    [93]王红利,薛莉君,万东,等.梓醇改善东莨菪碱诱导的学习记忆障碍及机制研究[J].中国药理学通报,2011,27(9):1272-1275.
    [94] HELMHOUT PH, TAAL JB, HEYNUMA MW, et al. Prognostic factors forperceived recovery or functional improvement in non-specific low back pain: secondaryanalyses of three randomized clinical trials[J]. Eur Spine J,2010,19(4):650-659.
    [95] Helmhout PH, Staal JB, Heymans MW, et al. Prognostic factors for perceivedrecovery or functional improvement in non-specific low back pain: secondary analysesof three randomized clinical trials[J]. Eur Spine J,2010,19(4):650-659.
    [96]刘永惠,李少为,郑清莲.补肾健脑方对血管性痴呆大鼠乙酰胆碱和海马区ERK1和ERK2表达的影响[J].中国中西医结合杂志,2012,32(4):504-509.
    [97]马冬影,刘继平,吴金婕,等.小檗碱对糖尿病大鼠认知障碍及海马组织病变的影响[J].中药新药与临床药理,2012,23(6):631-636.
    [98]张松筠,张庆九,宋学琴,等. II型糖尿病小鼠海马锥体细胞及毛细血管电镜观察[J].中国糖尿病杂志,2001,9:296-297.
    [99]朱学芳,顾永健,陈芬. γ-氨基丁酸对慢性脑缺血致血管性痴呆大鼠认知功能的影响[J].中国老年学杂志,2010,30(22):3331-3333.
    [100] MOHAMMAD-REZA Z, VAHID H, AMENEH R. Inhibition ofmorphine-induced amnesia in morphine-sensitized mice: Involvement of dorsalhippocampal GABAergic receptors[J]. Neurophar macology,2008,54(3):569-576.
    [101] REY-, ESTELA B. Adenohypophyseal and hypothalamic GABABreceptor subunits are downregulated by estradiol in adult female rats[J]. Life Sci,2006,79(4):342-350.
    [102]董晓华,张丹参,张力,等.蛇床子素对脑缺血/再灌注大鼠海马LTP及氨基酸含量的影响[J].中国药理学通报,2011,27(9):1267-1271.
    [103]廖玉芳,王华坤,肖奕,等.4-氨基-2-甲基斑蝥胺对惊厥大鼠脑电、γ-氨基丁酸和γ-氨基丁酸受体的影响[J].中国药学杂志,2012,47(2):108-112.
    [104]朱学芳,顾永健,陈芬. γ-氨基丁酸对慢性脑缺血致血管性痴呆大鼠认知功能的影响[J].中国老年学杂志,2010,30(22):3331-3333.
    [105]许玲.葡萄籽原花青素对糖尿病大鼠海马的保护作用[D].山东大学,2007.
    [106]董素平,徐畅,原婷婷,等.海马NMDA受体经SP-NK1受体通路参与慢性应激诱发的抑郁样行为[J].心理学报,2011,43(9):10451054.
    [107] Yang H, Guan Y Y. Mechanisms of the neuroprotection of astrocyte duringcerebral ischem ic disease[J]. Chin Pharmacol Bull,2009,25(3):284-286.
    [108]吴建华,谢立新,方芳,等.法舒地尔可能通过PI3-K/Akt信号通路抑制大鼠脑缺血/再灌注区神经元的凋亡[J].中国药理学通报,2008,24(12):1568-1573.
    [109]罗清清,徐晓虹,李涛,等.雌激素快速影响大鼠发育期海马NMDA受体活性的机制[J].生物物理学报,2010,26(10):919-928.
    [110] Martin H G, Wang Y T. Blocking the deadly effects of the NMDA receptorin stroke[J]. Cell,2010,140(2):174-176.
    [111]刘慧,问黎敏,乔卉,等.高半胱氨酸对慢性应激性抑郁大鼠海马谷氨酸及其受体的调节[J].生理学报,2013,65(1):61–71.
    [112] Gielen M, Sieqler Retchless B S, Mony L, et al. Mechanism of differentialcontrol of NMDA receptor activity by NR2subunits [J]. Nature,2009,459(7247):703-707.
    [113] Yashiro K, Philpot B D. Regulation of NMDA receptor subunit expressionand its implications for LTD, LTP and metaplasticity[J]. Neuropharmacology,2008,55(7):1081-1094.
    [114] Wang H, Dávila-García MI, Yarl W, Gondré-Lewis MC. Gestational nicotineexposure regulates expression of AMPA and NMDA receptors and their signalingapparatus in developing and adult rat hippocampus[J]. Neuroscience,2011,188:168–181.
    [115]陈远寿,罗孝美,陈雯,等. NVP-AAM077和Ro25-6981对全脑缺血小鼠海马神经元损伤及BDNF表达的影响[J].中国药理学通报,2010,26(8):1010-1013.
    [116] Chen M, Lu T J, Chen X J, et al. Differential roles of NMDA recaptorsubtypes in ischemic neuronal cell death and ischemic tolerance[J]. Stroke,2008,39(11):3042-3048.
    [117]陈谊,蔡文玮,盛净.糖尿病模型大鼠认知功能障碍及海马N-甲基-D-天冬氨酸受体表达变化[J].实用医学杂志,2010,26(17):3098-3101.
    [118] Nakanishi N, Tu S, Shin Y, et al. Neuroprotection by the NR3A subunit ofthe NMDA receptor [J]. Neuroscience,2009,29(16):5260-5265.
    [119] Wu H, Zhou Y, Xiong ZQ. Transducer of regulated CREB and late phaselong-term synaptic potentiation[J]. FEBS J,2007,274(13):3218-23.
    [120] Monnerie H, Le Roux PD. Glutamate alteration of glutamic aciddecarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases[J]. ExpNeurol,2008,213(1):145-153.
    [121] Ponnuswamy P, Ostermeier E, Schrottle A, Chen J, Huang P L, Ertl G, et al.Oxidative stress and compartment of gene expression determine proatheroscleroticeffects of inducible nitric oxide synthase[J]. Am J Pathol,2009,174:2400-2410.
    [122] Celik S, Erdogan S. Caffeic acid phenethyl ester (CAPE) protects brainagainst oxidative stress and inflammation induced by diabetes in rats[J]. Mol CellBiochem,2008,312:39-46.
    [123]曾龙驿,舒同,林可意,等.伊贝沙坦对糖尿病大鼠肾氧化应激、NF-JB活性和ICAM-1mRNA表达的影响[J].中山大学学报:医学科学版,2008,29:402-406.
    [124]陈艳瑜,魏倩萍,胡义平.姜黄素对糖尿病脑病大鼠氧化应激及海马iNOS表达的影响[J].第二军医大学学报,2010,31(12):1300-1304.
    [125]陈志宏,杨松鹤,陈程,等.丝胶对糖尿病大鼠海马一氧化氮含量及一氧化氮合酶表达的影响[J].中国老年学杂志,2011,31(9):1574-1576.
    [126] Yamaguchi K, et al. DNA and RNA as new binding targets of green teacatechins[J]. J Biol Chem,2006,281(25):17446-17456.
    [127]李华,刘玉明.儿茶素抗氧化活性的构效关系[J].化学研究与应用,2003,15(4):524-526.
    [128] Sugiyama A, Chiba M, Nakagami T, et al. Beneficial effects of (-)-epigallocatechin gallate on ischemia-reperfusion testicular injury in rats[J]. J PediatrSurg,2012,47(7):1427-1432.
    [129] Zhen M C, Wang Q, Huang X H, et al. Green tea polyphenolepigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbontetrachloride–induced hepatic fibrosis[J]. Journal of Nutritional Biochemistry,2007,18(12):795-805.
    [130] Tipoe G L, Leung T M, Liong E C, et al. Epigallacatechin-3-gallate(EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbontetrachloride(ccl4)-induced liver injury in mice[J]. Toxicology,2010,273(1/3):45-52.
    [131] Devika P T, Stanely M P P. Protective effect of (-)-epigallocatechin-gallate(EGCG)on lipid peroxide metabolism in isoproterenol induced myocardial infarctionin male Wister rats: A histopathological study[J]. Biomedicine&Pharmacotherapy,2008,62(10):701-708.
    [132] Wu CC, Hsu MC, Hsieh CW, et al. Upregulation of heme oxygenase-1byEpigallocatechin-3-gallate via the phosphatidylinositol3-kinase/Akt and ERKpathways[J]. Life Sci,2006,78(25):2889-2897.
    [133] Lee SJ, Lee KW. Protective effect of (-)-epigallocatechin gallate againstadvanced glycation end products-induced injury in neuronal cells[J]. Biol Pharm Bull,2007,30(8):1369-1373.
    [134] Raza H, John A. Green tea polyphenol epigallocatechin-3-gallatedifferentially modulates oxidative stress in PC12cell compartments[J]. Toxicology andApplied Pharmacology,2005,207(3):212-220.
    [135] Dai F, Chen W F, Zhou B. Antioxidant synergism of green tea polyphenolswith-tocopherol and L-ascorbic acid in SDS micelles[J]. Biochinie,2008,90:1499-1505.
    [136] Henning S M, Niu Y T, Liu Y, et al. Bioavailability and antioxidant effect ofepigallocatechin gallate administered in purified form versus as green tea extract inhealth individuals[J]. Journal of Nutritional Biochemistry,2005,16:610-616.
    [137] Babu PV, Si H, Liu D. Epigallocatechin gallate reduces vascularinflammation in db/db mice possibly through an NF-κB-mediated mechanism[J]. MolNutr Food Res,2012,56(9):1424-1432.
    [138] Yun JM, Jialal I, Devaraj S. Effects of epigallocatechin gallate on regulatoryT cell number and function in obese v lean volunteers[J]. Br J Nutr,2010,103(12):1771-1777.
    [139] Hong M H, Kim M H, Chang H J, et al.(-)-Epigallocate-chin-3-gallateinhibits monocyte chemotactic protein-1expression in endothelial cells via blockingNF-kB signaling[J]. Life Sciences,2007,80(1):1957-1965.
    [140] Toshio I, Yoshihiro S, Chisei R. Epigallocatechin-3-gallate inhibits mast celldegranulation, leukotriene C4secretion, and calcium influx via mitochondrial calciumdysfunction[J]. Free Radical Biology&Medicine,2010,49:632-640.
    [141] Cho YS, Oh JJ, Oh KH. Synergistic anti-bacterial and proteomic effects ofepigallocatechin gallate on clinical isolates of imipenem-resistant Klebsiellapneumoniae[J]. Phytomedicine,2011,18(11):941-946.
    [142] Osterburg A, Gardner J, Hyon SH, et al. Highly antibiotic-resistantAcinetobacter baumannii clinical isolates are killed by the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG)[J]. Clin Microbiol Infect,2009,15(4):341-346.
    [143] Du X, Huang X, Huang C, et al. Epigallocatechin-3-gallate(EGCG)enhances the therapeutic activity of a dental adhesive[J]. J Dent,2012,40(6):485-492.
    [144] Hara K, Ohara M, Hayashi I, et al. The green tea polyphenol(-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase:biochemical implications for oral health[J]. Eur J Oral Sci,2012,120(2):132-139.
    [145] Albrecht DS, Clubbs EA, Ferruzzi M, et al. Epigallocatechin-3-gallate(EGCG) inhibits PC-3prostate cancer cell proliferation via MEK-independentERK1/2activation[J]. Chem Biol Interact,2008,171(1):89-95.
    [146] Yang J, Yu H, Sun S, et al. Mechanism of free Zn(2+)enhancing inhibitoryeffects of EGCG on the growth of PC-3cells: interactions with mitochondria[J]. BiolTrace Elem Res,2009,131(3):298-310.
    [147] Larsen C A, Dashwood R H.()-Epigallocatechin-3-gallate inhibits Metsignaling, proliferation, and invasiveness in human colon cancer cells[J]. Archives ofBiochemistry and Biophysics,2010,501(1):52-57.
    [148] Mitsuyo N, Masatoshi Y, Sumiko W, et al. Inhibitory effect of the teapolyphenol,()-epigallocatechin gallate, on growth of cervical adenocarcinoma celllines[J]. Cancer Letters,2006,234(2):135-142.
    [149] Dann JM, Sykes PH, Mason DR, et al. Regulation of Vascular EndothelialGrowth Factor in endometrial tumour cells by resveratrol and EGCG[J]. Gynecol Oncol,2009,113(3):374-378.
    [150] Punathil T, Tollefsbol T O, Katiyar S K. EGCG inhibits mammary cancercell migration through inhibition of nitric oxide synthase and guanylate cyclase[J].Biochemical and Biophysical Research Communications,2008,375:162-167.
    [151] Di X., Yan j, Zhao Y, et al. L-theanine protects the app (swedish mutation)Transgenic sh-sy5y cell against glutamate-induced excitotoxicity via inhibition of theNMDA receptor pathway [J]. Neuroscience,2010(168):778–786.
    [152] Adachi N, Tomonaga S, Tachibana T, et al.()-Epigallocatechin gallateattenuates acute stress responses through GABAergic system in the brain[J]. Eur JPharmacol,2006(531):171-175.
    [153]李锐,彭宁,杜芳,等.表没食子儿茶素没食子酸酯的多巴胺能神经元保护作用[J].南方医科大学学报,2006,26(4):376-380.
    [154] Giunta B, Hou H Y, Zhu YY, et al. Fish oil enhances anti-amyloidogenicproperties of green tea EGCG in Tg2576mice[J]. Neuroscience Letters,2010,471(3):134-138.
    [155] Kavon Rezai-Zadeh, Gary W. Arendash, Huayan Hou. Green teaepigallocatechin-3-gallate (EGCG) reduces (3-amyloid mediated cognitiveimpairment and modulates tau pathology in Alzheimer transgenic mice[J]. Brainresearch,2008,(1214):177-187.
    [156] Meng F, Abedini A, Plesner A, et al. The flavanol (-)-epigallocatechin3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregatesamyloid fibrils, and protects cultured cells against IAPP-induced toxicity[J].Biochemistry,2010,49(37):8127-8133.
    [157] Lin SM, Wang SW, Ho SC, et al. Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increasein adult rat brains[J]. Nutrition,2010,26(11-12):1195-1200.
    [158] Jung JY, Han CR, Jeong YJ, et al. Epigallocatechin gallate inhibits nitricoxide-induced apoptosis in rat PC12cells[J]. Neurosci Lett,2007,411(3):222-227.
    [159] Rezai-Zadeh K, Arendash GW, Hou H, et al. Green teaepigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitiveimpairment and modulates tau pathology in Alzheimer transgenic mice[J]. Brain Res,2008,1214:177-187.
    [160] Sachdeva AK, Kuhad A, Tiwari V, et al. Protective effect of epigallocatechingallate in murine water-immersion stress model of chronic fatigue syndrome[J]. BasicClin Pharmacol Toxicol,2010,106(6):490-496.
    [161] Kerksick CM, Kreider RB, Willoughby DS. Intramuscular adaptations toeccentric exercise and antioxidant supplementation[J]. Amino Acids,2010,39(1):219-232.
    [162] Richards JC, Lonac MC, Johnson TK, et al. Epigallocatechin-3-gallateincreases maximal oxygen uptake in adult humans[J]. Med Sci Sports Exerc,2010,42(4):739-744.
    [163] Murase T, Haramizu S, Shimotoyodome A, et al. Green tea extract improvesendurance capacity and increases muscle lipid oxidation in mice[J]. Am J Physiol RegulIntegr Comp Physiol,2005,288(3): R708-715.
    [164] Hill AM, Coates AM, Buckley JD, et al. Can EGCG reduce abdominal fat inobese subjects[J]? J Am Coll Nutr,2007,26(4):396S-402S.
    [165] Dean S, Braakhuis A, Paton C. The effects of EGCG on fat oxidation andendurance performance in male cyclists[J]. Int J Sport Nutr Exerc Metab,2009,19(6):624-644.
    [166] Iso H, Date C, Wakai K, et al. The relationship between green tea and totalcaffeine intake and risk for self-reported type2diabetes among Japanese adults[J]. AnnIntern Med,2006,144(8):554-562.
    [167] Panagiotakos DB, Lionis C, Zeimbekis A, et al. Long-term tea intake isassociated with reduced prevalence of(type2)diabetes mellitus among elderly peoplefrom Mediterranean islands: MEDIS epidemiological study[J]. Yonsei Med J,2009,50(1):31-38.
    [168] Islam MS, Choi H. Green tea, anti-diabetic or diabetogenic: A dose responsestudy[J]. Biofactors,2007,29(1):45–53.
    [169] Roghani M, Baluchnejadmojarad T. Chronic epigallocatechin-gallateimproves aortic reactivity of diabetic rats: Underlying mechanisms[J]. VasculPharmacol,2009,51(2-3):84–89.
    [170] Roghani M, Baluchnejadmojarad T. Hypoglycemic and hypolipidemic effectand antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabeticrats[J]. Pathophysiology,2010,17(1):55-59.
    [171] Fu Z, Zhen W, Yuskavage J, et al. Epigallocatechin gallate delays the onsetof type1diabetes in spontaneous non-obese diabetic mice[J]. Br J Nutr,2011,105(8):1218-25.
    [172] Pavan Kumar P, Radhika G, Rao GV, et al. Interferon γ and glycemic statusin diabetes associated with chronic pancreatitis[J]. Pancreatology,2012,12(1):65-70.
    [173] Orts ter H, Grankvist N, Wolfram S, et al. Diet supplementation with greentea extract epigallocatechin gallate prevents progression to glucose intolerance in db/dbmice[J]. Nutr Metab (Lond),2012,9:11.
    [174] Zhang Z, Ding Y, Dai X, et al. Epigallocatechin-3-gallate protectspro-inflammatory cytokine induced injuries in insulin-producing cells through themitochondrial pathway[J]. Eur J Pharmacol,2011,670(1):311-316.
    [175] Deng YT, Chang TW, Lee MS, et al. Suppression of free fatty acid-inducedinsulin resistance by phytopolyphenols in C2C12mouse skeletal muscle cells[J]. JAgric Food Chem,2012,60(4):1059-1066.
    [176] Yan J, Feng Z, Liu J, et al. Enhanced autophagy plays a cardinal role inmitochondrial dysfunction in type2diabetic Goto-Kakizaki (GK) rats: amelioratingeffects of (-)-epigallocatechin-3-gallate[J]. J Nutr Biochem,2012,23(7):716-724.
    [177] Venables MC, Hulston CJ, Cox HR, et al. Green tea extract ingestion, fatoxidation, and glucose tolerance in healthy humans[J]. Am J Clin Nutr,2008,87(3):778-784.
    [178] Wolfram S, Raederstorff D, Preller M, et al. Epigallocatechin gallatesupplementation alleviates diabetes in rodents[J]. J Nutr,2006,136:2512–2518.
    [179] Koyama Y, Abe K, Sano Y, et al. Effects of green tea on gene expression ofhepatic gluconeogenic enzymes in vivo[J]. Planta Med,2004,70(11):1100-1102.
    [180] Waltner-Law ME, Wang XL, Law BK, et al. Epigallocatechin gallate, aconstituent of green tea, represses hepatic glucose production[J]. J Biol Chem,2002,277(38):34933-34940.
    [181] Li T, Liu J, Zhang X, et al. Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate derivative under its role of alpha-glucosidase inhibition[J].Biomed Pharmacother,2007,61(1):91-96.
    [182] ZHONG LT, FURNEKJ, LEVITTDM. An extract of black, green, andmulberry teas causes malabsorption of carbohydrate but not of triacylglycerol in healthyvolunteers[J]. Am J Clin Nutr,2006,84(3):551-555.
    [183] Bose M, Lambert JD, Ju J, et al. The major green tea polyphenol,()-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver diseasein high-fat-fed mice[J]. J Nutr,2008,138(9):1677–1683.
    [184] Wolfram S, Raederstorff D, Wang Y, et al. Teavigo (epigallocatechingallate)supplementation prevents obesity in rodents by reducing adipose tissue mass[J].Ann Nutr Metab,2005,49(1):54–63.
    [185] Salgado AL, Carvalho L, Oliveira AC, et al. Insulin resistance index(homa-ir) in the differentiation of patients with non-alcoholic fatty liver disease andhealthy individuals[J]. Arq Gastroenterol,2006,47(2):165–169.
    [186] Ikeda I, Tsuda K, Suzuki Y, et al. Tea catechins with a galloyl moietysuppress postprandial hypertriacylglycerolemia by delaying lymphatic transport ofdietary fat in rats[J]. J Nutr,2005,135(2):155–159.
    [187] Juhel C, Armand M, Pafumi Y, et al. Green tea extract (ar25) inhibitslipolysis of triglycerides in gastric and duodenal medium in vitro[J]. J Nutr Biochem,2000,11(1):45–51.
    [188] Shishikura Y, Khokhar S, Murray BS. Effects of tea polyphenols onemulsification of olive oil in a small intestine model system[J]. J Agric Food Chem,2006,54(5):1906–1913.
    [189] Richard D, Kefi K, Barbe U, et al. Weight and plasma lipid control bydecaffeinated green tea[J]. Pharmacol Res,2009,59(5):351–354.
    [190] Boschmann M, Thielecke F. The effects of epigallocatechin-3-gallate onthermogenesis and fat oxidation in obese men: a pilot study[J]. J Am Coll Nutr,2007,26(4):389S-395S.
    [191] Tokimitsu I. Effects of tea catechins on lipid metabolism and body fataccumulation[J]. Biofactors,2004,22(1-4):141–143.
    [192] Murase T, Nagasawa A, Suzuki J, et al. Beneficial effects of tea catechinson diet-induced obesity: Stimulation of lipid catabolism in the liver[J]. Int J Obes RelatMetab Disord,2002,26(11):1459–1464.
    [193] Nomura S, Ichinose T, Jinde M, et al. Tea catechins enhance the mRNAexpression of uncoupling protein1in rat brown adipose tissue[J]. J Nutr Biochem,2008,19(12):840–847.
    [194] Wolfram S, Raederstorff D, Preller M, et al. Epigallocatechin gallatesupplementation alleviates diabetes in rodents[J]. J Nutr,2006,136(10):2512–2518.
    [195] Murase T, Misawa K, Haramizu S, et al. Catechin-induced activation of theLKB1/AMP-activated protein kinase pathway[J]. Biochem Pharmacol,2009,78(1):78-84.
    [196] Kao CC, Wu BT, Tsuei YW, et al. Green tea catechins: Inhibitors ofglycerol-3-phosphate dehydrogenase[J]. Planta Med,2010,76(7):694-696.
    [197] Yeh CW, Chen WJ, Chiang CT, et al. Suppression of fatty acid synthase inmcf-7breast cancer cells by tea and tea polyphenols: A possible mechanism for theirhypolipidemic effects[J]. Pharmacogenomics J,2003,3(5):267–276.
    [198]赵秀鹤. MAPK信号转导途径及其在神经系统疾病中作用的研究进展[J].国外医学神经病学神经外科学分册,2005,32(3):248-251.
    [199]何鑫,胡金凤,楚世峰,等.高脂乳对大鼠神经炎症的产生及其机制的初步研究[J].中国药理学通报,2012,28(5):687-691.
    [200] Lu Z, Xu S. ERK1/2MAP kinases in cell survival and apoptosis[J]. IUBMBLife.2006,58(11):621-631.
    [201] Levites Y, Amit T, Youdim MB, et al. Involvement of protein kinase Cactivation and cell survival cell cycle genes in green tea polyphenol (-)-epigallocatechin3-gallate neuroprotective action[J]. J Biol Chem,2002,277(34):30574-30580.
    [202] Schroeter H, Spencer JP, Rice-Evans C, et al. Flavonoids protect neuronsfrom oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminalkinase (JNK), c-Jun and caspase-3[J]. Biochem J,2001,358(Pt3):547-557.
    [203]孟金兰,陈雅嘉,陈红,等. PI3K/Akt信号通路在硫化氢保护PC12细胞对抗化学性缺氧损伤的作用[J].中国药理学通报,29(2):257-261.
    [204] Jang S, Jeong HS, Park JS, et al. Neuroprotective effects of (-)-epigallocatechin-3-gallate against quinolinic acid-induced excitotoxicity via PI3Kpathway and NO inhibition[J]. J Brain Research,2010,1313:25-33.
    [205] Chung H, Seo S, Moon M, et al. Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3beta and ERK1/2pathways mediate protective effects ofacylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosisin primary rat cortical neuronal cells[J]. J Endocrinol,2008,198(3):511-521.
    [206] Zhuang Z, Zhao X, Wu Y, et al. The anti-apoptotic effect of PI3K-Aktsignaling pathway after subarachnoid hemorrhage in rats[J]. Ann Clin Lab Sci,2011,41:364-372.
    [207]李任佳,赵小玲,王尚,等. EGCG对体外应激海马神经元的保护作用及其机制探讨[J].营养学报,2013,35(3):288-292.
    [208] Koh SH, Kwon H, Kim SH, et al. Epigallocatechin gallate preventsoxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A)motoneuron cells by alteration of cell survival and deat signals[J]. Toxicology,2004,202(3):213-225.
    [209]张敬军.星形胶质细胞的研究[J].中国药理学通报,2006,22(7):788-791.
    [210] Huang R Q, Cheng H C, Zhao X D, et al. Preliminary study on the effect oftrauma-induced secondary cellular hypoxia in brain injury [J]. Neurosci Lett,2010,473(1):22-27.
    [211]花芳,余娇娇,孙巍,等. TGF-β/Smad3信号参与介导TRB3的促肿瘤作用[J].中国药理学通报,2013,29(3):323-327.
    [212] Cook T, Urrutia R. TIEG proteins join the Smads as TGF-beta-regulatedtranscription factors that control pancreatic cell growth[J]. Am J Physiol GastrointestLiver Physiol,2000,278(4):513-521.
    [213] Buss A, Pech K, Brook G A, et al. TGF-beta1and TGF-beta2expressionafter traumatic human spinal cord injury[J]. Spinal Cord,2008,46(5):364-371.
    [214]李琴.基因重组NRG-1β对缺血性脑损伤的神经保护作用评价[D].华中科技大学博士论文,2009.
    [215]余传勇,桂韦,黄琳,等. TGF-β1-Samd3信号转导在星形胶质细胞增殖中的作用[J].中国药理学通报,2012,28(2):230-234.
    [216] Levites Y, Amit T, Youdim MB, Mandel S. nvolvement of protein kinase Cactivation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin3-gallate neuroprotective action[J]. J Biol Chem,2002,277(34):30574-30580.
    [217]何苗,魏敏杰. EGCG防治神经退行性疾病的作用机制[J].生命的化学,2007,27(5):434-436.
    [218]何苗. EGCG对阿尔茨海默病小鼠的保护作用及其可能机制[D].中国医科大学博士论文,2008.
    [219]张国霞,周爱玲,张贵萍,等.大鼠海马神经元TLR4介导的MyD88依赖途径在神经炎症中的作用[J].中国应用生理学杂志,2013,29(1):42-46.
    [220]陶莉,望运玲,武双婵,等.丁香酚对大鼠局灶性脑缺血/再灌注神经保护作用的研究[J].中国药理学通报,2013,29(8):1146-1150.
    [221] Nurmi A, Lindsberg P J, Koistinaho M, et al. Nuclear factor-κB contributesto infarction after permanent focal ischemia[J]. Stroke,2004,35:987-991.
    [222] Lin S T, Wang Y, Xue Y, et al. Tetrandrine suppresses LPS-Induced astrocyteactivation via modulating IKKs-Ikappa-Balph-aNF-kappaB signaling pathway [J]. Moland Cell Biochem,2008,315(2):41-50.
    [223] Jie liang Li, Li Ye, Xu Wang, et al.()-Epigallocatechin gallate inhibitsendotoxininduced expression of inflammatory cytokines in human cerebralmicrovascular endothelial cells[J]. Journal of Neuroinflammation,2012,9:161-174.
    [224] Jae Woong Lee, Yong Kyoung Lee, Jung Ok Ban, et al. Green Tea (-)-Epigallocatechin-3-Gallate Inhibits b-Amyloid-Induced Cognitive Dysfunction throughModifcation of Secretase Activity via Inhibition of ERK and NF-kB Pathways inMice[J]. The Journal of Nutrition,2009,139(10):1987-1993.
    [225]田燕歌,李亚,李建生,等.调补肺肾法对COPD大鼠JAK/STAT信号转导的影响及远后效应[J].中国中药杂志,2013,38(1):75-81.
    [226]黄伟彬,吕磊,张岚. JAK/STAT信号通路在动脉粥样硬化中的作用[J].上海交通大学学报(医学版),2013,33(4):506-509.
    [227]田燕歌,李亚,李建生,等.肺肾法对COPD大鼠JAK/STAT信号转导的影响及远后效应[J].中国中药杂志,2013,38(1):75-80.
    [228]李琴,秦丽华,栾丽菊,等.神经调节素对大鼠脑缺血再灌注损伤细胞凋亡和STAT3及GFAP表达的影响[J].解剖学报,2008,39(6):820-824.
    [229] Suzuki S, Tanaka K, Nogawa S, et al. Phosphorylation of signal transducerand activator of transcription-3(Stat3) after focal cerebral ischemia in rats[J]. ExpNeurol,2001,170(1):63-71.
    [230] Suzuki S, Yamashita T, Tanaka K, et al. Activation of cytokine signalingthrough leukemia inhibitory factor receptor (LIFR)Pgp130attenuates ischemic braininjury in rats[J]. J Cereb Blood FlowMetab,2005,25(6):685-693.
    [231] Brian Giunta, Demian Obregon, Hauyan Hou, et al. EGCG mitigatesneurotoxicity mediated by HIV-1proteins gp120and Tat in the presence of IFN-γ: Roleof JAK/STAT1signaling and implications for HIV-associated dementia[J]. Brain Res,2006,1123(1):216-225.
    [232]史景莉,唐旭东.表没食子儿茶素没食子酸酯对细胞信号转导通路的影响[J].生命的化学,2012,32(3):243-248.
    [233]魏冰.运动和EGCG、肉碱对肥胖大鼠减肥和脂代谢及基因表达的影响[D].北京体育大学博士论文,2012.
    [1] Choi S Y, Chang H J, Choi S I, et al. Long-term exercise training attenuatesage-related diastolic dysfunction: association of myocardial collagen cross-linking[J]. JKorean Med Sci,2009,24(1):32-39.
    [2] Boor P, Celec P, Behuliak M, et al. Regular moderate exercise reducesadvanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats[J].Metabolism,2009,58(11):1669-1677.
    [3] King H, Aubert RE, Herman WH. Global burden of diabetes1995-2025:prevalence, numerical estimates, and projections[J]. Diabetes Care,1998,21(9):1414-1431.
    [4] Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic fillingand accumulation of myocardial collagen at insulin-resistant prediabetic stage of a typeII diabetic rat model[J]. Circulation,2000,101(8):899-907.
    [5] Islam MS, Loots du T. Experimental rodent models of type2diabetes: a review[J]. Methods Find Exp Clin Pharmacol,2009,31(4):249-261.
    [6] Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat.Characteris-tics of the experimental model[J]. Exp Biol Med (Maywood),2012,237(5):481-490.
    [7] Szkudelski T. The mechanism of alloxan and streptozotocin action in the ratpancreas[J]. Physiolo Res,2001,50(6):537-546.
    [8]李翰.运动与白藜芦醇对Ⅱ型糖尿病大鼠学习记忆的影响及机制研究[D].华南师范大学,2012:33.
    [9] Lupi R, Dotta F, Marseela L, et al. Prolonged exposure to free fatty acids hascytosatatic and pro-apototic effects on human panereasnc islets: evidence that beta-celldeath is caspase mediated, partially dependent on ceramde pathway and Bcl-2redulated[J]. Diabetes,2002,51:1437.
    [10] Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: fromthe pathophysiology of the cardiac myocytes to current diagnosis and managementstrategies[J]. Vasc Health Risk Manag,2010,21(6):883-903.
    [11]王婧,赵晶晶,叶春玲,等.番石榴叶总三萜对II型糖尿病大鼠的降血糖和血脂作用[J].中国病理生理杂志,2012,28(6):1109-1113.
    [12]Torrie T. Jones and Gregory J. Brewer. Age-related deficiencies in complex Iendogenous substrate availability and reserve capacity of complex IV in cortical neuronelectron trans-port[J]. Biochim Biophys Acta,2010,1797(2):167–176.
    [13]袁野. SOD表达和线粒体功能异常可能涉及缺血/再灌注致小鼠神经元退行性变[D].重庆医科大学博士论文,2008.
    [14]董卫国,林岚,王丰,等.电针对SAMP8小鼠海马线粒体呼吸链功能的影响[J].中国针灸,2012,32(8):726-730.
    [15] Moreira PI, Santos MS, Seica R et al. Brain mitochondria) dysfunction as alink between Alzheimer's disease and diabetes. J Neurol Sci,2007,257(1-2):206-214.
    [16]李洁.急性运动对大鼠肝脏线粒体呼吸链酶复合物的影响[J].中国运动医学杂志,2008,27(3):363-365.
    [17]张秀丽.梓醇对D-半乳糖衰老小鼠的神经保护作用研究[D].大连理工大学博士论文,2008.
    [18] Bola os JP, Heales SJR, Land JM et al. Effect of peroxynitrite on themitochondrial respiratory chain: differential susceptibility of neurones and astrocytes inprimary culture[J]. J Neurochem,1995,64(5):1965-1972.
    [19] Hanahisa Y, Yamaguchi M. Decrease in Ca2+-ATPase activity in the brainplasma membrane of rats with increasing age: involvement of brain calciumaccumulation[J]. International Journal of Molecular Medicine,2001,4:407-411.
    [1] Claude Lajoie, Angelino Calderone, Francois Trudeau, et al. Exercise trainingattenuated the PKB and GSK-3dephosphorylation in the myocardium of ZDF rats[J]. JAppl Physiol,2004,96:1606–1612.
    [2] Majdan M, Shatz CJ. Effects of visual experience on activity-dependent generegulation in cortex[J]. Nat Neurosci,2006,9:650-659.
    [3] Maandag NJ, Coman D, Sanganahalli BG, Herman P, Smith AJ, Blumenfeld H,et al. Energetics of neuronal signaling and fMRI activity[J]. Proc Natl Acad Sci U S A,2007,104:20546-20551.
    [4]熊御云.帕金森样神经损伤的线粒体机制及积雪草酸神经保护作用的研究[D].江苏大学博士论文,2012.
    [5] Rodríguez-Martínez E, Martínez F, Espinosa-García MT, et al. Mitochondrialdysfunction in the hippocampus of rats caused by chronic oxidative stress[J].Neuroscience,2013,12(252):384-395.
    [6] Kapay NA, Popova OV, Isaev NK, et al. Mitochondria-targeted plastoquinoneantioxidant SkQ1prevents amyloid-β-induced impairment of long-term potentiation inrat hippocampal slices[J]. J Alzheimers Dis,2013,36(2):377-383.
    [7]耿喜林,徐明丽,尹洁,等.糖尿病早期脑损伤与线粒体功能障碍[J].中国病理生理杂志,2012,28(9):1571-1576.
    [8] Kemper MF, Zhao Y, Duckles SP, et al. Endogenous ovarian hormones affectmitochondrial efficiency in cerebral endothelium via distinct regulation of PGC-1isoforms[J]. J Cereb Blood Flow Metab,2013,33(1):122-128.
    [9] Egger A, Samardzija M, Sothilingam V, et al. PGC-1determines light damagesusceptibility of the murine retina[J]. PLoS One,2012,7(2): e31272.
    [10] Supakul L, Pintana H, Apaijai N, et al. Protective effects of garlic extract oncardiac function, heart rate variability, and cardiacmitochondria in obese insulin-resistant rats[J]. Eur J Nutr,2013.[Epub ahead of print.]
    [11] Martin SD, McGee SL. The role of mitochondria in the aetiology of insulinresistance and type2diabetes[J]. Biochim Biophys Acta,2013. pii: S0304-4165(13)00400-5.[Epub ahead of print].
    [12] García-Ruiz C, Baulies A, Mari M, et al. Mitochondrial dysfunction innon-alcoholic fatty liver disease and insulin resistance: cause or consequence[J]? FreeRadic Res,2013,47(11):854-868.
    [13] Delgado-Lista J, Perez-Martinez P, Solivera J, et al. TOP SingleNucleotide Polymorphisms Affecting Carbohydrate Metabolism in MetabolicSyndrome: From the LIPGENE Study[J]. J Clin Endocrinol Metab,2013.[Epub aheadof print].
    [14] Prasad V, Lorenz JN, Miller ML, et al. Loss of NHE1activity leads toreduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress[J].J Mol Cell Cardiol,2013,65:33-42.
    [15] Wang X, Zhang W, Chen H, et al. High selenium impairs hepatic insulinsensitivity through opposite regulation of ROS[J]. Toxicol Lett,2013,224(1):16-23.
    [16]高春林.高糖、高游离脂肪酸、UCP4影响脂肪细胞胰岛素敏感性的线粒体机制分析[D].南京医科大学博士论文,2010.
    [17] Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL DiPietro L,Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role ininsulin resistance[J]. Science,2003,300:1140-1142.
    [18] Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impairedmitochondrial activity in the insulin-resistant offspring of patients with type2diabetes[J]. N Engl J Med,2004,350:664-671.
    [19] Lowell BB, Shulman GI. Mitochondrial dysfunction and type2diabetes[J].Science,2005,307:384-387.
    [20] Franko A, Kleist-Retzow JC, Neschen S, et al. Liver adaptsmitochondrial function to insulin resistant and diabetic states in mice[J]. J Hepatol,2013.[Epub ahead of print].
    [21] Slattery MJ, Bredella MA, Thakur H, et al. Insulin Resistance andImpaired Mitochondrial Function in Obese Adolescent Girls[J]. Metab Syndr RelatDisord,2013.[Epub ahead of print].
    [22]陈罕. SIRT1信号通路通过氧化应激参与大鼠慢性脑缺血致认知损伤的研究[D].吉林大学博士论文,2013.
    [23] Michán S, Li Y, Chou MM, et al. SIRT1is essential for normal cognitivefunction and synapticplasticity[J]. J Neurosci,2010,30(29):9695–9707.
    [24] Zakhary S M, Ayubcha D, Dileo J N, et al. Distribution Analysis ofDeacetylase SIRT1in Rodent and Human Nervous Systems[J]. Anat Rec (Hoboken),2010,293(6):1024–1032.
    [25] Ramadori G, Lee C E, Bookout A L, et al. Brain SIRT1: AnatomicalDistribution and Regulation by Energy Availability[J]. J Neurosci,2008,28(40):9989–9996.
    [26] Wang T, Gu J, Wu PF, et al. Protection by tetrahydroxys-tilbene glucosideagainst cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways andinhibition of in-tracellular ROS/RNS generation[J]. Free Radic Biol Med,2009,47(3):229-240.
    [27] Wang P, Xu TY, Guan YF, et al. Nicotinamide phosphori-bosyltransferaseprotects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway[J]. Ann Neurol,2011,69(2):360-374.
    [28] Zhu HR, Wang ZY, Zhu XL, et al. Icariin protects against brain injury byenhancing SIRT1-dependent PGC-1alpha expression in experimental stroke[J].Neuropharmacology,2010,59:70-76.
    [29] Ramon Amat, Anna Planavila, Shen Liang Chen, et al. SIRT1Controls theTranscription of the Peroxisome Proliferator-activated Receptor-Co-activator-1(PGC-1) Gene in Skeletal Muscle through the PGC-1Autoregulatory Loop andInteraction with MyoD[J]. The Journal of Biological Chemistry Vol,2009,284:21872–21880.
    [30] Lin J D. Minireview: the PGC-1coactivator networks: chromatin-remodelingand mitochondrial energy metabolism[J]. Mol Endocrinol,2009,23:2–10.
    [31] Timmers S, Hesselink MK, Schrauwen P. Therapeutic potential of resveratrol inobesity and type2diabetes: new avenues for health benefits[J]? Ann N Y Acad Sci,2013,1290:83-90.
    [32] Luu L, Dai FF, Prentice KJ, et al. The loss of Sirt1in mouse pancreatic betacells impairs insulin secretion by disrupting glucose sensing[J]. Diabetologia,2013,56(9):2010-2020.
    [33] Albiero M, Poncina N, Tjwa M, et al. Diabetes causes bone marrow autonomicneuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1[J].Diabetes,2013.[Epub ahead of print].
    [34] Caron AZ, He X, Mottawea W, et al. The SIRT1deacetylase protects miceagainst the symptoms of metabolic syndrome[J]. FASEB J,2013.[Epub ahead ofprint].
    [35] Tian G, Sawashita J, Kubo H, et al. Ubiquinol-10SupplementationActivates Mitochondria Functions to Decelerate Senescence in Senescence AcceleratedMice[J]. Antioxid Redox Signal,2013.[Epub ahead of print].
    [36] Sarga L, Hart N, Koch LG, et al. Aerobic endurance capacity affects spatialmemory and SIRT1is a potent modulator of8-oxoguanine repair[J]. Neuroscience,2013,12(252):326-336.
    [37] Niu Y, Na L, Feng R, et al. The phytochemical, EGCG, extends lifespan byreducing liver and kidney function damage and improving age-associated inflammationand oxidative stress in healthy rats[J]. Aging Cell,2013,12(6):1041-1049.
    [38] Nieman DC, W illiamsAS, Shanely RA, et al. Quercetincs influence onexercise performance andmusclemitochondrial biogenesis[J]. Med Sci Sports Exerc,2010,42(2):338-3451.
    [39] Ferrara N, Rinaldi B, Corbi G, et al. Exercise training promotes SIRT1activity in aged rats[J]. Rejuvenation Res,2008,11(1):139-150.
    [40] Falone S, D'Alessandro A, Mirabilio A, etal. Late-onset running biphasicallyimproves redox balance, energy and methylglyoxal-related status, as wellas SIRT1expression in mouse hippocampus[J]. PLoS One,2012,7(10): e48334.
    [41] Sarga L, Hart N, Koch LG, et al. Aerobic endurance capacity affects spatialmemory and SIRT1is a potent modulator of8-oxoguanine repair[J]. Neuroscience,2013,252:326-336.
    [42]李翰.运动与白藜芦醇对II型糖尿病大鼠学习记忆的影响及机制研究[D].华南师范大学博士论文,2012.
    [43] Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin andAdipoR1regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1[J].Nature,2010,64(7293):1313-1319.
    [44] Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK andSIRT1for metabolic adaptation to fasting and exercise in skeletal muscle[J]. Cell Metab,2010,1(3):213-219.
    [45] Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotesmitochondrial biogenesis by inducing the expression of eNOS[J]. Science,2005,10(5746):314-317.
    [46] Tanny J C, Moazed D. Coupling of histone deacetylation to NAD breakdownby the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to anNAD breakdown product[J]. Proc Natl Acad Sci USA,2001,98:415–420.
    [47] Riehle C, Abel ED. PGC-1proteins and heart failure[J]. Trends CardiovascMed,2012,22(4):98-105.
    [48] Dillon LM, Rebelo AP, Moraes CT. The role of PGC-1coactivators in agingskeletal muscle and heart[J]. IUBMB Life,2012,64(3):231-241.
    [49] Liu C, Lin JD. PGC-1coactivators in the control of energy metabolism[J]. ActaBiochim Biophys Sin,2011,43(4):248-57.
    [50]洪涛.高脂饮食对小鼠PGC-1基因表达的影响及转录调控机制的研究[D].南华大学博士论文,2011.
    [51] Nemoto S, Fergusson MM, Finkel T. et al. SIRT1functionally interacts with themetabolic regulator and transcriptional coactivator PGC-1{alpha}[J]. J Biol Chem,2005,280(16):16456-60.
    [52] Wang R, Li JJ, Diao S, et al. Metabolic stress modulates Alzheimer'sβ-secretase gene transcription via SIRT1-PPARγ-PGC-1in neurons[J]. Cell Metab,2013,17(5):685-694.
    [53] Han C, Wan H, Ma S, et al. Role of mammalian sirtuin1(SIRT1) in lipidsmetabolism and cell proliferation of goose primary hepatocytes[J]. Mol Cell Endocrinol,2014,382(1):282-291.
    [54] Morales-Alamo D, Ponce-González JG, Guadalupe-Grau A, et al. Increasedoxidative stress and anaerobic energy release, but blunted Thr172-AMPKphosphorylation, in response to sprint exercise in severe acute hypoxia in humans[J]. JAppl Physiol,2012,13(6):917-928.
    [55] Lu B, Lee J, Nie XB, et al. Phosphorylation of human TFAM in mitochondriaimpairs DNA binding and promotes degradation by the AAA+Lon protease[J]. MolCell,2013,49(1):121-132.
    [56] Ohgaki K, Kanki T, Fukuoh A, et al. The c-terminal tail of mitochondrialtranscription factor a markedly strengthens its general binding to DNA[J]. J Biochem,2007,141:201-211.
    [57] Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor Aregulates mitochondrial transcription initiation, DNA packaging, and genome copynumber[J]. Biochim Biophys Acta,2012,1819(9/10):921-929.
    [58] Gangelhoff TA, Mungalachetty PS, Nix JC, et al. Structural analysis andDNA binding of the hmg domains of the human mitochondrial transcription factor[J].Nucleic Acids Res,2009,37:3153-3164.
    [59] Fernández-Moreno MA, Hernández R, Adán C, et al. Drosophilanuclear factor DREF regulates the expression of the mitochondrial DNA helicaseand mitochondrial transcription factor B2but not the mitochondrial translationfactor B1[J]. Biochim Biophys Acta,2013,1829(10):1136-1146.
    [60] Schwinghammer K, Cheung AC, Morozov YI, et al. Structure ofhuman mitochondrial RNA polymerase elongation complex[J]. Nat Struct Mol Biol,2013,20(11):1298-1303.
    [61] J ers P, Lewis SC, Fukuoh A, et al. Mitochondrial transcription terminatorfamily members mTTF and mTerf5have opposing roles in coordinationof mtDNA synthesis[J]. PLoS Genet,2013,9(9): e1003800.
    [62] Owuor ED, Kong AN. Antioxidants and oxidants regulated signal transductionpathways[J]. Biochem Pharmacol,2002,64:765-770.
    [63]杨英,章军建,刘晖,等.慢性脑低灌注大鼠海马Nrf2的表达及当归注射液的抗氧化作用[J].武汉大学学报(医学版),2011,32(1):16-19.
    [64] Surh Y J. Kundu J K. N a H K. N rf2as a master rednx switCh in turning onthe cellular signaling involved in the induction of cytoprotective genes by somechemopreventive phytochemicals[J]. Planta Med,2008,74(13):1526-1539.
    [65]徐晓红. NRF2基因多态性与II型糖尿病及其并发症关系的研究[D].吉林大学博士论文,2013.
    [66] Ferdinando Giacco, Michael Brownlee. Oxidative stress and diabeticcomplications[J]. Circ Res,2010,107(9):1058–1070.
    [67] Zoltan Ungvari, Lora Bailey-Downs, Tripti Gautam, Adaptive induction ofNF-E2-related factor-2-driven antioxidant genes in endothelial cells in response tohyperglycemia[J]. Am J Physiol Heart Circ Physiol,2011,300: H1133–H1140.
    [68] Hyun-Ae Seo, In-Kyu Lee. The role of NRF2: adipocyte differentiation,obesity, and insulin resistance[J]. Oxid Med Cell Longev,2013,2013:184598.
    [69] Xu Z, Wei Y, Gong J, et al. NRF2plays a protective role in diabetic retinopathyin mice[J]. Diabetologia,2014,57(1):204-213.
    [70] Nakai K, Fujii H, Kono K, et al. Vitamin D Activates the NRF2-Keap1Antioxidant Pathway and Ameliorates Nephropathy in Diabetic Rats[J]. Am JHypertens,2013.[Epub ahead of print]
    [71] A. K. Meher, P. R. Sharma, V. A. Lira et al. NRF2deficiency in myeloid cells isnot sufficient to protect mice fromhigh-fat dietinduced adipose tissue inflammation andinsulin resistance[J]. Free Radical Biology and Medicine,2012,52(9):1708-1715.
    [72]周钰娟.金樱子对实验性糖尿病肾病抗氧化和抗炎作用机制研究[D].中南大学博士论文,2012.
    [73]张会欣,王超,朱慧明,等.周络通胶囊激活转录因子NRF2抑制糖尿病周围神经病变小鼠氧化应激[J].中国药理学通报,2013,29(1):136-139.
    [74] Baluchnejadmojarad T, Roghani M. Chronic epigallocatechin-3-gallateameliorates learning and memory deficits in diabetic rats via modulation of nitric oxideand oxidative stress[J]. Behav Brain Res,2011,224(2):305-310.
    [75] Matsumoto T, Watanabe S, Kawamura R, et al. Epigallocatechin gallateattenuates ET-1-induced contraction in carotid artery from type2diabetic OLETF rat atchronic stage of disease[J]. Life Sci,2013.[Epub ahead of print].
    [76] Wolfram S, Raederstorff D, Preller M, et al. Epigallocatechin gallatesupplementation alleviates diabetes in rodents[J]. J Nutr,2006,136(10):2512-2518.
    [77] Panagiotakos DB, Lionis C, Zeimbekis A, et al. Long-term tea intake isassociated with reduced prevalence of(type2)diabetes mellitus among elderly peoplefrom Mediterranean islands: MEDIS epidemiological study[J]. Yonsei Med J,2009,50(1):31-38.
    [78] Zhong L, Furne JK, Levitt MD. An extract of black, green, and mulberry teascauses malabsorption of carbohydrate but not of triacylglycerol in healthy volunteers[J].Am J Clin Nutr,2006,84:551-555.
    [79] Stote KS, Baer DJ. Tea consumption may improve biomarkers of insulinsensitivity and risk factors for diabetes[J]. J Nutr,2008,138(8):1584S-1588S.
    [80] Kim JA. Mechanisms underlying beneficial health effects of tea catechins toimprove insulin resistance and endothelial dysfunction[J]. Endocr Metab ImmuneDisord Drug Targets,2008,8(2):82-88.
    [81] Jia N, Han K, Kong JJ, et al.(-)-Epigallocatechin-3-gallate alleviates spatialmemory impairment in APP/PS1mice by restoring IRS-1signaling defects in thehippocampus[J]. Mol Cell Biochem,2013,380(1-2):211-218.
    [82] Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlyinginsulin resistance, diabetes, and cardiovascular disease? The common soil hypothesisrevisited[J]. Arterioscler Thromb Vasc Biol,2004,24(5):816-823.
    [83] Khan S, Shukla S, Sinha S, et al. Role of adipokines and cytokines inobesity-associated breast cancer: Therapeutic targets[J]. Cytokine Growth Factor Rev,2013,24(6):503-513.
    [84] Al-Karkhi IH, Ibrahim AE, Yaseen AK. Levels of Insulin, IL-6and CRP inPatients with Unstable Angina[J]. Adv Clin Exp Med,2013,22(5):655-658.
    [85] Xie X, Liao H, Dang H, et al. Down-regulation of hepatic HNF4alpha geneexpression during hyperinsulinemia via SREBPs[J]. Mol Endocrinol,2009,23(4):434-443.
    [86] Yasui K, Tanabe H, Miyoshi N, et al. Effects of (-)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum[J].Biomed Res,2011,32(5):313-320.
    [87] Niu Y, Na L, Feng R, et al. The phytochemical, EGCG, extends lifespan byreducing liver and kidney function damage and improving age-associated inflammationand oxidative stress in healthy rats[J]. Aging Cell,2013,12(6):1041-1049.
    [88] Qinyong Ye, Linfeng Ye, Xianjie Xu, et al. Epigallocatechin-3-gallatesuppresses1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12cells via theSIRT1/PGC-1signaling pathway[J]. BMC Complement Altern Med,2012,12:82.
    [89]闫玉芳,龚锴,马拓,等.表没食子儿茶素没食子酸酯通过抑制BACE1转录和翻译减少Aβ生成[J].生物物理学报,2013,29(7):486-495.
    [90] Dong-Wook Han, Mi Hee Lee, Bongju Kim, Preventive effects ofepigallocatechin-3-O-gallate against replicative senescence associated with p53acetylation in human dermal fibroblasts[J]. Oxid Med Cell Longev,2012:850684.
    [91] Sadruddin S, Arora R. Resveratrol: biologic and therapeutic implications[J]. JCardiometab Syndr,2009,4(2):102-106.
    [92] Y. Feng, J. Wu, L. Chen, et al. A fluorometric assay of SIRT1deacetylationactivity through quantification of nicotinamide adenine dinucleotide[J]. Anal Biochem,2009,395:205-210.
    [93] Valenti D, De Rasmo D, Signorile A, Rossi L, et al. Epigallocatechin-3-gallateprevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis inhuman cells from subjects with Down's syndrome[J]. Biochim Biophys Acta,2013,1832(4):542-552.
    [94] Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J: Rapidly increased neuronalmitochondrial biogenesis after hypoxic-ischemic brain injury[J]. Stroke,2008,39:3057-3063.
    [95] Li W, Kong AN. Molecular mechanisms of NRF2mediated antioxidantresponse[J]. MolCarcinog,2009,48(2):91-104.
    [96] Calkins M J, Jakel R J, Johnson D A, et al. Protection from mitochondrialcomplex IIinhibition in vitro and in vivo by NRF2-mediated transcription[J]. Proc NatlAcad Sci,2005,10(2):244-249.
    [97] KenslerTW, WakabayashiN, Biswal S. Cell survival responses to environmentalstresses via the Keap1-NRF2-ARE pathway[J]. Annu Rev Pharmacol Toxico, l2007,47:89-116.
    [98] Angelica B M, Liu D, Hagos G K, et al. Angelica sinesis and its alkylphthalidesinduce the detoxification enzyme NAD(P) H: by alkylating Keap1[J]. Chem ResToxicol,2008,21:1939-1948.
    [99]王笑亮,王汉东. NRF2在中枢神经系统疾病中的神经保护作用[J].医学研究生学报,2011,24(7):754-757.
    [100]宋亚颀,王汉东.转录因子NF-E2相关因子2-抗氧化转录元件信号路径细胞保护作用的研究进展[J].医学研究生学报,2009,22(4):431-433.
    [101] Nguyen T, Sherratt P J, Huang H C, et al. Increased protein stability as amechanism that enhances NRF2-mediated transcriptional activation of the antioxidantresponse element: degradation of NRF2by the26S proteasome[J]. J Biol Chem,2003,278:4536-4541.
    [102]李航,段惠军. NRF2/ARE信号通路及其调控的抗氧化蛋白[J].中国药理学通报,2011,27(3):300-303.
    [103] Kim SK, Yang JW, Kim MR, et al. Increased expression ofNRF2-ARE-dependent anti-oxidant proteins in tamoxifen resistant breast cancer cells[J].Free Radic Biol Med,2008:45(4):53-46.
    [104] Na HK, Surh YJ. Modulation of NRF2-mediated antioxidant and detoxifyingenzyme induction by the green tea polyphenol EGCG[J]. Food Chem Toxicol,2008,46(4):1271-1278.
    [105] Ongwijitwat S, Wong-Riley MT. Is nuclear respiratory factor2a mastertranscriptional coordinator for all ten nuclear-encoded cytochrome coxidasesubunits in neurons[J]? Gene,2005,360(1):65-77.
    [106] Hiroki F. Hiromi F. Shinsuke C, et al. Reduction of renal superoxidedismutase in progressive diabetic nephropathy[J]. JASN,2009,20(6):1303-1313.
    [107] Calabrese V, Mancuso C, Sapienza M, et al. Oxidative stress and cellularstress response in diabetic nephropathy[J]. Cell Stress Chaperones,2007,12(4):299-306.
    [108] Kowluru RA, Abbas SN, Odenbach S. Reversal of hyperglycaemia anddiabetic nephropathy: effect of reinstitution of good metabolic control on oxidativestress in the kidney of diabetic rats[J]. J Diabetes Complications,2004,18:282-288.
    [109] Lee SH, Nam BY, Kang EW, et al. Effects of an oral adsorbent on oxidativestress and Libronectin expression in experimental diabetic nephropathy[J]. Nephrol DialTransplant,2010,2507:2134-2141.
    [110]陈善源,徐勤. II型糖尿病中胰岛β细胞氧化应激损伤机制与相关治疗药物的研究进展[J].中国药房,2011,22(37):3533-3535.
    [111] Amaral S, Oliveira PJ, Ramalho-Santos J. Diabetes and the impairment ofreproductive function: possible role of mitochondria and reactive oxygen species [J].Curr Diabetes Rev,2008,4(1):46-54.
    [112] Vassort G, Turan B. Protective role of antioxidants in diabetes-induced cardiacdysfunction[J]. Cardiovasc Toxicol,2010,10(2):73-86.
    [113] Powers SK, Duarte J, Kavazis AN, et al. Reactive oxygen species aresignalling molecules for skeletal muscle adaptation[J]. Exp Physiol,2010,95(1):1-9.
    [114]肖园园,曾朝阳,田晓年,等. II型糖尿病肾病患者血清脂联素、血管内皮生长因子水平与氧化应激的相关性[J].武汉大学学报(医学版),2012,33(2):228-231.
    [115] Boudina S, Abel E D. Diabetic cardiomyopathy revisited [J]. Circulation,2007,115(25):3213-3223.
    [116] Chandrashekar K, Muralidhara. Evidence ofoxidative stress andmitochondrialdysfunctions in the testis ofprepubertal diabetic rats [J]. Int J ImpotRes,2009,21(3):198-206.
    [117]李小鑫,邱雪峰,余文,等.糖尿病大鼠阴茎海绵体线粒体氧化应激损伤与保护[J].北京大学学报(医学版),2011,43(2):189-193.
    [118] Borradaile N M, Pickering J G. Nicotinamide phosphoribosyltransferaseimparts human endothelial cells with extended replicative lifespan and enhancedangiogenic capacity in a high glucose environment[J]. Aging Cell,2009,8:100–112.
    [119] Lazarevic G, Antic S, Cvetkovic T, et al. A physical activity programme andits effects on insulin resistance and oxidative defense in obese male patients with type2diabetes mellitus[J]. Diabetes Metab,2006,32(6):583-590.
    [120] Rector RS, Warner SO, Liu Y, et al. Exercise and diet induced weight lossimproves measures of oxidative stress and insulin sensitivity in adults withcharacteristics of the metabolic syndrome[J]. Am J Physiol Endocrinol Metab,2007,293(2): E500-506.
    [121] De Oliveira VN, Bessa A, Jorge ML, et al. The effect of different trainingprograms on antioxidant status, oxidative stress, and metabolic control in type2diabetes[J]. Appl Physiol Nutr Metab,2012,37(2):334-344.
    [122] Jones AW, Yao Z, Vicencio JM, et al. PGC-1family coactivators and cell fate:roles in cancer, neurodegeneration, cardiovascular disease and retrogrademitochondria-nucleus signaling[J]. Mitochondrion,2012,12(1):86-99.
    [123] Brown D A, O’Rourke B. Cardiac mitochondria and arrhythmias[J].Cardiovasc Res,2010,88(2):241-249.
    [1] Claude Lajoie, Angelino Calderone, Francois Trudeau, et al. Exercise trainingattenuated the PKB and GSK-3dephosphorylation in the myocardium of ZDF rats[J]. JAppl Physiol,2004,96:1606–1612.
    [2] Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian healthand disease[J]. Physiol Rev,2009,89(3):799-845.
    [3] MiharaK, Ishihara N, Otera H, et al. Regulation and physiologic functions ofGTPases in mitochondrial fusion and fission in mammals[J]. Antioxid Redox Signal,2012.(Epub ahead of print).
    [4] Aleardi A M, Benard G, Augereau O, et al. Gradual alteration of mitochondrialstructure and function by beta-amyloids: importance of membrane viscosity changes,energy deprivation, reactive oxygen species production, and cytochrome c release[J]. JBioenerg Biomembr,2005,37(4):207-225.
    [5] Wang X, Su B, Zheng L, et al. The role of abnormal mitochondrial dynamics inthe pathogenesis of Alzheimer's Disease[J]. J Neurochem,2009,109(1):153-159.
    [6] Westermann B. Mitochondrial fusion and fission in cell life and death[J]. NatRev Mol Cell Biol,2010,11(12):872-884.
    [7] Rimbaud S, Garnier A, Ventura-Clapier R. Mitochondrial biogenesis in cardiacpathophysiology[J]. Pharmacol Rep,2009,61(1):131-138.
    [8] Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress[J].Science,2012,337(6098):1062-1065.
    [9] Detmer SA, Chan DC. Functions and dysfianctions of mitochondrialdynamics[J]. Nat Rev Mol Cell Biol,2007,8(11):870-879.
    [10]邱小雪.癫痫持续状态大鼠海马线粒体分裂、融合变化的研究[J].山东大学硕士论文,2013.
    [11] Brady NR. BCL-2family members and mitochondrial dysfunction duringischemia/reperfUsion injury, a study employing cardiac HL-1cells and GFPbiosensors[J]. Biochim Biophys Acta,2006,1757(5-6):667-678.
    [12] Zhao X L, Wang W A, Tan J X, et al. Expression of beta-amyloid Inducedage-dependent presynaptic and axonal changes in Drosophila[J]. J Neurosci,2010,30(4):1512-1522.
    [13] Logan DC. The mitochondrial compartment[J]. J Exp Bot,2006,57(6):1225-1243.
    [14] Pich S, Bach D, Briones P, et al. The Charcot-Marie-Tooth type2A geneproduct, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system[J].Human Molecular Genetics,2005,14:1405-1415.
    [15] Gan KX, Wang C, Chen JH, et al. Mitofusin-2ameliorates high-fatdiet-induced insulin resistance in liver of rats[J]. World J Gastroenterol,2013,19(10):1572-1581.
    [16]徐淑君,刘桂兰. β淀粉样蛋白导致的线粒体损伤研究进展[J].生物化学与生物物理进展,2010,37(6):589-593.
    [17] Chen H, Chan DC. Physiological functions of mitochondrial fusion[J]. Ann NY Acad Sci,2010,1201:21-25.
    [18] Sandebring A, Thomas KJ, Beilina A, et al. Mitochondrial alterations in PINK1deficient cells are influenced by calcineurin-dependent dephosphorylation ofdynamin-related protein1[J]. PLoS One,2009,4(5): e5701.
    [19] Uo T, Dworzak J, Kinoshita C, et al. Drp1levels constitutively regulatemitochondrial dynamics and cell survival in cortical neurons[J]. ExperimentalNeurology,2009,218(2):274-285.
    [20] Grohm J, Kim S W, Mamrak U, et al. Inhibition of Drp1providesneuroprotection in vitro and in vivo[J]. Cell Death&Differentiation,2012,19:1446-1458.
    [21] Manczak M, Reddy P H. Abnormal interaction between the mitochondrialfission protein Drp1and hyperphosphor ylated tau in Alzheimer’s neurons: implicationsfor mitochondrial dysfunction and neuronal damage[J]. Human Molecular Genetics,2012,21(11):2538-2547.
    [22]李华,龙建纲,刘健康.阿尔茨海默病(Alzheimer’s Disease, AD)与动力相关蛋白1(dynamin-related protein1, Drp1)[J].生物学杂志,2013,30(2):68-72.
    [23] Van Eersel ME, Joosten H, Gansevoort RT, et al. The interaction of age andtype2diabetes on executive function and memory in persons aged35years or older[J].PLoS One,2013,8(12): e82991.
    [24]高春林.高糖、高游离脂肪酸、UCP4影响脂肪细胞胰岛素敏感性的线粒体机制分析[D].南京医科大学博士论文,2010.
    [25]于海奕,郭艳红,高炜.线粒体融合蛋白2与心血管疾病[J].生理科学进展,2010,41(1):11-16.
    [26] Soriano FX, LiesaM. Evidence for amitochondrial regulatory pathway definedby peroxisome proliferator-activated eceptor-Ccoactivator-1A, estrogen-relatedreceptor-A, and mitofusin2[J]. Diabetes,2006,55:1783-1791.
    [27] Fimia G M, Kroemer G, Piacentini M. Molecular mechanisms of selectiveautophagy[J]. Cell Death Differ,2013,20(1):12.
    [28]何云凌,吴丽颖,朱玲玲,等.线粒体自噬在低氧适应中的作用[J].生物化学与生物物理进展,2012,39(3):217-223.
    [29]马国栋,刘艳环.耐力训练对急性酒精性肝损伤线粒体自噬功能的影响及机制研究[J].体育科学,2011,31(10):85-90.
    [30] Youle R J, Narendra D P. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol,2011,12(1):9-14.
    [31] Mazure N M, Pouysségur J. Hypoxia-induced autophagy: Cell death or cellsurvival[J]? Curr Opin Cell Biol,2010,22(2):177-180.
    [32] Weidberg H, Shvets E, Shpilka T, et al. LC3and GATE-16/GABARAPsubfamilies are both essential yet act differently in autophagosome biogenesis[J].EMBO J,2010,29(11):1792-1802.
    [33] Twig G, Elorza A, Molina A J, et al. Fission and selective fusion governmitochondrial segregation and elimination by autophagy[J]. EMBO J,2008,27(2):433-446.
    [34]张迎梅,邱倩,漆永梅.线粒体自噬的研究方法[J].兰州大学学报(自然科学版),2013,49(5):693-699.
    [35] Narendra DP, Jin SM, Tanaka A, et al. PINK1is selectively stabilizedon impaired mitochondria to activate Parkin[J]. PLoS Biol,2010,8(1): e1000298.
    [36] Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ERstress and causes insulin resistance[J]. Cell Metab,2010,11,467-478.
    [37] Wang X, Winter D, Ashrafi G, et al. PINK1and Parkin target Mirofor phosphorylation and degradation to arrest, mitochondrialmotility[J]. Cell,2011,147(4):893-906.
    [38] Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabeticnephropathy through anti-inflammatory effects andregulation of the autophagy viarestoration of Sirt1in diabetic Wistar fatty (fa/fa) rats: a model of type2diabetes[J].Exp Diabetes Res,2011,2011:908185.
    [39] Geng J, Klionsky DJ. The Atg8and Atg12ubiquitin-like conjugationsystems inmacroautophagy.'Protein modifications: beyond the usual suspects' reviewseries[J]. EMBO Rep,2008,9(9):859-864.
    [40]阎文军. SIRT1在高压氧预处理诱导大鼠脑缺血耐受中的作用机制研究[D],第四军医大学博士论文,2011.
    [41] Jain A, Lamark T, Sj ttem E, Larsen KB, et al. p62/SQSTM1is a target genefor transcription factor NRF2and creates a positive feedback loop by inducingantioxidant response element-driven gene transcription[J]. J Biol Chem,2010,285(29):22576-22591.
    [42] Lenaz G, Genova ML. Structure and organization of mitochondrial respiratorycomplexes: a new understanding of an old subject [J]. Antioxid Redox Signal,2010,12(8):961-1008.
    [43] Akude E, Zherebitskaya E, Chowdhury SK, et al. Diminished superoxidegeneration is associated with respiratory chain dysfunction and changes in themitochondrial proteome of sensory neurons from diabetic rats [J]. Diabetes,2011,60(1):288-297.
    [44] Edwards JL, Quattrini A, Lentz SI, et al. Diabetes regulates mitochondrialbiogenesis and fission in mouse neurons[J]. Diabetologia,2010,53(1):160-169.
    [45] Amaral S, Oliveira PJ, Ramalho-Santos J. Diabetes and the impairment ofreproductive function: possible role of mitochondria and reactive oxygen species [J].Curr Diabetes Rev,2008,4(1):46-54.
    [46]李小鑫,邱雪峰,余文,等.糖尿病大鼠阴茎海绵体线粒体氧化应激损伤与保护[J].北京大学学报(医学版),2011,43(2):189-193.
    [47]陈厚早,万言珍,周爽,等.内皮细胞特异性SIRT1过表达抑制高血糖诱导的血管细胞衰老[J].中国科学:生命科学,2012,42(6):473-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700