丰富环境对慢性脑低灌注大鼠认知功能损害的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:阿尔茨海默病(AD)和血管性痴呆(VaD)为最常见的痴呆临床类型,慢性脑低灌注是其共有的重要病理基础,探讨改善慢性脑低灌注导致的血管性认知功能损害的发生机制及其干预方法具有重要的理论与临床意义。丰富环境(Enriched environment, EE)作为一种行为学干预方式,近年来在认知神经科学实验研究中越来越受到关注。大量研究已证实了丰富环境对脑在结构和功能上的有益影响,包括对行为的修正,特别是涉及到复杂的认知功能。但是,迄今为止,丰富环境对血管性认知功能损害是否有效及其可能的分子机制未见研究报道。本实验通过制备大鼠2-VO模型,模拟慢性脑低灌注状态下的认知功能损害,探讨丰富环境干预对血管性认知功能损害的影响,同时检测大鼠海马在慢性脑低灌注状态下与认知功能相关的脑源性神经营养因子(BDNF)、N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)和亚单位2B (NR2B)、胰岛素样生长因子-1(IGF-1)和血管内皮生长因子(VEGF)的蛋白表达水平变化以及丰富环境干预对这种变化的影响。
     目的:探讨丰富环境是否能改善大鼠慢性脑低灌注导致的认知功能损害及其可能的分子发生机制。
     方法:健康雄性Wistar成年大鼠,200-220g,随机分为四组:假手术+标准环境组(sham+SE),2-VO手术+标准环境组(2-VO+SE),假手术+丰富环境组(sham+EE)以及2-VO手术+丰富环境组(2-VO+EE);给予大鼠双侧颈总动脉永久性结扎(2-VO)制备慢性脑低灌注模型后(2-VO或假手术后4周),丰富环境组大鼠给予丰富环境干预4周,丰富环境装置参照Nithianantharaj ah和Hannan描述的方法设置;标准环境组大鼠仍给予标准环境饲养;然后通过目标识别测验(Object recognition test)和Morris水迷宫试验(Morris water maze test),评测大鼠非空间和空间学习记忆能力;以及免疫组织化学、‘放免试验和Western blotting检测海马BDNF、NR1和NR2B、IGF-1及VEGF的蛋白分布和表达水平变化。
     结果:(1)目标识别测验中,标准环境中的假手术组大鼠对新奇物体的探索时间显著长于对熟悉物体的探索时间,而标准环境中的、2-VO组大鼠对新奇物体和熟悉物体的探索时间几乎相等;给予丰富环境干预的2-VO组和假手术组、以及标准环境中的假手术组大鼠,对新奇物体的辨别比均显著高于机会值。(2).Morris水迷宫测验训练期的第4天到第5天,标准环境下的2-VO组大鼠找到平台的时间显著多于假手术组,给予丰富环境干预的2-VO组大鼠找到平台的时间显著少于标准环境中的2-VO组:训练期的第2天到第4天,给于丰富环境干预的假手术组大鼠找到平台的时间显著少于标准环境中的假手术组;空问探索试验中,给予丰富环境干预的假手术组大鼠在目标象限花费的时间显著多于标准环境中的假手术组。(3)标准环境中的2-VO组大鼠海马BDNF和NR1蛋白水平与假手术对照组比较均显著下降,而丰富环境干预的2-VO组大鼠海马BDNF和NR1蛋白水平与标准环境对照组比较显著增加,NR2B、IGF-1及VEGF蛋白水平在各组大鼠之间则无显著差异。
     结论:丰富环境干预可以减轻慢性脑低灌注所导致的空间学习记忆和非空间记忆能力损害改善认知功能,并上调慢性脑低灌注所导致的BDNF和NR1蛋白表达水平下降。丰富环境对BDNF和NR1水平的调控可能是其改善慢性脑低灌注所致的血管性认知功能损害的重要分子机制。
Background:Alzheimer's disease (AD) and vascular dementia (VaD) are the two most common types of dementia, chronic cerebral hypoperfusion is the important pathologic basis for both of them. It's extremely necessary to explore the intervention paradiam of improving the cognitive impairment induced by chronic cerebral hypoperfusion (CCH) and its possible underlying mechanism. As a behavioral intervention paradiam, Enriched environment (EE) has drawn more and more attention in the experimental study of cognitive neuroscience in recent years. A large number of studies have demonstrated the beneficial effects of EE on brain structure and function, especially in modifying the behaviors, particularly in tasks involving complex cognitive functions. However, the impacts of EE on cognitive impairment induced by chronic cerebral hypoperfusion (CCH) and the underlying molecular mechanisms have not been studied. In present study, we investigated the effects of EE on cognitive impairment caused by CCH and examined whether CCH altered the protein levels of brain-derived neurotrophic factor (BDNF),N-methyl-D-aspartate (NMDA) receptor subunit 1 (NR1) and subunit 2B (NR2B), insulin like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) in the hippocampus of rats and whether EE exposure attenuated the effects.
     Objects:To explore whether EE can improve the cognitive impairment induced by CCH and its possible underlying molecular mechanisms.
     Methods:Wistar Rats were divided into four groups(sham+SE; 2-VO+SE; sham+EE; 2-VO+EE) that received either permanent bilateral ligation of the common carotid arteries (2-vessel occlusion,2-VO) surgery or sham surgery. Four weeks later, the groups were supplied either EE housing or standard environment (SE) housing for 4 weeks. EE paradiam was designed as described by Nithianantharajah and Hannan. Then all the rats were examined non-spatial recognition memory in the novel object recognition task, spatial learning, and memory ability in the Morris water maze as well as the protein levels of BDNF, NR1, NR2B,IGF-1 and VEGF in the hippocampus.
     Results:(1) in the object recognition task, regarding the two groups housed in SE, the rats of sham group spending the time in the exploration of novel objects was significantly more than the time of exploration of familiar objects, while the rats of 2-VO group spent almost equal time in the exploration of both objects; The discrimination rate of novel objects were significantly higher than chance in the rats of either 2-VO group and sham group treated by EE, as well as the rats of sham group housed in SE. (2) On the training period of 4 to 5 days in Morris water maze test, the rats of 2-VO group housed in SE spending the time to find the platform was significantly longer than the the rats of sham group, and the rats of 2-VO group treated by EE spending the time to find the platform was significantly less than the rats of 2-VO group housed in SE; Regarding the rats of sham groups, on the training period of 2 to 4 days, the group treated by EE spending the time to find the platform was significantly less than the group housed in SE, and in the space exploration test, the group treated by EE also spending the time in the target quadrant was significantly more than the group housed in SE. (3) The BDNF and NR1 protein levels of 2-VO rats housed in SE were significantly decreased compared with the sham control group, while the BDNF and NR1 protein levels of 2-VO rats treated by EE were significantly increased compare with their counterparts housed in SE; the protein levels of NR2B, IGF-1 and VEGF in each group showed no significant difference.
     Conclusion:EE exposure can restore cognitive impairment induced by CCH and up-regulates the decreased protein levels of BDNF and NR1. Inversely, BDNF and NR1 may contribute to the beneficial effects of EE on CCH in rats.
引文
1. Wimo, A., et al., The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord,2003.17(2):p.63-7.
    2. Ferri, C. P., et al., Global prevalence of dementia:a Delphi consensus study. Lancet,2005.366(9503):p.2112-7.
    3. Roman, G. C., Vascular dementia may be the most common form of dementia in the elderly. J Neurol Sci,2002:203-204:p.7-10.
    4. Bennett, D. A., Secular trends in stroke incidence and survival, and the occurrence of dementia. Stroke,2006.37(5):p.1144-5.
    5. de la Torre, J. C., Vascular basis of Alzheimer's pathogenesis. Ann N Y Acad Sci,2002.977:p.196-215.
    6. Farkas, E., P. G. Luiten, and F. Bari, Permanent, bilateral common carotid artery occlusion in the rat:a model for chronic cerebral hypoperfusion-related neurodegenerativ.e diseases. Brain Res Rev,2007. 54(1):p.162-80.
    7. Hall, J., K. L. Thomas, and B. J. Everitt, Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci, 2000.3(6):p.533-5.
    8. Lu, Y., K. Christian, and B. Lu, BDNF:a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem,2008. 89(3):p.312-23.
    9. Garzon, D., G. Yu, and M. Fahnestock, A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex. J Neurochem,2002.82(5): p.1058-64.
    10. Kiprianova, I., et al., Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat. J Neurosci Res, 1999.56(1):p.21-7.
    11. Bellinger, F. P., et al., Long-lasting synaptic modification in the rat hippocampus resulting from NMDA receptor blockade during development. Synapse,2002.43(2):p.95-101.
    12. Shimizu, E., et al., NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science,2000.290(5494):p. 1170-4.
    13. Dirnagl, U., C. Iadecola, and M. A. Moskowitz, Pathobiology of ischaemic stroke:an integrated view. Trends Neurosci,1999.22(9):p.391-7.
    14. Cameron, H. A., B. S. McEwen, and E. Gould, Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci,1995.15(6):p.4687-92.
    15. Laeng, P., et al., The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem,2004.91(1):p. 238-51.
    16. Yamaguchi, F., et al., Insulin-like growth factor Ⅰ (IGF-Ⅰ) distribution in the tissue and extracellular compartment in different regions of rat brain. Brain Res,1990.533(2):p.344-7.
    17. Adem, A., et al., Insulin-like growth factor 1 (IGF-1) receptors in the human brain:quantitative autoradiographic localization. Brain Res,1989.503(2): p.299-303.
    18. Denti, L., et al., Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med,2004.117(5):p.312-7.
    19. Kinney-Forshee, B. A., et al., Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav,2004.80(5):p.589-94.
    20. Watanabe, T., et al., Relationship between serum insulin-like growth factor-1 levels and Alzheimer's disease and vascular dementia. J Am Geriatr Soc,2005.53(10):p.1748-53.
    21. Hwang, I. K., et al., Expression and changes of endogenous insulin-like growth factor-1 in neurons and glia in the gerbil hippocampus and dentate gyrus after ischemic insult. Neurochem Int,2004.45(1):p.149-56.
    22. Guan, J., et al., The effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate in different regions following hypoxic-ischemic brain injury in adult rats. Neuroscience,1999.89(3):p. 649-59.
    23. Gong, Y., et al., Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Behav Brain Res,2008.194(1):p.100-7.
    24. Barja, G., Free radicals and aging. Trends Neurosci,2004.27(10):p. 595-600.
    25. Lambrechts, D. and P. Carmeliet, VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. Biochim Biophys Acta, 2006.1762(11-12):p.1109-21.
    26. Mateo, I., et al., Low serum VEGF levels are associated with Alzheimer's disease. Acta Neurol Scand,2007.116(1):p.56-8.
    27. Ohtaki, H., et al., Progressive expression of vascular endothelial growth factor (VEGF) and angiogenesis after chronic ischemic hypoperfusion in rat. Acta Neurochir Suppl,2006.96:p.283-7.
    28. Nithianantharajah, J. and A. J. Hannan, Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci,2006..7(9):p.697-709.
    29. Bruel-Jungerman, E., S. Laroche, and C. Rampon, New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci,2005.21(2):p.513-21.
    30. Artola, A., et al., Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur J Neurosci,2006.23(1):p.261-72.
    31. Pham, T. M., et al., Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience,1999.94(1):p.279-86.
    32. Verghese, J., et al., Leisure activities and the risk of dementia in the elderly. N Engl J Med,2003.348(25):p.2508-16.
    33. Nagaya, M., et al., Recreational rehabilitation improved cognitive function in vascular dementia. J Am Geriatr Soc,2005.53(5):p.911-2.
    34. Tang, Y. P., et al., Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology,2001.41 (6):p.779-90.
    35. Rampon, C., et al., Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci,2000. 3(3):p.238-44.
    36. Rossi, C., et al., Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci,2006.24(7):p.1850-6.
    37. Vaynman, S., Z. Ying, and F. Gomez-Pinilla, Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci, 2004.20(10):p.2580-90.
    38. Keyvani, K., et al., Gene expression profiling in the intact and injured brain following environmental enrichment. J Neuropathol Exp Neurol,2004.63(6): p.598-609.
    39. Ciucci, F., et al.. Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development. PLoS One,2007. 2(5):p. e475.
    40. During, M. J. and L. Cao, VEGF, a mediator of the effect of experience on hippocampal neurogenesis. Curr Alzheimer Res,2006.3(1):p.29-33.
    41. Ziv, Y., et al., Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci,2006.9(2):p. 268-75.
    42. Bennett, J.C., et al., Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem,2006.85(2):p.139-52.
    43. Matsumori, Y., et al., Enriched environment and spatial learning enhance hippocampal neurogenesis and salvages ischemic penumbra after focal cerebral ischemia. Neurobiol Dis,2006.22(1):p.187-98.
    44. Gobbo,0. L. and S. M. O'Mara, Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res,2004.152(2):p.231-41.
    1. Iadecola, C., Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci,2004.5(5):p.347-60.
    2. Zlokovic, B. V., Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci,2005.28(4):p.202-8.
    3. de la Torre, J. C., Vascular basis of Alzheimer's pathogenesis. Ann N Y Acad Sci,2002.977:p.196-215.
    4. Roman, G. C., et al., Vascular dementia:diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology,1993. 43(2):p.250-60.
    5. Ruitenberg, A., et al., Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol,2005.57(6):p.789-94.
    6. Farkas, E., P. G. Luiten, and F. Bari, Permanent, bilateral common carotid artery occlusion in the rat:a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev,2007. 54(1):p.162-80.
    7. Roman, G.C., Brain hypoperfusion:a critical factor in vascular dementia. Neurol Res,2004.26(5):p.454-8.
    8. Kalaria, R. N., Small vessel disease and Alzheimer's dementia:pathological considerations. Cerebrovasc Dis,2002.13 Suppl 2:p.48-52.
    9. Tsuchiya, M., et al., Local cerebral glucose utilisation following acute and chronic bilateral carotid artery ligation in Wistar rats:relation to changes in local cerebral blood flow. Exp Brain Res,1993.95(1):p.1-7.
    10. Spedding, M. and P. Gressens, Neurotrophins and cytokines in neuronal plasticity. Novartis Found Symp,2008.289:p.222-33; discussion 233-40.
    11. Wetmore, C., et al., Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp Neurol,1990.109(2): p.141-52.
    12. Heldt, S. A., et al., Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry, 2007.12(7):p.656-70.
    13. Hock, C., et al., Region-specific neurotrophin imbalances in Alzheimer disease:decreased levels of brain-derived neurotrophic factor and increased levels of nerve'growth factor in hippocampus and cortical areas. Arch Neurol, 2000.57(6):p.846-51.
    14. Laske, C., et al., BDNF serum and CSF concentrations in Alzheimer's disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res,2007. 41(5):p.387-94.
    15. Zuccato, C., et al., Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain Pathol, 2008.18(2): p.225-38.
    16. Seeburg, P.H., The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci,1993.16(9):p.359-65.
    17. Gureviciene, I., et al., Estrogen treatment alleviates NMDA-antagonist induced hippocampal LTP blockade and cognitive deficits in ovariectomized mice. Neurobiol Learn Mem,2003.79(1):p.72-80.
    18. Suzuki, Y., et al., Ability of NMDA and non-NMDA receptor antagonists to inhibit cerebral ischemic damage in aged rats. Brain Res,2003.964(1):p. 116-20.
    19. Crair, M. C. and R. C. Malenka, A critical period for long-term potentiation at thalamocortical synapses. Nature,1995.375(6529):p.325-8.
    20. 姚国恩,王景周,陈曼娥.血管性痴呆大鼠认知障碍的NMDAR机制研究[J].第三军医大学学报,2002:24(12):1408-1410.
    21. Bliss, T. V. and G. L. Collingridge, A synaptic model of memory:long-term potentiation in the hippocampus. Nature,1993.361(6407):p.31-9.
    22. Bliss, T. V., Young receptors make smart mice. Nature,1999.401(6748):p. 25-7.
    23. Tang, Y. P., et al., Genetic enhancement of learning and memory in mice. Nature, 1999.401(6748):p.63-9.
    24. Clayton, D. A., et al., A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J Neurosci,2002.22(9):p.3628-37.
    25. Aleman, A. and I. Torres-Aleman, Circulating insulin-like growth factor Ⅰ and cognitive function:neuromodulation throughout the lifespan. Prog Neurobiol,2009.89(3):p.256-65.
    26. Ceda, G. P., et al., Clinical implications of the reduced activity of the GH-IGF-Ⅰ axis in older men. J Endocrinol Invest,2005.28(11 Suppl Proceedings):p.96-100.
    27. Trejo, J. L., M. V. Llorens-Martin, and Ⅰ. Torres-Aleman, The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-Ⅰ-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci,2008.37(2):p.402-11.
    28. Hanada, M., J. Feng, and B. A. Hemmings, Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta,2004. 1697(1-2):p.3-16.
    29. Wolf, S. A., et al., Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol Psychiatry,2006.60(12):p.1314-23.
    30. Carro, E., et al., Serum insulin-like growth factor Ⅰ regulates brain amyloid-beta levels. Nat Med,2002.8(12):p.1390-7.
    31. Markowska, A. L., M. Mooney, and W. E. Sonntag, Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience,1998.87(3):p. 559-69.
    32. Sun, L. Y. and A. Bartke, Adult neurogenesis in the hippocampus of long-lived mice during aging. J Gerontol A Biol Sci Med Sci,2007.62(2):p.117-25.
    33. Kar, S., et al., Cellular distribution of insulin-like growth factor-Ⅱ/mannose-6-phosphate receptor in normal human brain and its alteration in Alzheimer's disease pathology. Neurobiol Aging,2006.27(2): p.199-210.
    34. Tagami, M., et al., Genetic vulnerability of cortical neurons isolated from stroke-prone spontaneously hypertensive rats in hypoxia and oxygen reperfusion. Hypertens Res,1999.22(1):p.23-9.
    35. Ferrara, N., H. P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nat Med,2003.9(6):p.669-76.
    36. Udo, H., et al., Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci,2008.28(53):p.14522-36.
    37. Tarkowski, E., et al., Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol Aging,2002.23(2):p.237-43.
    38. Zachary, I., Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals,2005.14(5):p.207-21.
    39. Mizuno, M., et al., Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci,2000.20(18):p.7116-21.
    40. Yamada, K. and T. Nabeshima, Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory. Drug News Perspect,2004.17(7):p.435-8.
    41. Madara, J. C. and E. S. Levine, Presynaptic.and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J Neurophysiol,2008.100(6):p.3175-84.
    42. Luppi, C., et al., Growth factors decrease in subjects with mild to moderate Alzheimer's disease (AD):potential correction with dehydroepiandrosterone-sulphate (DHEAS). Arch Gerontol Geriatr,2009.49 Suppl 1:p.173-84.
    43. Llorens-Martin, M., I. Torres-Aleman, and J. L. Trejo, Growth factors as mediators of exercise actions on the brain. Neuromolecular Med,2008.10(2): p.99-107.
    44. Sale, A., N. Berardi, and L. Maffei, Enrich the environment to empower the brain. Trends Neurosci,2009.32(4):p.233-9.
    45. Olsson, I.A. and K. Dahlborn, Improving housing conditions for laboratory mice:a review of "environmental enrichment". Lab Anim,2002.36(3):p. 243-70.
    46. Biernaskie, J. and D. Corbett, Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci,2001.21(14):p.5272-80.
    47. Keyvani, K., et al., Gene expression profiling in the intact and injured brain following environmental enrichment. J Neuropathol Exp Neurol,2004.63(6): p.598-609.
    48. Gobbo,O. L. and S. M. O'Mara, Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res,2004.152(2):p.231-41.
    49. Rossi, C., et al., Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci,2006.24(7):p.1850-6.
    50. Tang, Y. P., et al., Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology,2001.41(6):p.779-90.
    51. Li, C., et al., Effects of enriched environment on gene expression and signal pathways in cortex of hippocampal CA1 specific NMDAR1 knockout mice. Brain Res Bull,2007.71(6):p.568-77.
    52. Landi, S., et al., Setting the pace for retinal development:environmental enrichment acts through insulin-like growth factor 1 and brain-derived neurotrophic factor. J Neurosci,2009.29(35):p.10809-19.
    53. Cao, L., et al., VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet,2004.36 (8):p.827-35.
    54. Bennett, J.C., et al., Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem,2006.85(2):p.139-52.
    55. Briones, T. L., M. Rogozinska, and J. Woods, Environmental experience modulates ischemia-induced amyloidogenesis and enhances functional recovery. J Neurotrauma,2009.26(4):p.613-25.
    56. Briones, T. L., B. Therrien, and B. Metzger, Effects of environment on enhancing functional plasticity following cerebral ischemia. Biol Res Nurs, 2000.1(4):p.299-309.
    57. Briones, T. L., et al., Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res,2006.171(1):p.17-25.
    58. Yan, X., et al., Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J Nutr Biochem,2009.
    59. Nithianantharajah, J. and A. J. Hannan, Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci,2006.7(9):p.697-709.
    60. Bevins, R. A. and J. Besheer, Object recognition in rats and mice:a one-trial non-matching-to-sample learning task to study'recognition memory'. Nat Protoc,2006.1(3):p.1306-11.
    61. Bruel-Jungerman, E., S. Laroche, and C. Rampon, New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci,2005.21(2):p.513-21.
    62. Vorhees, C. V. and M. T. Williams, Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nat Protoc,2006.1(2): p.848-58.
    63. van Praag, H., G. Kempermann, and F. H. Gage, Neural consequences of environmental enrichment. Nat Rev Neurosci,2000.1(3):p.191-8.
    64. Otori, T., et al., Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol, 2003.30(4):p.266-72.
    65. Dere, E., J. P. Huston, and M. A. De Souza Silva, The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev,2007.31(5):p.673-704.
    66. Ennaceur, A. and J. Delacour, A new one-trial test for neurobiological studies of memory in rats.1:Behavioral data. Behav Brain Res,1988.31(1): p.47-59.
    67. Pamplona, F. A., et al., Environmental enrichment improves cognitive deficits in Spontaneously Hypertensive Rats (SHR):relevance for Attention Deficit/Hyperactivity Disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry,2009.33(7):p.1153-60.
    68. Hartman, R. E., et al., Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats. Brain Res, 2005.1043(1-2):p.48-56.
    69. Plamondon, H., et al., Cerebral ischemic preconditioning induces lasting effects on CA1 neuronal survival, prevents memory impairments but not ischemia-induced hyperactivity. Behav Brain Res,2008.189(1):p.145-51.
    70. Wood, E. R., et al., Impaired object recognition memory in rats following ischemia-induced damage to the hippocampus. Behav Neurosci,1993.107(1): p.51-62.
    71. Sarti, C., et al., Persistent impairment of gait performances and working memory after bilateral common carotid artery occlusion in the adult Wistar rat. Behav Brain Res,2002.136(1):p.13-20.
    72. Zhao, Q., et al., Chotosan, a kampo formula, ameliorates chronic cerebral hypoperfusion-induced deficits in object recognition behaviors and central cholinergic systems in mice. J Pharmacol Sci,2007.103(4):p.360-73.
    73. de la Torre, J. C. and G. Aliev, Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion:spatial memory and immunocytochemical changes. J Cereb Blood Flow Metab,2005.25 (6):p.663-72.
    74. Huang, L., et al., Improvement of cognitive deficit and neuronal damage in rats with chronic cerebral ischemia via relative long-term inhibition of rho-kinase. Cell Mol Neurobiol,2008.28(5):p.757-68.
    75. Zheng, P., et al., Angelica injection reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor and nerve growth factor. Curr Neurovasc Res,2008.5(1):p.13-20.
    76. Almli, C. R., et al., BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol,2000.166(1):p.99-114.
    77. Cirulli, F., et al., Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus,2004.14(7):p.802-7.
    78. Tyler, W. J., et al., From acquisition to consolidation:on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem,2002.9(5):p.224-37.
    79. Cechetti, F., et al., Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus. Brain Res,2008.1188: p.182-8.
    80. Pereira, L.0., et al., Long-term effects of environmental stimulation following hypoxia-ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res,2009.1247:p.188-95.
    81. Blurton-Jones, M., et al., Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A,2009. 106(32):p.13594-9.
    82. Hou, Y., et al., Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology. 58(6):p.911-20.
    83. Nagahara, A. H., et al., Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med,2009.15(3):p.331-7.
    84. Griesbach, G.S., D. A. Hovda, and F. Gomez-Pinilla, Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res,2009.1288:p.105-1.5.
    85. Cheli, V., et al., Knocking-down the NMDAR1 subunit in a limited amount of neurons in the rat hippocampus impairs learning. J Neurochem,2006.97 Suppl 1:p.68-73.
    86. Rampon, C., et al., Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A,2000,97(23):p.12880-4.
    87. Dzirasa, K., et al., Hyperdopaminergia and NMDA receptor hypofunction disrupt neural phase signaling. J Neurosci,2009.29(25):p.8215-24.
    88. Niewoehner, B., et al., Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur J Neurosci,2007.25(3):p.837-46.
    89. He, Z., et al., DDPH:improving cognitive deficits beyond its alpha 1-adrenoceptor antagonism in chronic cerebral hypoperfused rats. Eur J Pharmacol,2008.588(2-3):p.178-88.
    90. Ma, Y. Y., et al., The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats. Exp Neurol,2006.200(2):p.343-55.
    91. Lebel, D., et al., Learning in the absence of experience-dependent regulation of NMDAR composition. Learn Mem,2006.13(5):p.566-70.
    92. Salazar-Colocho, P., J. Del Rio, and D. Frechilla, Neuroprotective effects of serotonin 5-HT 1A receptor activation against ischemic cell damage in gerbil hippocampus:Involvement of NMDA receptor NR1 subunit and BDNF. Brain Res,2008.1199:p.159-66.
    93. Wang, F., et al., The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area. J Mol Neurosci.41 (1): p.145-55.
    94. Guan, J., et al., Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol,2003.70(6):p.443-62.
    95. Lin, S., et al., Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Exp Neurol,2009.217(2): p.361-70.
    96. Croll, S. D., J. H. Goodman, and H. E. Scharfman, Vascular endothelial growth factor (VEGF) in seizures:a double-edged sword. Adv Exp Med Biol,2004.548: p.57-68.
    97. Plaschke, K., et al., VEGF overexpression improves mice cognitive abilities after unilateral common carotid artery occlusion. Exp Neurol,2008.214(2): p.285-92.
    98. Kim, Y., Y. J. Nam, and C. Lee, Haplotype analysis of single nucleotide polymorphisms in VEGF gene for vascular dementia. Am J Med Genet B Neuropsychiatr Genet,2006.141B(4):p.332-5.
    99. Del Bo, R., et al., VEGF genetic variability is associated with increased risk of developing Alzheimer's disease. J Neurol Sci,2009.283(1-2):p. 66-8.
    1. Darnaudery, M., et al., Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats. Neurobiol Aging,2006. 27(1):p.119-27.
    2. Isaksson,O. G., et al., Regulation of cartilage growth by growth hormone and insulin-like growth factor Ⅰ. Pediatr Nephrol,1991.5(4):p.451-3.
    3. Bondy, C. A. and W. H. Lee, Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann N Y Acad Sci,1993.692:p.33-43.
    4. Yamaguchi, F., et al., Insulin-like growth factor Ⅰ (IGF-Ⅰ) distribution in the tissue and extracellular compartment in different regions of rat brain. Brain Res,1990.533(2):p.344-7.
    5. Armstrong, C. S., L. Wuarin, and D. N. Ishii, Uptake of circulating insulin-like growth factor-Ⅰ into the cerebrospinal fluid of normal and diabetic rats and normalization of IGF-Ⅱ mRNA content in diabetic rat brain. J Neurosci Res,2000.59(5):p.649-60.
    6. Carro, E., et al., Circulating insulin-like growth factor Ⅰ mediates effects of exercise on the brain. J Neurosci,2000.20(8):p.2926-33.
    7. Pulford, B. E. and D. N. Ishii, Uptake of circulating insulin-like growth factors (IGFs) into cerebrospinal fluid appears to be independent of the IGF receptors as well as IGF-binding proteins. Endocrinology,2001.142(1):p. 213-20.
    8. Lamothe, B., et al., Insulin receptor-deficient cells as a new tool, for dissecting complex interplay in insulin and insulin-like growth factors. FEBS Lett,1998.426(3):p.381-5.
    9. Jones, J.I. and D. R. Clemmons, Insulin-like growth factors and their binding proteins:biological actions. Endocr Rev,1995.16(1):p.3-34.
    10. Dore, S., et al., Impact of neonatal kainate treatment on hippocampal insulin-like growth factor receptors. Neuroscience,1999.91(3):p.1035-43.
    11. D'Ercole, A.J., et al., The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol,1996.13(3):p.227-55.
    12. Brooker, G.J.,et al., Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J Neurosci Res,2000.59(3):p.332-41.
    13. Guan, J., et al., Intracerebral transportation and cellular localisation of insulin-like growth factor-1 following central administration to rats with hypoxic-ischemic brain injury. Brain Res,2000.853(2):p.163-73.
    14. Aleman, A. and I. Torres-Aleman, Circulating insulin-like growth factor Ⅰ and cognitive function:neuromodulation throughout the lifespan. Prog Neurobiol,2009.89(3):p.256-65.
    15. Ceda, G. P., et al., Clinical implications of the reduced activity of the GH-IGF-I axis in older men. J Endocrinol Invest,2005.28(11 Suppl Proceedings):p.96-100.
    16. Trejo, J. L., M. V. Llorens-Martin, and I. Torres-Aleman, The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci,2008.37(2):p.402-11.
    17. Hanada, M., J. Feng, and B. A. Hemmings, Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta,2004. 1697(1-2):p.3-16.
    18. Lichtenwalner, R.J., et al., Intracerebroventricular infusion of insulin-like growth factor-Ⅰ ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience,2001.107(4):p.603-13.
    19. Le Greves, M., et al., Growth hormone induces age-dependent alteration in the expression of hippocampal growth hormone receptor and N-methyl-D-aspartate receptor subunits gene transcripts in male rats. Proc Natl Acad Sci U S A,2002.99(10):p.7119-23.
    20. Sonntag, W. E., et al., Age and insulin-like, growth factor-1 modulate N-methyl-D-aspartate receptor subtype expression in rats. Brain Res Bull, 2000.51(4):p.331-8.
    21. Wolf, S.A., et al., Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol Psychiatry,2006.60(12):p.1314-23.
    22. Kinney-Forshee, B. A., et al., Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav,2004.80(5):p.589-94.
    23. Bondy, C. A. and C. M. Cheng, Signal ing by insulin-like growth factor 1 in brain. Eur J Pharmacol,2004.490(1-3): p.25-31.
    24. Carro, E. and I. Torres-Aleman, The role of insulin and insulin-like growth factor Ⅰ in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease. Eur J Pharmacol,2004.490(1-3):p.127-33.
    25. Dik, M. G., et al., Insulin-like growth factor Ⅰ (IGF-Ⅰ) and cognitive decline in older persons. Neurobiol Aging,2003.24(4):p.573-81.
    26. Kalmijn, S., et al., A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly. J Clin Endocrinol Metab,2000.85(12):p.4551-5.
    27. Arwert, L. I., J. B. Deijen, and M. L. Drent, The relation between insulin-like growth factor I levels and cognition in healthy elderly:a meta-analysis. Growth Horm IGF Res,2005.15(6):p.416-22.
    28. Markowska, A. L., M. Mooney, and W. E. Sonntag, Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience,1998.87(3):p. 559-69.
    29. Sun, L. Y. and A. Bartke, Adult neurogenesis in the hippocampus of long-lived mice during aging. J Gerontol A Biol Sci Med Sci,2007.62(2):p.117-25.
    30. Carro, E., et al., Serum insulin-like growth factor Ⅰ regulates brain amyloid-beta levels. Nat Med,2002.8(12):p.1390-7.
    31. Landi, F., et al., Free insulin-like growth factor-Ⅰ and cognitive function in older persons living in community. Growth Horm IGF Res,2007.17(1):p. 58-66.
    32. Okereke,O., et al., Plasma IGF-Ⅰ levels and cognitive performance in older women. Neurobiol Aging,2007.28(1):p.135-42.
    33. Friedlander, A. L., et al., One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab,2001.86(4):p.1496-503.
    34. Denti, L., et al., Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med,2004.117(5):p.312-7.
    35. Guan, J., et al., Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol,2003.70(6):p.443-62.
    36. Lin, S., et al., Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Exp Neurol,2009.217(2): p.361-70.
    37. Tagami, M., et al., Genetic vulnerability of cortical neurons isolated from stroke-prone spontaneously hypertensive rats in hypoxia and oxygen reperfusion. Hypertens Res,1999.22(1):p.23-9.
    38. Hwang, I. K., et al., Expression and changes of endogenous insulin-like growth factor-1 in neurons and glia in the gerbil hippocampus and dentate gyrus after ischemic insult. Neurochem Int,2004.45(1):p.149-56.
    39. Nagahara, A. H. and J. L. McGaugh, Muscimol infused into the medial septal area impairs long-term memory but not short-term memory in inhibitory avoidance, water maze place learning and rewarded alternation tasks. Brain Res,1992. 591(1):p.54-61.
    40. Grantham, C. and H. Geerts, The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J Neurol Sci,2002.203-204: p.131-6.
    41. Trejo, J. L., et al., Role of serum insulin-like growth factor Ⅰ in mammalian brain aging. Growth Horm IGF Res,2004.14 Suppl A:p. S39-43.
    42. Rivera, E. J., et al., Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease:link to brain reductions in acetylcholine. J Alzheimers Dis,2005.8(3):p.247-68.
    43. Guan, J., et al., The effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate in different regions following hypoxic-ischemic brain injury in adult rats. Neuroscience,1999.89(3):p. 649-59.
    44. Watanabe, T., et al., Relationship between serum insulin-like growth factor-1 levels and Alzheimer's disease and vascular dementia. J Am Geriatr Soc,2005.53(10):p.1748-53.
    45. Carro, E., et al., Blockade of the insulin-like growth factor Ⅰ receptor in the choroid plexus originates Alzheimer's-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging,2006.27(11):p.1618-31.
    46. Kar, S., et al., Cellular distribution of insulin-like growth factor-Ⅱ/mannose-6-phosphate receptor in normal human brain and its alteration in Alzheimer's disease pathology. Neurobiol Aging,2006.27(2): p.199-210.
    47. Messier, C. and K. Teutenberg, The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer's disease. Neural Plast,2005.12(4):p.311-28.
    48. de la Torre, J. C., Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer's pathogenesis. Neurobiol Aging,2000. 21(2):p.331-42.
    49. Lynch, C.D., et al., Insulin-like growth factor-1 selectively increases glucose utilization in brains of aged animals. Endocrinology,2001.142(1): p.506-9.
    50. Ozdinler, P. H. and J. D. Macklis, IGF-I specif ically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci,2006.9(11):p.1371-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700