慢性酒精摄入对人和大鼠血清及脂肪组织chemerin水平的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脂肪组织传统上被认为是能量储存的场所,并为机体提供缓冲。然而,现在认为脂肪组织是一个重要的内分泌器官。肪组织分为白色脂肪组织和棕色脂肪组织,近年来的研究认为白色脂肪组织可以分泌大量具有生物活性的肽类物质和蛋白质,称为脂肪因子,其中一些脂肪因子参与调节葡萄糖和脂肪代谢及胰岛素抵抗,与肥胖及糖尿病的发生密切相关。
     Chemerin也称为他扎罗汀诱导基因2及维甲酸受体反应元件,以18-kDa的不具活性的前蛋白的形式分泌,经过丝氨酸蛋白酶水解C末端后转化为16-kDa的具有生物活性的蛋白质。Chemerin在肝脏及白色脂肪组织高表达,在肺脏、肾脏、垂体、胎盘及卵巢也有表达。Chemerin做为一种趋化蛋白参与免疫反应,近年来认为chemerin是一种脂肪因子,chemerin及其受体的表达在前脂肪细胞分化为脂肪细胞的过程中增加,chemerin以自分泌及旁分泌的方式调节脂肪分化。近年来研究表明chemerin也与胰岛素敏感性密切相关。到目前为止,大部分的研究证实chemerin通过不同的作用机制诱导脂肪组织及骨骼肌的胰岛素抵抗。
     饮酒是一种与2型糖尿病密切相关的生活方式。适量饮酒可以通过改善脂代谢、增加胰岛素敏感性、减少血小板聚集及减少腹部脂肪含量发挥保护作用,而大量饮酒可以影响脂代谢及增加胰岛素抵抗,从而导致糖尿病的发生。目前关于饮酒对脂肪因子的影响的研究甚少,文献报道在慢性酒精中毒患者中瘦素水平以剂量依赖方式升高,而适量酒精摄入明显升高血浆脂联素水平。目前国内外关于饮酒对脂肪因子影响的研究主要是单独观察血清、组织或细胞中脂肪因子水平的变化,但甚少同时研究血清及组织脂肪因子含量的变化,也很少探究血清及组织中脂肪因子的相关性。不同于脂联素、抵抗素及内脂素等绝大部分由脂肪组织产生的脂肪因子,chemerin在脂肪组织和肝脏均高表达。目前国内外尚无关于饮酒对chemerin影响的研究,且近年来其他关于chemerin的研究多单独在血清及脂肪细胞水平进行,而缺少同时对血清及组织chemerin的研究。因此,本研究的目的是观察长期不同剂量酒精摄入对人及大鼠血清、脂肪组织及肝脏chemerin的影响,研究chemerin与人各代谢综合征组分的关系,并探究酒精对血清chemerin的影响与组织chemerin的关系。
     目的:
     1.观察长期不同剂量酒精摄入对人血清脂肪因子chemerin水平的影响,并研究人血清chemerin水平与血脂、胰岛素抵抗指数及体脂等代谢参数的关系。3.观察不同剂量酒精摄入对大鼠血清、脂肪组织及肝脏chemerin水平的影响,并研究大鼠血清chemerin和脂肪组织chemerin及肝脏chemerin之间的相关性。
     方法:
     1.人体实验
     1.1实验对象选择
     从参加山东省立医院糖尿病流行病学调查的人群中选取148名男性健康饮酒者及55名健康非饮酒者参加实验。所有受试者体重指数均小于25kg/m2。每位受试者严格排除糖尿病、急慢性炎症性疾病、肝脏疾病及肝功异常者、高血压、心脑血管疾病、肾脏疾病及甲状腺疾病,所有受试者均未服用影响糖代谢及脂代谢的药物和影响血压及体重的药物。选出的所有受试者年龄均在22-75岁之间,均在本地生活超过5年。
     1.2研究对象分组
     所有饮酒者的饮酒时间均超过3年,饮酒频率均等于或超过每周两次。每日酒精摄入量通过每周饮酒次数乘以每次饮酒量除以7计算而得。根据每日饮酒量,饮酒者被分为以下4组:将受试者分为正常对照组(C组)、小剂量饮酒组(L组:酒精量<15g·d-1)、中剂量饮酒组(M组:酒精量15-47.9g·d-1)及大剂量饮酒组(H组:酒精量≥48g·d-1)。
     1.3人体学测量
     每位受试者在空腹状态进行一次彻底的体格检查,测量身高、体重、腰围及臀围,计算体重指数及腰臀比。体脂分析仪测定体脂质量、体脂百分数及体脂腰臀比。
     1.4实验室检测
     空腹血糖用葡萄糖氧化酶法测定。空腹胰岛素用放免法测定。血脂组分(包括总胆固醇、甘油三酯、低密度脂蛋白胆固醇和高密度脂蛋白胆固醇)用常规酶法测定。用HOMA胰岛素抵抗指数评价胰岛素敏感性,HOMA-IR=空腹胰岛素(mU·L-1)×空腹血糖(mmol·L-1)/22.5.血清chemerin用酶联免疫吸附试验(ELISA)测定。
     2.动物实验
     2.1动物分组及喂养
     27只雄性Wistar大鼠适应性喂养一周后,完全随机分为四组:对照组(C组:蒸馏水5.0g·kg-1·d-1)、小剂量饮酒组(L组:酒精0.5g·kg·d-1)、中剂量饮酒组(M组:酒精2.5g·kg-1·d-1)及大剂量饮酒组(H组:酒精5.0g·kg-1·d-1)。酒精和蒸馏水均每日一次由胃管注入,共喂养22周。
     2.2标本获取及存放
     大鼠喂养22周后空腹经下腔静脉取血,分离血清置于-80℃保存;快速分离1肾周脂肪组织和附睾脂肪组织,分别称其重量后置于液氮中保存。
     2.3空腹血糖和空腹胰岛素测定
     葡萄糖氧化酶法测定空腹血糖;放免法测定空腹胰岛素;用HOMA胰岛素抵抗指数评价胰岛素敏感性,HOMA-IR=空腹胰岛素(mU·L-1)×空腹血糖(mmol.L-1)/22.5。
     2.4脂肪组织及肝脏组织总蛋白的提取
     分别剪取液氮保存的脂肪组织及肝脏200mg,放入200μl磷酸盐缓冲液,超声破碎匀浆,于-80℃冻存过夜,两次冻融后离心,吸取脂肪组织匀浆的中间层及肝脏组织匀浆的上层,检测总蛋白浓度及chemerin含量。
     2.5大鼠血清、肝脏及脂肪组织chemerin含量测定
     用ELISA测定大鼠血清、肝脏及脂肪组织Chemerin含量。结果:
     1.人体实验
     1.1人体学测量及各代谢指标一般情况
     校正年龄后大剂量饮酒组体脂质量、体脂腰臀比、体脂百分数、甘油三酯、空腹血糖、空腹胰岛素和HOMA-IR明显高于对照组,差别有统计学意义。
     1.2慢性酒精摄入升高人血清chemerin水平
     慢性酒精摄入以剂量依赖方式引起血清chemerin升高。与对照组相比,小剂量饮酒组、中剂量饮酒组及大剂量饮酒组chemerin分别升高9.75%(P=0.265),13.84%(P=0.094)和40.83%(P<0.001)。进一步校正年龄后,大剂量饮酒组chemerin的升高仍有统计学意义(p<0.01)。
     1.3血清chemerin水平与甘油三酯、空腹血糖、空腹胰岛素及HOMA-IR相关
     相关分析显示血清chemerin水平与体重指数、体脂质量、甘油三酯、空腹血糖、空腹胰岛素及HOMA-IR正相关,与高密度脂蛋白胆固醇负相关。以血清chemerin作为因变量进行多元线性回归分析,结果显示甘油三酯、空腹血糖、空腹胰岛素及HOMA-IR是血清chemerin的独立影响因素。
     2.动物实验
     2.1大剂量酒精摄入引起大鼠体重下降及内脏脂肪与体重的比值增加
     实验开始时各组大鼠体重无差别,实验结束时,与对照组相比,中剂量饮酒组大鼠体重下降5.28%(p<0.01),大剂量饮酒组大鼠体重下降6.23%(p<0.01)。虽然大鼠的体重随饮酒量增大而下降,但大鼠附睾脂肪组织与体重的比值增加了18.28%(p<0.01),而小剂量及中剂量组大鼠上述指标变化无统计学意义。
     2.2大剂量酒精摄入增加大鼠空腹胰岛素及HOMA-IR
     随着酒精剂量增加,空腹胰岛素水平及HOMA-IR均升高,大剂量饮酒组空腹胰岛素增加48.34%(p<0.05),大剂量饮酒组HOMA-IR增加44.04%(p<0.05)。
     2.3长期酒精摄入升高大鼠血清和内脏脂肪组织中chemerin含量
     酒精以剂量依赖方式增加大鼠血清和内脏脂肪组织中chemerin水平。与对照组相比,小、中、大剂量饮酒组大鼠血清chemerin分别增加了7.96%(p=0.524)、25.33%(p=0.005)、50.60%(p<0.001)。与对照组相比,小、中、大剂量饮酒组大鼠内脏脂肪组织chemerin水平分别升高了13.59%(p=0.357)、34.84%(p=0.025)、50.17%(p=0.002)。与照组相比,小、中、大剂量饮酒组大鼠肝脏chemerin水平分别升高了5.71%(p=0.493)、9.85%(p=0.242)、16.06%(p=0.063)。
     2.4血清chemerin水平与内脏脂肪组织中chemerin含量正相关
     相关分析显示在校正肝脏chemerin含量后,血清chemerin水平和内脏脂肪组织中chemerin水平正相关(r=0.767,p<0.001)。但校正内脏脂肪组织chemerin水平后,血清chemerin水平和肝脏chemerin水平无明显相关(r=0.260,p=0.199)。
     结论:
     1.慢性酒精摄入以剂量依赖方式引起人血清、大鼠血清及内脏脂肪组织中chemerin水平升高。酒精引起的大鼠血清chemerin升高主要来源于内脏脂肪组织中chemerin的升高。
     2.长期大剂量酒精摄入增加人的体脂及大鼠内脏脂肪含量。
Background
     Adipose tissue is classically considered a tissue that stores excess energy and provides insulation for the body; however, it is now considered to be an endocrine organ. The adipose tissue secretes multiple metabolic proteins known as adipokines. Since the discovery of the most notable adipokines, leptin and adiponectin, the member of adipokine extends continuously. Some of these adipokines play important roles in glucose and lipid metabolism, insulin resistance, obesity and type2diabetes.
     Chemerin, a newly found adipokine, is secreted as an18-kDa inactive proprotein named prochemerin and is converted into the16-kDa active chemerin by a serine protease cleavage of the C-terminal portion of the protein. It is most highly expressed in the white adipose tissue and liver, which are followed by the lung, kidney, pituitary, placenta and ovary. Chemerin is a novel chemoattractant protein that plays roles in adaptive and innate immunity. Recent research found that chemerin participated in the regulation of adipocyte differentiation and had effects on insulin sensitivity. Until now, the majority of studies have demonstrated that chemerin induces insulin resistance in the adipose tissue and skeletal muscle.
     Ethanol consumption is a lifestyle factor and is relevant to type2diabetes. Moderate alcohol consumption and a high amount of alcohol intake produced different effects on lipid metabolism and insulin sensitivity. Until now, few studies have focused on the effectts of ethanol on adipokines. Our previous study demonstrated that ethanol consumption elevated the leptin, resistin and visfatin levels and decreased the adiponectin concentrations in both the sera and visceral adipose tissues (VAT) of rats. Unlike the other adipokines, chemerin was highly expressed in the adipose and liver tissues. Until now, there was no study on the correlations between chemerin and ethanol. Therefore, this study aimed to observe the effects of a long-term intake of different doses of ethanol on chemerin in humans and rats and to evaluate the relationship of chemerin with metabolic parameters in humans.
     Objective
     1To observe the effect of chronic ethanol consumption on human serum chemerin.
     2To explore correlations between serum chemerin and metabolic paratems in humans.
     3To observe the effect of different dose of ethanol on chemerin in serum, liver and VAT in rats.
     4To explore correlations between serum chemerin, liver chemerin and VAT chemerin in rats.
     Materials and Methods
     1Human study
     1.1Subjects
     Data were obtained from an epidemiological investigation of type2diabetes in the Shandong Provincial Hospital in China. According to the study criteria,148healthy men who consumed alcohol and55healthy men who abstained from alcohol were included in the study. The body mass indexes (BMI) of all of the subjects were less than25kg/m2. The subjects were classified into four groups:a control group, a low-dose group (group L; ethanol consumption<15g·d-1), a middle-dose group (group M; ethanol consumption15-47.9g·d-1), and a high-dose group (group H; ethanol consumption≥48g·d-1).
     1.2Anthropometric measurements
     A complete physical examination was conducted on each individual under the condition of an empty bladder and stomach. The values of height, weight, waist circumference and hip girth were taken and the BMI and the waist-to-hip ratio (WHR) was calculated. The body fat, percentage of body fat and waist-hip ratio of body fat were assessed using the body composition analyzer.
     1.3Laboratory measurements
     The fasting blood glucose (FBG) was determined by the glucose oxidase method. The fasting serum insulin (FINS) was measured using a radioimmunoassay kit. The plasma concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using routine enzymatic methods. The insulin sensitivity was estimated using the homeostasis model assessment for insulin resistance (HOMA-IR), which was calculated as fasting insulin (mU·L-1) multiplied by fasting glucose (mmol·L-1) divided by22.5. The chemerin levels of humans was determined by enzyme-linked immunosorbent assay (ELISA).
     2Animal study
     2.1Animal protocols and housing
     Twenty-seven male Wistar rats were divided into four groups and given the following different treatments:control group (group C; distilled water at5.0g·kg-1·d-1), low-dose group (group L; ethanol at0.5g·kg-1·d-1), middle-dose group (group M; ethanol at2.5g·kg-1·d-1), and high-dose group (group H; ethanol at5.0g·kg-1·d-1). Distilled water or edible ethanol was given by a gastric tube every morning for22weeks.
     2.2Blood and tissue collection
     Blood samples from all of the rats were obtained from the inferior vena cava after an overnight fast. The serum samples were separated after centrifugation and immediately stored at-80℃for subsequent analyses. The epididymal and perirenal fat pads and livers were removed and weighted and rapidly frozen in liquid nitrogen for adipokine measurements.
     2.3Laboratory measurements
     The FBG was determined by the glucose oxidase method. The FINS was measured using a radioimmunoassay kit. The insulin sensitivity was estimated using HOMA-IR, which was calculated as fasting insulin (mU·L-1) multiplied by fasting glucose (mmol·L-1) divided by22.5. Samples of the liver and adipose tissues (200mg) were excised from the frozen specimens. The excised tissues were added to200μL of phosphate-buffered saline (PBS) and homogenized. The tissue homogenates were frozen overnight at-80℃and thawed on ice the following day. After two freeze-thaw cycles, the homogenates were centrifuged. The middle layer of the adipose tissue homogenate and the supernatant of the liver homogenate were isolated and stored at-80℃to determine the total protein level and chemerin concentration.
     2.4ELISA
     The chemerin levels in serum, adipose tissue and liver were determined by commercially available ELISA kits according to the manufacturer's instructions.
     Results
     1Human study
     1.1Anthropometric and metabolic characteristics of the human participants
     The body fat, percentage of body fat, waist-hip ratio of body fat, TG, FPG, FINS, and HOMA-IR in group H were significantly elevated compared with group C.
     1.2Chronic ethanol consumption increased serum chemerin in humans
     Chronic ethanol consumption caused a dose-dependent increase of chemerin in human sera. The chemerin levels in group L, group M, and group H increased by9.75%(P=0.265),13.84%(P=0.094), and40.83(P<0.001), respectively, compared to group C. Furthermore, even after the adjustment for age, chemerin remained significantly different among the groups.
     1.3Serum chemerin levels are associated with TG and HOMA-IR in humans
     A pearson's correlation analysis was performed between the serum chemerin concentrations and clinical characteristics. The results showed that the chemerin levels positively correlated with the BMI, body fat, TG, FPG, FINS and HOMA-IR and negatively correlated with the HDL-C. A multivariate linear regression analysis using chemerin as the dependent variable revealed that the TG, FPG, FINS and HOMA-IR were independently associated with the chemerin concentrations.
     2Animal study
     2.1High-doses ethanol intake decreased body weight (BW) and increased epididymal adipose tissue to BW ratio in rats
     Rats of the four groups had similar body weight at baseline. But after the22-week treatment, the BW of group M and group H decreased by5.28%and6.23%, respectively (both P<0.01). The epididymal adipose tissue to BW ratio increased by18.28%in group H in relation to the control group (P<0.01).
     2.2High-dose ethanol consumption increased FINS and HOMA-IR
     The FINS levels and HOMA-IR of rats increased in ethanol-treated groups compared with controls. High doses of ethanol increased FINS levels by48.34%(P<0.05) and HOMA-IR values by44.04%(P<0.05) compared to the control group respectively.
     2.3Chronic ethanol treatment increased the chemerin levels in the sera and VAT of the rats
     Ethanol increased chemerin level in a dose-dependent manner in rats. Serum chemerin levels in group L, group M and group H increased by7.96%(p=0.524),25.33%(p=0.005) and50.60%(p<0.001) in relation to those in group C. Chemerin levels in VAT in group L, group M and group H increased by13.59%(p=0.357),34.84%(p=0.025) and50.17%(p=0.002) compared with those in group C. Chemerin levels in liver in group L, group M and group H increased by5.71(p=0.493),9.85%(p=0.242) and16.06%(p=0.063) compared with those in group C.
     2.4Positive correlation of chemerin levels between the serum and VAT
     A correlation analysis between the serum and VAT or liver chemerin showed that the serum chemerin concentrations were positively associated with the chemerin in the VAT after adjusting for the liver chemerin. The relationship between the serum and liver chemerin was not statistically significant after adjusting for the chemerin in the VAT.
     Conclusions
     1Chronic ethanol consumption increases serum chemerin levels in human in a dose-dependent manner.
     2Chronic ethanol consumption increases chemerin levels of serum and VAT in rats in a dose-dependent manner. The increase of serum chemerin is mainly attributed to the elevation of chemerin in VAT after ethanol treatment.
     3The chronic high-dose ethanol consumption increases body fat in humans and VAT in rats.
引文
1. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444:847-853.
    2. Sonnenberg GE, Krakower GR, Hoffmann RG, Maas DL, Hennes MM, Kissebah AH. Plasma leptin concentrations during extended fasting and graded glucose infusions:relationships with changes in glucose, insulin, and FFA. J Clin Endocrinol Metab.2001; 86:4895-4900.
    3. Kieffer TJ, Habener JF. The adipoinsular axis:effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab.2000; 278:E1-14.
    4. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes.2001; 50:1126-1133.
    5. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes:close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab.2001; 86: 1930-1935.
    6. Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth:relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care. 2004; 27:547-552.
    7. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue:possible role in modulating insulin action.Am J Physiol Endocrinol Metab.2006; 290: E1253-61.
    8. Nagpal S, Patel S, Jacobe H, DiSepio D, Ghosn C, Malhotra M, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol 1997; 109:91-95.
    9. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, et al. Specific recruitment of antigen-presenting cell by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; 198:977-985.
    10 Meder W, Wendland M, Busmann A, Kutzleb C, Spodsberg N, John H, et al. Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett.2003; 555:495-399.
    11.Wittamer V, Bondue B, Guillabert A, Vassart G, Parmentier M, Communi D. Neutrophil-mediated maturation of chemerin:a link between innate and adaptive immunity. J Immunol 2005; 175:487-493.
    12. Goralski KB, Mccarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 2007; 282:28175-88.
    13. Roh SG, Song SH, Choi KC, Katoh K, Wittamer V, Parmentier M, et al. Chemerin-a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 2007; 362:1013-1018.
    14. Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, Hong KS, Kitazawa R, et al. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett.2008; 582: 573-578.
    15. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 2009; 58:2731-2740.
    16. Becker M, Rabe K, Lebherz C, Zugwurst J, Goke B, Parhofer KG, et al. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels and atherosclerosis in LDL receptor knockout mice on high fat diet. Diabetes 2010; 59:2898-2903.
    17. Kralisch S, Weise S, Sommer G, Lipfert J, Lossner U, Bluher M, et al. Interleukin-1 beta induces the novel adipokine chemerin in adipocytes in vitro. Regul Pept 2009; 154:102-106.
    18. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology.2007; 148:4687-4694.
    19. Stejskal D, Karpisek M, Hanulova Z, Svestak M. Chemerin is an independent marker of the metabolic syndrome in a Caucasian population:a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152: 217-221.
    20. Bozaoglu K, Segal D, Shields KA, Cummings N, Curran JE, Comuzzie AG, et al. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab.2009; 94: 3085-3088.
    21. Lehrke M, Becker A, Greif M, Stark R, Laubender RP, von Ziegler F, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol.2009; 161:339-344.
    22. Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Campbell LV. Moderate alcohol consumption, estrogen replacement therapy and physical activity are associated with increased insulin sensitivity:is abdominal adiposity the mediator? Diabetes Care 2003; 26:2734-2740.
    23. Wandell PE, de Faire U, Hellenius ML. High intake of alcohol is associated with newly diagnosed diabetes in 60 years old men and women. Nutr Metab Cardiovasc Dis.2007; 17:598-608.
    24. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 2007; 31:1581-1588.
    25. Onishi Y, Honda M, Ogihara T, Sakoda H, Anai M, Fujishiro M, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun.2003; 303:788-794.
    26. Nicolas JM, Fernandez-Sola J, Fatjo F, Casamitjana R, Bataller R, Sacanella E, et al. Increased circulating leptin levels in chronic alcoholism. Alcohol Clin Exp Res.2001; 25:83-88.
    27. Sierksma A, Patel H, Ouchi N, Kihara S, Funahashi T, Heine RJ, et al. Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-alpha, and insulin sensitivity. Diabetes Care.2004; 27:184-189.
    28. Pravdova E, Macho L, Fickova M. Alcohol intake modifies leptin, adiponectin and resistin serum levels and their mRNA expressions in adipose tissue of rats. Endocr Regul.2009; 43:117-125.
    29. Pravdova E, Macho L, Hlavacova N, Fickova M. Long-time alcohol intake modifies resistin secretion and expression of resistin gene in adipose tissue. Gen Physiol Biophys.2007; 26:221-229.
    30. Yu HC, Li SY, Cao MF, Jiang XY, Feng L, Zhao JJ, et al. Effects of chronic ethanol consumption on levels of adipokines in visceral adipose tissues and sera of rats. Acta Pharmacol Sin 2010; 31:461-469.
    31. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes:a meta-analysis of prospective observational studies. Diabetes Care 2005; 28:719-725.
    32 Yoon YS, Oh SW, Baik HW, Park HS, Kim WY. Alcohol consumption and the metabolic syndrome in Korean adults:the 1998 Korean National Health and Nutrition Examination Survey. Am J Clin Nutr 2004; 80:217-224.
    33 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28:412-419.
    34. Facchini F, Chen Y-D, Reaven GM. Light-to-moderate alcohol intake is associated with enhanced insulin sensitivity. Diabetes Care 1994; 17:115-119.
    35. Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM. Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver. Hepatology.2003; 38:703-714.
    36. He L, Simmen FA, Mehendale HM, Ronis MJ, Badger TM. Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane. Role of TRB3 in inhibition of Akt/protein kinase B activation. J Biol Chem 2006; 281:11126-11134.
    37. Poirier LA, Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding:regulation by heterotrimeric G-proteins. Biochem J.2001; 354(Pt 2):323-330.
    38. Sebastian BM, Nagy LE. Decreased insulin-dependent glucose transport by chronic ethanol feeding is associated with dysregulation of the Cbl/TC10 pathway in rat adipocytes. Am J Physiol Endocrinol Metab.2005; 289: E1077-1084.
    39 Wan Q, Liu Y, Guan Q, Gao L, Lee KO, Zhao J. Ethanol feeding impairs insulin-stimulated glucose uptake in isolated rat skeletal muscle:role of Gs alpha and cAMP. Alcohol Clin Exp Res.2005; 29:1450-1456.
    40. Zhao LN, Hao LP, Yang XF, Ying CJ, Yu D, Sun XF. The diabetogenic effects of excessive ethanol:reducing beta-cell mass, decreasing phosphatidylinosvtol 3-kinase activity and GLUT-4 expression in rats. Br J Nutr.2009; 101: 1467-1473.
    41. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes.2005; 54:3458-3465.
    42. Anderwald C, Brunmair B, Stadlbauer K, Krebs M, Furnsinn C, Roden M. Effects of free fatty acids on carbohydrate metabolism and insulin signalling in perfused rat liver. Eur J Clin Invest.2007; 37:774-782.
    43. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes.2002; 51:2005-2011.
    44. Tolstrup JS, Gr(?)nbaek M, Nordestgaard BG. Alcohol intake, myocardial infarction, biochemical risk factors, and alcohol dehydrogenase genotypes. Circ Cardiovasc Genet.2009; 2:507-14.
    45. Volcik KA, Ballantyne CM, Fuchs FD, Sharrett AR, Boerwinkle E. Relationship of alcohol consumption and type of alcoholic beverage consumed with plasma lipid levels:differences between Whites and African Americans of the ARIC study. Ann Epidemiol.200; 18:101-7.
    46. Onat A, Hergenc G, Dursunoglu D, Ordu S, Can G, Bulur S, et al Associations of alcohol consumption with blood pressure, lipoproteins, and subclinical inflammation among Turks. Alcohol.2008; 42:593-601.
    47. Galli A, Pinaire J, Fischer M, Dorris R, Crabb DW. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem 2001; 276:68-75.
    48. Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 2004; 310:417-424.
    49. Garcia-Villafranca J, Guillen A, Castro J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie.2008; 90:460-466.
    50. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004; 127:1798-1808.
    51. Yin HQ, Kim M, Kim JH, Kong G, Kang KS, Kim HL, et al. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice. Toxicol Appl Pharmacol.2007; 223:225-233.
    52. You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 2002; 277:29342-29347.
    53. Barson JR, Karatayev O, Chang GQ, Johnson DF, Bocarsly ME, Hoebel BG, et al. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides:counteraction by lipid-lowering drugs. Alcohol.2009; 43:433-441.
    54. Geloen A, Collet AJ, Guay G, Bukowiecki LJ. Insulin stimulates in vivo cell proliferation in white adipose tissue. Am J Physiol.1989; 256(1 Pt 1): C190-196.
    55. Suryawan A, Swanson LV, Hu CY. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J Anim Sci 1997; 75:105-111.
    56. Deslex S, Negrel R, Ailhaud G. Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells. Exp Cell Res 1987; 168:15-30.
    57. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10: 1096-1107.
    58. Bell RA, Mayer-Davis EJ, Martin MA, D'Agostino RB Jr, Haffner SM. Associations between alcohol consumption and insulin sensitivity and cardiovascular disease risk factors:the Insulin Resistance and Atherosclerosis Study. Diabetes Care.2000; 23:1630-1636.
    59. Sedman AJ, Wilkinson PK, Sakmar E, Weidler DJ, Wagner JG. Food effects on absorption and metabolism of alcohol. J Stud Alcohol 1976; 37:1197-1214.
    60. Tan BK, Chen J, Farhatullah S, Adya R, Kaur J, Heutling D, et al. Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 2009; 58: 1971-1977.
    61. Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, et al. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 2011; 152:26-35.
    62. Fukui H, Brauner B, Bode J, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease:reevaluation with an improved chromogenic assay. J Hepatol 1991; 12:162-169.
    63. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr-1 contribute to increased TNF-alpha production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol 2002; 282:G 6-15.
    64. Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology 2010; 151:2590-25602.
    65. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin Cytom 2007; 72:408-415.
    66. Ahluwalia B, Wesley B, Adeyiga O, Smith DM, Da-Silva A, Rajguru S. Alcohol modulates cytokine secretion and synthesis in human fetus:an in vivo and in vitro study. Alcohol 2000; 21:207-213.
    67. Valles SL, Blanco AM, Azorin I, Guasch R, Pascual M, Gomez-Lechon MJ, et al. Chronic ethanol consumption enhances interleukin-1-mediated signal transduction in rat liver and in cultured hepatocytes. Alcohol Clin Exp Res 2003; 27:1979-1986.
    68. Hsiang CY, Wu SL, Cheng SE, Ho TY. Acetaldehyde-induced interleukin-1 beta and tumor necrosis factor-alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells. J Biomed Sci 2005; 12:791-801.
    69. Lomeo F, Khokher MA, Dandona P. Ethanol and its novel metabolites inhibit insulin action on adipocytes. Diabetes.1988;37:912-5.
    70. Sarkola T, Iles MR, Kohlenberg-Mueller K, Eriksson CJ. Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women:effect of 4-methylpyrazole. Alcohol Clin Exp Res.2002; 26:239-45.
    71. Shelmet JJ, Reichard GA, Skutches CL, Hoeldtke RD, Owen OE, Boden G. Ethanol causes acute inhibition of carbohydrate, fat, and protein oxidation and insulin resistance. J Clin Invest.1988; 81:1137-45.
    72. Nuutinen HU, Salaspuro MP, Valle M, Lindros KO. Blood acetaldehyde concentration gradient between hepatic and antecubital venous blood in ethanol-intoxicated alcoholics and controls. Eur J Clin Invest.1984; 14: 306-11.
    73. Lundquist F, Tygstrup N, Winkler K, Mellemgaard K, Munck-petersen S. Ethanol metabolism and production of free acetate in the human liver. J Clin Invest.1962; 41:955-61.
    74. Yki-Jarvinen H, Koivisto VA, Ylikahri R, Taskinen MR. Acute effects of ethanol and acetate on glucose kinetics in normal subjects. Am J Physiol.1988; 254(2 Pt 1):E175-80.
    75. Spolarics Z, Bagby GJ, Pekala PH, Dobrescu C, Skrepnik N, Spitzer JJ. Acute alcohol administration attenuates insulin-mediated glucose use by skeletal muscle. Am J Physiol.1994;267(6 Pt 1):E886-91.
    76. Scheppach W, Wiggins HS, Halliday D, Self R, Howard J, Branch WJ, et al. Effect of gut-derived acetate on glucose turnover in man. Clin Sci (Lond).1988; 75:363-70.
    1. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444:847-853.
    2. Nagpal S, Patel S, Jacobe H, DiSepio D, Ghosn C, Malhotra M, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol 1997; 109:91-95.
    3. Goralski KB, Mccarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 2007; 282:28175-88.
    4. Roh SG, Song SH, Choi KC, Katoh K, Wittamer V, Parmentier M, et al.. Chemerin-a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 2007; 362:1013-1018.
    5. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, et al. Specific recruitment of antigen-presenting cell by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; 198:977-985.
    6. Becker M, Rabe K, Lebherz C, Zugwurst J, Goke B, Parhofer KG, et al. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels and atherosclerosis in LDL receptor knockout mice on high fat diet. Diabetes 2010; 59:2898-2903.
    7. Kralisch S, Weise S, Sommer G, Lipfert J, Lossner U, Bluher M, et al. Interleukin-1 beta induces the novel adipokine chemerin in adipocytes in vitro. Regul Pept 2009; 154:102-106.
    8. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 2009; 58:2731-2740.
    9. Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Campbell LV. Moderate alcohol consumption, estrogen replacement therapy and physical activity are associated with increased insulin sensitivity:is abdominal adiposity the mediator? Diabetes Care 2003; 26:2734-2740.
    10. Wandell PE, de Faire U, Hellenius ML. High intake of alcohol is associated with newly diagnosed diabetes in 60 years old men and women. Nutr Metab Cardiovasc Dis.2007; 17:598-608.
    11. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 2007; 31:1581-1588.
    12. Onishi Y, Honda M, Ogihara T, Sakoda H, Anai M, Fujishiro M, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun.2003; 303:788-794.
    13. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419.
    14. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes:a meta-analysis of prospective observational studies. Diabetes Care 2005; 28:719-725.
    15. Yoon YS, Oh SW, Baik HW, Park HS, Kim WY. Alcohol consumption and the metabolic syndrome in Korean adults:the 1998 Korean National Health and Nutrition Examination Survey. Am J Clin Nutr 2004; 80:217-224.
    16. Lieber CS, DeCarli LM, Sorrell MF. Experimental methods of ethanol administration. Hepatology.1989; 10:501-10.
    17. DeCarli LM, Lieber CS. Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr.1967; 91:331-6.
    18. Basat O, Ucak S, Ozkurt H, Basak M, Seber S, Altuntas Y. Visceral adipose tissue as an indicator of insulin resistance in nonobese patients with new onset type 2 diabetes mellitus.Exp Clin Endocrinol Diabetes.2006; 114:58-62.
    19. Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome:implications for controlling dietary carbohydrates:a review.Nutr Metab (Lond).2004; 1:12.
    20. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB Sr, O'Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study.Circulation.2007; 116:39-48.
    21. Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM. Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver. Hepatology.2003; 38:703-714.
    22. He L, Simmen FA, Mehendale HM, Ronis MJ, Badger TM. Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane. Role of TRB3 in inhibition of Akt/protein kinase B activation. J Biol Chem 2006; 281:11126-11134.
    23. Poirier LA, Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding:regulation by heterotrimeric G-proteins.Biochem J.2001; 354(Pt 2):323-330.
    24. Sebastian BM, Nagy LE. Decreased insulin-dependent glucose transport by chronic ethanol feeding is associated with dysregulation of the Cbl/TC10 pathway in rat adipocytes. Am J Physiol Endocrinol Metab.2005; 289:E1077-1084.
    25. Wan Q, Liu Y, Guan Q, Gao L, Lee KO, Zhao J. Ethanol feeding impairs insulin-stimulated glucose uptake in isolated rat skeletal muscle:role of Gs alpha and cAMP. Alcohol Clin Exp Res.2005; 29:1450-1456.
    26. Zhao LN, Hao LP, Yang XF, Ying CJ, Yu D, Sun XF. The diabetogenic effects of excessive ethanol:reducing beta-cell mass, decreasing phosphatidylinositol 3-kinase activity and GLUT-4 expression in rats. Br J Nutr.2009; 101: 1467-1473.
    27. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes.2005; 54:3458-3465.
    28. Anderwald C, Brunmair B, Stadlbauer K, Krebs M, Fiirnsinn C, Roden M. Effects of free fatty acids on carbohydrate metabolism and insulin signalling in perfused rat liver. Eur J Clin Invest.2007; 37:774-782.
    29. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes.2002; 51:2005-2011.
    30. Obradovic T, Meadows GG. Chronic ethanol consumption increases plasma leptin levels and alters leptin receptors in the hypothalamus and the perigonadal fat of C57BL/6 mice. Alcohol Clin Exp Res.2002; 26:255-262.
    31. Geloen A, Collet AJ, Guay G, Bukowiecki LJ. Insulin stimulates in vivo cell proliferation in white adipose tissue. Am J Physiol.1989; 256(1 Pt 1):C190-196.
    32. Suryawan A, Swanson LV, Hu CY. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J Anim Sci 1997; 75:105-111.
    33. Deslex S, Negrel R, Ailhaud G. Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells. Exp Cell Res 1987; 168: 15-30.
    34. You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 2002; 277:29342-29347.
    35. Kim JB, Spiegelman BM. ADD 1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10:1096-1107.
    36. Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 2004; 310:417-424.
    37. Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, et al. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 2011; 152:26-35.
    38. Fukui H, Brauner B, Bode J, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease:reevaluation with an improved chromogenic assay. J Hepatol 1991; 12:162-169.
    39. Yu HC, Li SY, Cao MF, Jiang XY, Feng L, Zhao JJ, et al. Effects of chronic ethanol consumption on levels of adipokines in visceral adipose tissues and sera of rats. Acta Pharmacol Sin 2010; 31:461-469.
    40. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr-1 contribute to increased TNF-alpha production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol 2002; 282:G 6-15.
    41. Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology 2010; 151:2590-25602.
    42. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin Cytom 2007; 72:408-415.
    43. Ahluwalia B, Wesley B, Adeyiga O, Smith DM, Da-Silva A, Raj guru S. Alcohol modulates cytokine secretion and synthesis in human fetus:an in vivo and in vitro study. Alcohol 2000; 21:207-213.
    44. Valles SL, Blanco AM, Azorin I, Guasch R, Pascual M, Gomez-Lechon MJ, et al. Chronic ethanol consumption enhances interleukin-1-mediated signal transduction in rat liver and in cultured hepatocytes. Alcohol Clin Exp Res 2003; 27: 1979-1986.
    45. Hsiang CY, Wu SL, Cheng SE, Ho TY. Acetaldehyde-induced interleukin-1 beta and tumor necrosis factor-alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells. J Biomed Sci 2005; 12: 791-801.
    46. Tan BK, Chen J, Farhatullah S, Adya R, Kaur J, Heutling D, et al. Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 2009; 58: 1971-1977.
    1. Rosen, E.D. and B.M. Spiegelman, Adipocytes as regulators of energy balance and glucose homeostasis. Nature,2006.444(7121):847-53.
    2. Greenfield, J.R., K. Samaras, A.B. Jenkins, P.J. Kelly, T.D. Spector, and L.V. Campbell, Moderate alcohol consumption, estrogen replacement therapy, and physical activity are associated with increased insulin sensitivity:is abdominal adiposity the mediator? Diabetes Care,2003.26(10):2734-40.
    3. Wandell, P.E., U. de Faire, and M.L. Hellenius, High intake of alcohol is associated with newly diagnosed diabetes in 60 years old men and women. Nutr Metab Cardiovasc Dis,2007.17(8):598-608.
    4. Kang, L., B.M. Sebastian, M.T. Pritchard, B.T. Pratt, S.F. Previs, and L.E. Nagy, Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res,2007.31(9):1581-8.
    5. Onishi, Y., M. Honda, T. Ogihara, H. Sakoda, M. Anai, M. Fujishiro, H. Ono, N. Shojima, Y. Fukushima, K. Inukai, H. Katagiri, M. Kikuchi, Y. Oka, and T. Asano, Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun,2003.303(3):788-94.
    6. Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J.M. Friedman, Positional cloning of the mouse obese gene and its human homologue. Nature, 1994.372(6505):425-32.
    7. Ahima, R.S., C.B. Saper, J.S. Flier, and J.K. Elmquist, Leptin regulation of neuroendocrine systems. Front Neuroendocrinol,2000.21(3):263-307.
    8. Morash, B., A. Li, P.R. Murphy, M. Wilkinson, and E. Ur, Leptin gene expression in the brain and pituitary gland. Endocrinology,1999.140(12): 5995-8.
    9. Jin, L., S. Zhang, B.G. Burguera, M.E. Couce, R.Y. Osamura, E. Kulig, and R.V. Lloyd, Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology,2000.141(1):333-9.
    10. Wang, J., R. Liu, M. Hawkins, N. Barzilai, and L. Rossetti, A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature,1998. 393(6686):684-8.
    11. Bado, A., S. Levasseur, S. Attoub, S. Kermorgant, J.P. Laigneau, M.N. Bortoluzzi, L. Moizo, T. Lehy, M. Guerre-Millo, Y. Le Marchand-Brustel, and M.J. Lewin, The stomach is a source of leptin. Nature,1998.394(6695): 790-3.
    12. Kitawaki, J., H. Koshiba, H. Ishihara, I. Kusuki, K. Tsukamoto, and H. Honjo, Expression of leptin receptor in human endometrium and fluctuation during the menstrual cycle. J Clin Endocrinol Metab,2000.85(5):1946-50.
    13. De Vos, P., R. Saladin, J. Auwerx, and B. Staels, Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. J Biol Chem,1995.270(27):15958-61.
    14. Machinal, F., M.N. Dieudonne, M.C. Leneveu, R. Pecquery, and Y. Giudicelli, In vivo and in vitro ob gene expression and leptin secretion in rat adipocytes: evidence for a regional specific regulation by sex steroid hormones. Endocrinology,1999.140(4):1567-74.
    15. Wabitsch, M., W.F. Blum, R. Muche, M. Braun, F. Hube, W. Rascher, E. Heinze, W. Teller, and H. Hauner, Contribution of androgens to the gender difference in leptin production in obese children and adolescents. J Clin Invest, 1997.100(4):808-13.
    16. Friedman, J.M. and J.L. Halaas, Leptin and the regulation of body weight in mammals. Nature,1998.395(6704):763-70.
    17. Prodi, E. and S. Obici, Minireview:the brain as a molecular target for diabetic therapy. Endocrinology,2006.147(6):2664-9.
    18. Kahn, B.B., T. Alquier, D. Carling, and D.G. Hardie, AMP-activated protein kinase:ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab,2005.1(1):15-25.
    19. Minokoshi, Y., Y.B. Kim, O.D. Peroni, L.G. Fryer, C. Muller, D. Carling, and B.B. Kahn, Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature,2002.415(6869):339-43.
    20. Niswender, K.D. and M.A. Magnuson, Obesity and the beta cell:lessons from leptin. J Clin Invest,2007.117(10):2753-6.
    21. Morioka, T., E. Asilmaz, J. Hu, J.F. Dishinger, A.J. Kurpad, C.F. Elias, H. Li, J.K. Elmquist, R.T. Kennedy, and R.N. Kulkarni, Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest,2007.117(10):2860-8.
    22. Obradovic, T. and G.G. Meadows, Chronic ethanol consumption increases plasma leptin levels and alters leptin receptors in the hypothalamus and the perigonadal fat of C57BL/6 mice. Alcohol Clin Exp Res,2002.26(2):255-62.
    23. Nicolas, J.M., J. Fernandez-Sola, F. Fatjo, R. Casamitjana, R. Bataller, E. Sacanella, E. Tobias, E. Badia, and R. Estruch, Increased circulating leptin levels in chronic alcoholism. Alcohol Clin Exp Res,2001.25(1):83-8.
    24. Szkudelski, T., I. Bialik, and K. Szkudelska, Adipocyte lipolysis, hormonal and metabolic changes in ethanol-drinking rats. J Anim Physiol Anim Nutr (Berl),2004.88(7-8):251-8.
    25. Saladin, R., P. De Vos, M. Guerre-Millo, A. Leturque, J. Girard, B. Staels, and J. Auwerx, Transient increase in obese gene expression after food intake or insulin administration. Nature,1995.377(6549):527-9.
    26. Otaka, M., N. Konishi, M. Odashima, M. Jin, I. Wada, T. Matsuhashi, R. Ohba, and S. Watanabe, Effect of alcohol consumption on leptin level in serum, adipose tissue, and gastric mucosa. Dig Dis Sci,2007.52(11):3066-9.
    27. Yu, H.C., S.Y. Li, M.F. Cao, X.Y. Jiang, L. Feng, J.J. Zhao, and L. Gao, Effects of chronic ethanol consumption on levels of adipokines in visceral adipose tissues and sera of rats. Acta Pharmacol Sin,2010.31(4):461-9.
    28. Calissendorff, J., K. Brismar, and S. Rojdmark, Is decreased leptin secretion after alcohol ingestion catecholamine-mediated? Alcohol Alcohol,2004. 39(4):281-6.
    29. Mikolajczak, P., I. Okulicz-Kozaryn, E. Kaminska, K. Wiktorowicz, K. Lesniewska, W. Dyr, and W. Kostowski, Effect of subchronic ethanol treatment on plasma and cerebrospinal fluid leptin levels in rats selectively bred for high and low alcohol preference. Pol J Pharmacol,2002.54(2): 127-32.
    30. Strbak, V., J. Benicky, L. Macho, D. Jezova, and M. Nikodemova, Four-week ethanol intake decreases food intake and body weight but does not affect plasma leptin, corticosterone, and insulin levels in pubertal rats. Metabolism, 1998.47(10):1269-73.
    31. Lin, H.Z., S.Q. Yang, G. Zeldin, and A.M. Diehl, Chronic ethanol consumption induces the production of tumor necrosis factor-alpha and related cytokines in liver and adipose tissue. Alcohol Clin Exp Res,1998. 22(5 Suppl):231S-237S.
    32. Kiefer, F., H. Jahn, M. Jaschinski, R. Holzbach, K. Wolf, D. Naber, and K. Wiedemann, Leptin:a modulator of alcohol craving? Biol Psychiatry,2001. 49(9):782-7.
    33. Kiefer, F., H. Jahn, K. Wolf, P. Kampf, K. Knaudt, and K. Wiedemann, Free-choice alcohol consumption in mice after application of the appetite regulating peptide leptin. Alcohol Clin Exp Res,2001.25(5):787-9.
    34. Kiefer, F., H. Jahn, M. Schick, and K. Wiedemann, Alcohol intake, tumour necrosis factor-alpha, leptin and craving:factors of a possibly vicious circle? Alcohol Alcohol,2002.37(4):401-4.
    35. Degawa-Yamauchi, M., S. Uotani, Y. Yamaguchi, R. Takahashi, T. Abe, H. Kuwahara, H. Yamasaki, and K. Eguchi, Ethanol inhibits leptin-induced STAT3 activation in Huh7 cells. FEBS Lett,2002.525(1-3):116-20.
    36. Kadowaki, T. and T. Yamauchi, Adiponectin and adiponectin receptors. Endocr Rev,2005.26(3):439-51.
    37. Shapiro, L. and P.E. Scherer, The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol,1998. 8(6):335-8.
    38. Hotta, K., T. Funahashi, N.L. Bodkin, H.K. Ortmeyer, Y. Arita, B.C. Hansen, and Y. Matsuzawa, Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes,2001.50(5): 1126-33.
    39. Berg, A.H., T.P. Combs, and P.E. Scherer, ACRP30/adiponectin:an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab, 2002.13(2):84-9.
    40. Hotta, K., T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda, M. Nishida, S. Kihara, N. Sakai, T. Nakajima, K. Hasegawa, M. Muraguchi, Y. Ohmoto, T. Nakamura, S. Yamashita, T. Hanafusa, and Y. Matsuzawa, Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vase Biol,2000.20(6):1595-9.
    41. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M.L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, and T. Kadowaki, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med,2001.7(8):941-6.
    42. Weiss, R., S. Dufour, A. Groszmann, K. Petersen, J. Dziura, S.E. Taksali, G. Shulman, and S. Caprio, Low adiponectin levels in adolescent obesity:a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab,2003.88(5):2014-8.
    43. Weyer, C., T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, and P.A. Tataranni, Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab,2001.86(5):1930-5.
    44. Yamamoto, Y., H. Hirose, I. Saito, M. Tomita, M. Taniyama, K. Matsubara, Y. Okazaki, T. Ishii, K. Nishikai, and T. Saruta, Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci (Lond),2002.103(2):137-42.
    45. Stasiuniene, N. and A. Praskevicius, [Peptides regulating food intake and body weight]. Medicina (Kaunas),2005.41(12):989-1001.
    46. Stefan, N., B. Vozarova, T. Funahashi, Y. Matsuzawa, C. Weyer, R.S. Lindsay, J.F. Youngren, P.J. Havel, R.E. Pratley, C. Bogardus, and P.A. Tataranni, Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes,2002.51(6):1884-8.
    47. Stefan, N., B. Vozarova, T. Funahashi, Y. Matsuzawa, E. Ravussin, C. Weyer, and P.A. Tataranni, Plasma adiponectin levels are not associated with fat oxidation in humans. Obes Res,2002.10(10):1016-20.
    48. Arita, Y., S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, K. Hotta, I. Shimomura, T. Nakamura, K. Miyaoka, H. Kuriyama, M. Nishida, S. Yamashita, K. Okubo, K. Matsubara, M. Muraguchi, Y. Ohmoto, T. Funahashi, and Y. Matsuzawa, Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun,1999.257(1): 79-83.
    49. Cnop, M., P.J. Havel, K.M. Utzschneider, D.B. Carr, M.K. Sinha, E.J. Boyko, B.M. Retzlaff, R.H. Knopp, J.D. Brunzell, and S.E. Kahn, Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia,2003.46(4): 459-69.
    50. Lindsay, R.S., T. Funahashi, R.L. Hanson, Y. Matsuzawa, S. Tanaka, P.A. Tataranni, W.C. Knowler, and J. Krakoff, Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet,2002.360(9326):57-8.
    51. Daimon, M., T. Oizumi, T. Saitoh, W. Kameda, A. Hirata, H. Yamaguchi, H. Ohnuma, M. Igarashi, M. Tominaga, and T. Kato, Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese Population:the Funagata study. Diabetes Care,2003.26(7): 2015-20.
    52. Snehalatha, C, B. Mukesh, M. Simon, V. Viswanathan, S.M. Haffner, and A. Ramachandran, Plasma adiponectin is an independent predictor of type 2 diabetes in Asian indians. Diabetes Care,2003.26(12):3226-9.
    53. Spranger, J., A. Kroke, M. Mohlig, M.M. Bergmann, M. Ristow, H. Boeing, and A.F. Pfeiffer, Adiponectin and protection against type 2 diabetes mellitus. Lancet,2003.361(9353):226-8.
    54. Duncan, B.B., M.I. Schmidt, J.S. Pankow, H. Bang, D. Couper, C.M. Ballantyne, R.C. Hoogeveen, and G. Heiss, Adiponectin and the development of type 2 diabetes:the atherosclerosis risk in communities study. Diabetes, 2004.53(9):2473-8.
    55. Krakoff, J., T. Funahashi, C.D. Stehouwer, C.G. Schalkwijk, S. Tanaka, Y. Matsuzawa, S. Kobes, P.A. Tataranni, R.L. Hanson, W.C. Knowler, and R.S. Lindsay, Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care,2003.26(6):1745-51.
    56. Snijder, M.B., R.J. Heine, J.C. Seidell, L.M. Bouter, C.D. Stehouwer, G. Nijpels, T. Funahashi, Y. Matsuzawa, I. Shimomura, and J.M. Dekker, Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women:the hoorn study. Diabetes Care, 2006.29(11):2498-503.
    57. Mather, K.J., T. Funahashi, Y. Matsuzawa, S. Edelstein, G.A. Bray, S.E. Kahn, J. Crandall, S. Marcovina, B. Goldstein, and R. Goldberg, Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program. Diabetes,2008.57(4):980-6.
    58. Yamauchi, T., J. Kamon, H. Waki, Y. Imai, N. Shimozawa, K. Hioki, S. Uchida, Y. Ito, K. Takakuwa, J. Matsui, M. Takata, K. Eto, Y. Terauchi, K. Komeda, M. Tsunoda, K. Murakami, Y. Ohnishi, T. Naitoh, K. Yamamura, Y. Ueyama, P. Froguel, S. Kimura, R. Nagai, and T. Kadowaki, Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem,2003.278(4):2461-8.
    59. Combs, T.P., U.B. Pajvani, A.H. Berg, Y. Lin, L.A. Jelicks, M. Laplante, A.R. Nawrocki, M.W. Rajala, A.F. Parlow, L. Cheeseboro, Y.Y. Ding, R.G. Russell, D. Lindemann, A. Hartley, G.R. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti, and P.E. Scherer, A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology,2004.145(1): 367-83.
    60. Kubota, N., Y. Terauchi, T. Yamauchi, T. Kubota, M. Moroi, J. Matsui, K. Eto, T. Yamashita, J. Kamon, H. Satoh, W. Yano, P. Froguel, R. Nagai, S. Kimura, T. Kadowaki, and T. Noda, Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem,2002.277(29):25863-6.
    61. Maeda, N., I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, N. Furuyama, H. Kondo, M. Takahashi, Y. Arita, R. Komuro, N. Ouchi, S. Kihara, Y. Tochino, K. Okutomi, M. Horie, S. Takeda, T. Aoyama, T. Funahashi, and Y. Matsuzawa, Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med,2002.8(7):731-7.
    62. Nawrocki, A.R., M.W. Rajala, E. Tomas, U.B. Pajvani, A.K. Saha, M.E. Trumbauer, Z. Pang, A.S. Chen, N.B. Ruderman, H. Chen, L. Rossetti, and P.E. Scherer, Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem,2006.281(5):2654-60.
    63. Berg, A.H., T.P. Combs, X. Du, M. Brownlee, and P.E. Scherer, The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med, 2001.7(8):947-53.
    64. Fruebis, J., T.S. Tsao, S. Javorschi, D. Ebbets-Reed, M.R. Erickson, F.T. Yen, B.E. Bihain, and H.F. Lodish, Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A,2001.98(4): 2005-10.
    65. Combs, T.P., J.A. Wagner, J. Berger, T. Doebber, W.J. Wang, B.B. Zhang, M. Tanen, A.H. Berg, S. O'Rahilly, D.B. Savage, K. Chatterjee, S. Weiss, P.J. Larson, K.M. Gottesdiener, B.J. Gertz, M.J. Charron, P.E. Scherer, and D.E. Moller, Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists:a potential mechanism of insulin sensitization. Endocrinology,2002.143(3):998-1007.
    66. Lochhead, P.A., I.P. Salt, K.S. Walker, D.G. Hardie, and C. Sutherland, 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes,2000.49(6):896-903.
    67. Winzell, M.S., R. Nogueiras, C. Dieguez, and B. Ahren, Dual action of adiponectin on insulin secretion in insulin-resistant mice. Biochem Biophys Res Commun,2004.321(1):154-60.
    68. Okamoto, M, M. Ohara-Imaizumi, N. Kubota, S. Hashimoto, K. Eto, T. Kanno, T. Kubota, M. Wakui, R. Nagai, M. Noda, S. Nagamatsu, and T. Kadowaki, Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia,2008.51(5):827-35.
    69. Kubota, N., W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, and T. Kadowaki, Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab,2007.6(1):55-68.
    70. Beulens, J.W., R.M. van Beers, R.P. Stolk, G. Schaafsma, and H.F. Hendriks, The effect of moderate alcohol consumption on fat distribution and adipocytokines. Obesity (Silver Spring),2006.14(1):60-6.
    71. Thamer, C, M. Haap, A. Fritsche, H. Haering, and M. Stumvoll, Relationship between moderate alcohol consumption and adiponectin and insulin sensitivity in a large heterogeneous population. Diabetes Care,2004.27(5): 1240.
    72. Nishizawa, H., I. Shimomura, K. Kishida, N. Maeda, H. Kuriyama, H. Nagaretani, M. Matsuda, H. Kondo, N. Furuyama, S. Kihara, T. Nakamura, Y. Tochino, T. Funahashi, and Y. Matsuzawa, Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes,2002. 51(9):2734-41.
    73. Tschritter, O., A. Fritsche, C. Thamer, M. Haap, F. Shirkavand, S. Rahe, H. Staiger, E. Maerker, H. Haring, and M. Stumvoll, Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes,2003.52(2):239-43.
    74. Sierksma, A., H. Patel, N. Ouchi, S. Kihara, T. Funahashi, R.J. Heine, D.E. Grobbee, C. Kluft, and H.F. Hendriks, Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-alpha, and insulin sensitivity. Diabetes Care,2004.27(1):184-9.
    75. Ouchi, N., S. Kihara, Y. Arita, Y. Okamoto, K. Maeda, H. Kuriyama, K. Hotta, M. Nishida, M. Takahashi, M. Muraguchi, Y. Ohmoto, T. Nakamura, S. Yamashita, T. Funahashi, and Y. Matsuzawa, Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation,2000.102(11):1296-301.
    76. Ouchi, N., S. Kihara, Y. Arita, K. Maeda, H. Kuriyama, Y. Okamoto, K. Hotta, M. Nishida, M. Takahashi, T. Nakamura, S. Yamashita, T. Funahashi, and Y. Matsuzawa, Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation,1999.100(25): 2473-6.
    77. Yokota, T., K. Oritani, I. Takahashi, J. Ishikawa, A. Matsuyama, N. Ouchi, S. Kihara, T. Funahashi, A.J. Tenner, Y. Tomiyama, and Y. Matsuzawa, Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood,2000.96(5):1723-32.
    78. Hotamisligil, G.S., D.L. Murray, L.N. Choy, and B.M. Spiegelman, Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA,1994.91(11):4854-8.
    79. Hotamisligil, G.S., P. Arner, J.F. Caro, R.L. Atkinson, and B.M. Spiegelman, Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest,1995.95(5):2409-15.
    80. Joosten, M.M., R.F. Witkamp, and H.F. Hendriks, Alterations in total and high-molecular-weight adiponectin after 3 weeks of moderate alcohol consumption in premenopausal women. Metabolism,2011.60(8):1058-63.
    81. Avogaro, A., M. Sambataro, A. Marangoni, A. Pianta, R. Vettor, C. Pagano, M.C. Marescotti, A. Tiengo, and G. Beltramello, Moderate alcohol consumption, glucose metabolism and lipolysis:the effect on adiponectin and tumor necrosis factor alpha. J Endocrinol Invest,2003.26(12):1213-8.
    82. Xu, A., Y. Wang, H. Keshaw, L.Y. Xu, K.S. Lam, and G.J. Cooper, The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest,2003.112(1):91-100.
    83. Chen, X., B.M. Sebastian, and L.E. Nagy, Chronic ethanol feeding to rats decreases adiponectin secretion by subcutaneous adipocytes. Am J Physiol Endocrinol Metab,2007.292(2):E621-8.
    84. Kawamoto, R., Y. Tabara, K. Kohara, T. Miki, N. Ohtsuka, T. Kusunoki, and M. Abe, Alcohol drinking status is associated with serum high molecular weight adiponectin in community-dwelling Japanese men. J Atheroscler Thromb,2010.17(9):953-62.
    85. Hillemacher, T., C. Weinland, A. Heberlein, M. Groschl, A. Schanze, H. Frieling, J. Wilhelm, J. Kornhuber, and S. Bleich, Increased levels of adiponectin and resistin in alcohol dependence--possible link to craving. Drug Alcohol Depend,2009.99(1-3):333-7.
    86. Fasshauer, M., J. Klein, S. Neumann, M. Eszlinger, and R. Paschke, Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett,2001.507(2):142-6.
    87. Delporte, M.L., T. Funahashi, M. Takahashi, Y. Matsuzawa, and S.M. Brichard, Pre-and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion:in vitro and in vivo studies. Biochem J, 2002.367(Pt 3):677-85.
    88. Repunte-Canonigo, V., F. Berton, P. Cottone, A. Reifel-Miller, A.J. Roberts, M. Morales, W. Francesconi, and P.P. Sanna, A potential role for adiponectin receptor 2 (AdipoR2) in the regulation of alcohol intake. Brain Res,2010. 1339:11-7.
    89. Steppan, C.M., S.T. Bailey, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, H.R. Patel, R.S. Ahima, and M.A. Lazar, The hormone resistin links obesity to diabetes. Nature,2001.409(6818):307-12.
    90. Druce, M. and S.R. Bloom, Central regulators of food intake. Curr Opin Clin Nutr Metab Care,2003.6(4):361-7.
    91. Yura, S., N. Sagawa, H. Itoh, K. Kakui, M.A. Nuamah, D. Korita, M. Takemura, and S. Fujii, Resistin is expressed in the human placenta. J Clin Endocrinol Metab,2003.88(3):1394-7.
    92. Savage, D.B., C.P. Sewter, E.S. Klenk, D.G. Segal, A. Vidal-Puig, R.V. Considine, and S. O'Rahilly, Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes,2001.50(10):2199-202.
    93. Moon, B., J.J. Kwan, N. Duddy, G. Sweeney, and N. Begum, Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab,2003.285(1): E106-15.
    94. Rajala, M.W., S. Obici, P.E. Scherer, and L. Rossetti, Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J Clin Invest,2003.111(2):225-30.
    95. Degawa-Yamauchi, M., J.E. Bovenkerk, B.E. Juliar, W. Watson, K. Kerr, R. Jones, Q. Zhu, and R.V. Considine, Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab,2003.88(11):5452-5.
    96. Heilbronn, L.K., J. Rood, L. Janderova, J.B. Albu, D.E. Kelley, E. Ravussin, and S.R. Smith, Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metab,2004.89(4):1844-8.
    97. Youn, B.S., K.Y. Yu, H.J. Park, N.S. Lee, S.S. Min, M.Y. Youn, Y.M. Cho, Y.J. Park, S.Y. Kim, H.K. Lee, and K.S. Park, Plasma resistin concentrations measured by enzyme-linked immunosorbent assay using a newly developed monoclonal antibody are elevated in individuals with type 2 diabetes mellitus. J Clin Endocrinol Metab,2004.89(1):150-6.
    98. Osawa, H., Y. Tabara, R. Kawamoto, J. Ohashi, M. Ochi, H. Onuma, W. Nishida, K. Yamada, J. Nakura, K. Kohara, T. Miki, and H. Makino, Plasma resistin, associated with single nucleotide polymorphism-420, is correlated with insulin resistance, lower HDL cholesterol, and high-sensitivity C-reactive protein in the Japanese general population. Diabetes Care,2007.30(6): 1501-6.
    99. Ochi, M., H. Osawa, Y. Hirota, K. Hara, Y. Tabara, Y. Tokuyama, I. Shimizu, A. Kanatsuka, Y. Fujii, J. Ohashi, T. Miki, N. Nakamura, T. Kadowaki, M. Itakura, M. Kasuga, and H. Makino, Frequency of the G/G genotype of resistin single nucleotide polymorphism at -420 appears to be increased in younger-onset type 2 diabetes. Diabetes,2007.56(11):2834-8.
    100. Osawa, H., K. Yamada, H. Onuma, A. Murakami, M. Ochi, H. Kawata, T. Nishimiya, T. Niiya, I. Shimizu, W. Nishida, M. Hashiramoto, A. Kanatsuka, Y. Fujii, J. Ohashi, and H. Makino, The G/G genotype of a resistin single-nucleotide polymorphism at-420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am J Hum Genet,2004.75(4):678-86.
    101. Lee, J.H., J.L. Chan, N. Yiannakouris, M. Kontogianni, E. Estrada, R. Seip, C. Orlova, and C.S. Mantzoros, Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration:cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J Clin Endocrinol Metab,2003.88(10): 4848-56.
    102. Pfutzner, A., M. Langenfeld, T. Kunt, M. Lobig, and T. Forst, Evaluation of human resistin assays with serum from patients with type 2 diabetes and different degrees of insulin resistance. Clin Lab,2003.49(11-12):571-6.
    103. Beckers, S., A.V. Peeters, F. Freitas, I.L. Mertens, J.J. Hendrickx, L.F. Van Gaal, and W. Van Hul, Analysis of genetic variations in the resistin gene shows no associations with obesity in women. Obesity (Silver Spring),2008. 16(4):905-7.
    104. Bokarewa, M., I. Nagaev, L. Dahlberg, U. Smith, and A. Tarkowski, Resistin, an adipokine with potent proinflammatory properties. J Immunol,2005. 174(9):5789-95.
    105. Shetty, G.K., P.A. Economides, E.S. Horton, C.S. Mantzoros, and A. Veves, Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care,2004.27(10):2450-7.
    106. Reilly, M.P., M. Lehrke, M.L. Wolfe, A. Rohatgi, M.A. Lazar, and D.J. Rader, Resistin is an inflammatory marker of atherosclerosis in humans. Circulation, 2005.111(7):932-9.
    107. Konrad, A., M. Lehrke, V. Schachinger, F. Seibold, R. Stark, T. Ochsenkuhn, K.G. Parhofer, B. Goke, and U.C. Broedl, Resistin is an inflammatory marker of inflammatory bowel disease in humans. Eur J Gastroenterol Hepatol,2007. 19(12):1070-4.
    108. Sunden-Cullberg, J., T. Nystrom, M.L. Lee, G.E. Mullins, L. Tokics, J. Andersson, A. Norrby-Teglund, and C.J. Treutiger, Pronounced elevation of resistin correlates with severity of disease in severe sepsis and septic shock. Crit Care Med,2007.35(6):1536-42.
    109. Chen, L. and B.L. Nyomba, Glucose intolerance and resistin expression in rat offspring exposed to ethanol in utero:modulation by postnatal high-fat diet. Endocrinology,2003.144(2):500-8.
    110. Chen, L. and B.L. Nyomba, Effects of prenatal alcohol exposure on glucose tolerance in the rat offspring. Metabolism,2003.52(4):454-62.
    111. Pravdova, E., L. Macho, N. Hlavacova, and M. Fickova, Long-time alcohol intake modifies resistin secretion and expression of resistin gene in adipose tissue. Gen Physiol Biophys,2007.26(3):221-9.
    112. Pravdova, E., L. Macho, and M. Fickova, Alcohol intake modifies leptin, adiponectin and resistin serum levels and their mRNA expressions in adipose tissue of rats. Endocr Regul,2009.43(3):117-25.
    113. Nagpal, S., S. Patel, H. Jacobe, D. DiSepio, C. Ghosn, M. Malhotra, M. Teng, M. Duvic, and R.A. Chandraratna, Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol,1997.109(1):91-5.
    114. Wittamer, V., J.D. Franssen, M. Vulcano, J.F. Mirjolet, E. Le Poul, I. Migeotte, S. Brezillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani, S. Sozzani, G. Vassart, M. Parmentier, and D. Communi, Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med,2003.198(7):977-85.
    115. Wittamer, V., B. Bondue, A. Guillabert, G. Vassart, M. Parmentier, and D. Communi, Neutrophil-mediated maturation of chemerin:a link between innate and adaptive immunity. J Immunol,2005.175(1):487-93.
    116. Goralski, K.B., T.C. McCarthy, E.A. Hanniman, B.A. Zabel, E.C. Butcher, S.D. Parlee, S. Muruganandan, and CJ. Sinal, Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem,2007. 282(38):28175-88.
    117. Roh, S.G., S.H. Song, K.C. Choi, K. Katoh, V. Wittamer, M. Parmentier, and S. Sasaki, Chemerin--a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun,2007.362(4):1013-8.
    118. Meder, W., M. Wendland, A. Busmann, C. Kutzleb, N. Spodsberg, H. John, R. Richter, D. Schleuder, M. Meyer, and W.G. Forssmann, Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett,2003.555(3):495-9.
    119. Kralisch, S., S. Weise, G. Sommer, J. Lipfert, U. Lossner, M. Bluher, M. Stumvoll, and M. Fasshauer, Interleukin-lbeta induces the novel adipokine chemerin in adipocytes in vitro. Regul Pept,2009.154(1-3):102-6.
    120. Takahashi, M, Y. Takahashi, K. Takahashi, F.N. Zolotaryov, K.S. Hong, R. Kitazawa, K. Iida, Y. Okimura, H. Kaji, S. Kitazawa, M. Kasuga, and K. Chihara, Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett,2008. 582(5):573-8.
    121. Sell, H., J. Laurencikiene, A. Taube, K. Eckardt, A. Cramer, A. Horrighs, P. Arner, and J. Eckel, Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes,2009. 58(12):2731-40.
    122. Bozaoglu, K., K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, and D. Segal, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology,2007.148(10):4687-94.
    123. Stejskal, D., M. Karpisek, Z. Hanulova, and M. Svestak, Chemerin is an independent marker of the metabolic syndrome in a Caucasian population--a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2008. 152(2):217-21.
    124. Bozaoglu, K., D. Segal, K.A. Shields, N. Cummings, J.E. Curan, A.G. Comuzzie, M.C. Mahaney, D.L. Rainwater, J.L. VandeBerg, J.W. MacCluer, G. Collier, J. Blangero, K. Walder, and J.B. Jowett, Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab,2009.94(8):3085-8.
    125. Lehrke, M., A. Becker, M. Greif, R. Stark, R.P. Laubender, F. von Ziegler, C. Lebherz, J. Tittus, M. Reiser, C. Becker, B. Goke, A.W. Leber, K.G. Parhofer, and U.C. Broedl, Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol,2009.161(2):339-44.
    126. Ren, R.Z., X. Zhang, J. Xu, H.Q. Zhang, C.X. Yu, M.F. Cao, L. Gao, Q.B. Guan, and J.J. Zhao, Chronic ethanol consumption increases the levels of chemerin in the serum and adipose tissue of humans and rats. Acta Pharmacol Sin,2012.33(5):652-9.
    127. Samal, B., Y. Sun, G. Stearns, C. Xie, S. Suggs, and I. McNiece, Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol,1994.14(2):1431-7.
    128. Rongvaux, A., R.J. Shea, M.H. Mulks, D. Gigot, J. Urbain, O. Leo, and F. Andris, Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol,2002. 32(11):3225-34.
    129. Fukuhara, A., M. Matsuda, M. Nishizawa, K. Segawa, M. Tanaka, K. Kishimoto, Y. Matsuki, M. Murakami, T. Ichisaka, H. Murakami, E. Watanabe, T. Takagi, M. Akiyoshi, T. Ohtsubo, S. Kihara, S. Yamashita, M. Makishima, T. Funahashi, S. Yamanaka, R. Hiramatsu, Y. Matsuzawa, and I. Shimomura, Visfatin:a protein secreted by visceral fat that mimics the effects of insulin. Science,2005.307(5708):426-30.
    130. Kralisch, S., J. Klein, U. Lossner, M. Bluher, R. Paschke, M. Stumvoll, and M. Fasshauer, Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes. J Endocrinol,2005.185(3):R1-8.
    131. Chen, M.P., F.M. Chung, D.M. Chang, J.C. Tsai, H.F. Huang, S.J. Shin, and Y.J. Lee, Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab,2006.91(1): 295-9.
    132. Filippatos, T.D., C.S. Derdemezis, I.F. Gazi, K. Lagos, D.N. Kiortsis, A.D. Tselepis, and M.S. Elisaf, Increased plasma visfatin levels in subjects with the metabolic syndrome. Eur J Clin Invest,2008.38(1):71-2.
    133. Haider, D.G., K. Schindler, G. Schaller, G. Prager, M. Wolzt, and B. Ludvik, Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab,2006.91(4):1578-81.
    134. Bailey, S.D., J.C. Loredo-Osti, P. Lepage, J. Faith, J. Fontaine, K.M. Desbiens, T.J. Hudson, C. Bouchard, D. Gaudet, L. Perusse, M.C. Vohl, and J.C. Engert, Common polymorphisms in the promoter of the visfatin gene (PBEF1) influence plasma insulin levels in a French-Canadian population. Diabetes, 2006.55(10):2896-902.
    135. Zhang, Y.Y., L. Gottardo, R. Thompson, C. Powers, D. Nolan, J. Duffy, M.C. Marescotti, A. Avogaro, and A. Doria, A visfatin promoter polymorphism is associated with low-grade inflammation and type 2 diabetes. Obesity (Silver Spring),2006.14(12):2119-26.
    136. Berndt, J., N. Kloting, S. Kralisch, P. Kovacs, M. Fasshauer, M.R. Schon, M. Stumvoll, and M. Bluher, Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes,2005.54(10):2911-6.
    137. Pagano, C, C. Pilon, M. Olivieri, P. Mason, R. Fabris, R. Serra, G. Milan, M. Rossato, G. Federspil, and R. Vettor, Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J Clin Endocrinol Metab,2006.91(8):3165-70.
    138. Oki, K., K. Yamane, N. Kamei, H. Nojima, and N. Kohno, Circulating visfatin level is correlated with inflammation, but not with insulin resistance. Clin Endocrinol (Oxf),2007.67(5):796-800.
    139. Revollo, J.R., A. Korner, K.F. Mills, A. Satoh, T. Wang, A. Garten, B. Dasgupta, Y. Sasaki, C. Wolberger, R.R. Townsend, J. Milbrandt, W. Kiess, and S. Imai, Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab,2007.6(5):363-75.
    140. Moschen, A.R., A. Kaser, B. Enrich, B. Mosheimer, M. Theurl, H. Niederegger, and H. Tilg, Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol,2007.178(3):1748-58.
    141. Mukherjee, S., I. Lekli, N. Gurusamy, A.A. Bertelli, and D.K. Das, Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol. Free Radic Biol Med,2009.46(5):573-8.
    142. Yang, Q., T.E. Graham, N. Mody, F. Preitner, O.D. Peroni, J.M. Zabolotny, K. Kotani, L. Quadro, and B.B. Kahn, Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature,2005. 436(7049):356-62.
    143. Kovacs, P., M. Geyer, J. Berndt, N. Kloting, T.E. Graham, Y. Bottcher, B. Enigk, A. Tonjes, D. Schleinitz, M.R. Schon, B.B. Kahn, M. Bluher, and M. Stumvoll, Effects of genetic variation in the human retinol binding protein-4 gene (RBP4) on insulin resistance and fat depot-specific mRNA expression. Diabetes,2007.56(12):3095-100.
    144. Colantuoni, V., V. Romano, G. Bensi, C. Santoro, F. Costanzo, G. Raugei, and R. Cortese, Cloning and sequencing of a full length cDNA coding for human retinol-binding protein. Nucleic Acids Res,1983.11 (22):7769-76.
    145. Jaconi, S., K. Rose, G.J. Hughes, J.H. Saurat, and G. Siegenthaler, Characterization of two post-translationally processed forms of human serum retinol-binding protein:altered ratios in chronic renal failure. J Lipid Res, 1995.36(6):1247-53.
    146. Tsutsumi, C, M. Okuno, L. Tannous, R. Piantedosi, M. Allan, D.S. Goodman, and W.S. Blaner, Retinoids and retinoid-binding protein expression in rat adipocytes. J Biol Chem,1992.267(3):1805-10.
    147. Zovich, D.C., A. Orologa, M. Okuno, L.W. Kong, D.A. Talmage, R. Piantedosi, D.S. Goodman, and W.S. Blaner, Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes. J Biol Chem,1992.267(20):13884-9.
    148. Newcomer, M.E. and D.E. Ong, Plasma retinol binding protein:structure and function of the prototypic lipocalin. Biochim Biophys Acta,2000.1482(1-2): 57-64.
    149. Erikstrup, C., O.H. Mortensen, A.R. Nielsen, C.P. Fischer, P. Plomgaard, A.M. Petersen, R. Krogh-Madsen, B. Lindegaard, J.G. Erhardt, H. Ullum, C.S. Benn, and B.K. Pedersen, RBP-to-retinol ratio, but not total RBP, is elevated in patients with type 2 diabetes. Diabetes Obes Metab,2009.11(3):204-12.
    150. Goodman, A.B., Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J Cell Physiol,2006. 209(3):598-603.
    151. Fernandez-Real, J.M., J.M. Moreno, and W. Ricart, Circulating retinol-binding protein-4 concentration might reflect insulin resistance-associated iron overload. Diabetes,2008.57(7):1918-25.
    152. Cho, Y.M., B.S. Youn, H. Lee, N. Lee, S.S. Min, S.H. Kwak, H.K. Lee, and K.S. Park, Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care,2006.29(11):2457-61.
    153. Graham, T.E., Q. Yang, M. Bluher, A. Hammarstedt, T.P. Ciaraldi, R.R. Henry, C.J. Wason, A. Oberbach, P.A. Jansson, U. Smith, and B.B. Kahn, Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med,2006.354(24):2552-63.
    154. Jia, W., H. Wu, Y. Bao, C. Wang, J. Lu, J. Zhu, and K. Xiang, Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab,2007.92(8):3224-9.
    155. Ku, Y.H., K.A. Han, H. Ahn, H. Kwon, B.K. Koo, H.C. Kim, and K.W. Min, Resistance exercise did not alter intramuscular adipose tissue but reduced retinol-binding protein-4 concentration in individuals with type 2 diabetes mellitus. J Int Med Res,2010.38(3):782-91.
    156. Nair, A.K., D. Sugunan, H. Kumar, and G. Anilkumar, Case-control analysis of SNPs in GLUT4, RBP4 and STRA6:association of SNPs in STRA6 with type 2 diabetes in a South Indian population. PLoS One,2010.5(7):e11444.
    157. Craig, R.L., W.S. Chu, and S.C. Elbein, Retinol binding protein 4 as a candidate gene for type 2 diabetes and prediabetic intermediate traits. Mol Genet Metab,2007.90(3):338-44.
    158. Munkhtulga, L., K. Nakayama, N. Utsumi, Y. Yanagisawa, T. Gotoh, T. Omi, M. Kumada, B. Erdenebulgan, K. Zolzaya, T. Lkhagvasuren, and S. Iwamoto, Identification of a regulatory SNP in the retinol binding protein 4 gene associated with type 2 diabetes in Mongolia. Hum Genet,2007.120(6): 879-88.
    159. Yao-Borengasser, A., V. Varma, A.M. Bodles, N. Rasouli, B. Phanavanh, M.J. Lee, T. Starks, L.M. Kern, H.J. Spencer,3rd, A.A. Rashidi, R.E. McGehee, Jr., S.K. Fried, and P.A. Kern, Retinol binding protein 4 expression in humans: relationship to insulin resistance, inflammation, and response to pioglitazone. J Clin Endocrinol Metab,2007.92(7):2590-7.
    160. Ulgen, F., C. Herder, M.C. Kuhn, H.S. Willenberg, M. Schott, W.A. Scherbaum, and S. Schinner, Association of serum levels of retinol-binding protein 4 with male sex but not with insulin resistance in obese patients. Arch Physiol Biochem,2010.116(2):57-62.
    161. Promintzer, M., M. Krebs, J. Todoric, A. Luger, M.G. Bischof, P. Nowotny, O. Wagner, H. Esterbauer, and C. Anderwald, Insulin resistance is unrelated to circulating retinol binding protein and protein C inhibitor. J Clin Endocrinol Metab,2007.92(11):4306-12.
    162. von Eynatten, M., P.M. Lepper, D. Liu, K. Lang, M. Baumann, P.P. Nawroth, A. Bierhaus, K.A. Dugi, U. Heemann, B. Allolio, and P.M. Humpert, Retinol-binding protein 4 is associated with components of the metabolic syndrome, but not with insulin resistance, in men with type 2 diabetes or coronary artery disease. Diabetologia,2007.50(9):1930-7.
    163. Ribel-Madsen, R., M. Friedrichsen, A. Vaag, and P. Poulsen, Retinol-binding protein 4 in twins:regulatory mechanisms and impact of circulating and tissue expression levels on insulin secretion and action. Diabetes,2009.58(1): 54-60.
    164. Chavez, A.O., D.K. Coletta, S. Kamath, D.T. Cromack, A. Monroy, F. Folli, R.A. DeFronzo, and D. Tripathy, Retinol-binding protein 4 is associated with impaired glucose tolerance but not with whole body or hepatic insulin resistance in Mexican Americans. Am J Physiol Endocrinol Metab,2009. 296(4):E758-64.
    165. Broch, M., J. Vendrell, W. Ricart, C. Richart, and J.M. Fernandez-Real, Circulating retinol-binding protein-4, insulin sensitivity, insulin secretion, and insulin disposition index in obese and nonobese subjects. Diabetes Care,2007. 30(7):1802-6.
    166. Gavi, S., L.M. Stuart, P. Kelly, M.M. Melendez, D.C. Mynarcik, M.C. Gelato, and M.A. McNurlan, Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes. J Clin Endocrinol Metab,2007.92(5):1886-90.
    167. Lee, J.W., J.A. Im, H.R. Lee, J.Y. Shim, B.S. Youn, and D.C. Lee, Visceral adiposity is associated with serum retinol binding protein-4 levels in healthy women. Obesity (Silver Spring),2007.15(9):2225-32.
    168. Kelly, K.R., S.R. Kashyap, V.B. O'Leary, J. Major, P.R. Schauer, and J.P. Kirwan, Retinol-binding protein 4 (RBP4) protein expression is increased in omental adipose tissue of severely obese patients. Obesity (Silver Spring), 2010.18(4):663-6.
    169. Kloting, N., T.E. Graham, J. Berndt, S. Kralisch, P. Kovacs, C.J. Wason, M. Fasshauer, M.R. Schon, M. Stumvoll, M. Bluher, and B.B. Kahn, Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab,2007.6(1):79-87.
    170. Hermsdorff, H.H., M.A. Zulet, B. Puchau, and J.A. Martinez, Central adiposity rather than total adiposity measurements are specifically involved in the inflammatory status from healthy young adults. Inflammation,2011.34(3): p.161-70.
    171. Haider, D.G., K. Schindler, G. Prager, A. Bohdjalian, A. Luger, M. Wolzt, and B. Ludvik, Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab,2007.92(3):1168-71.
    172. Lee, J.W., H.R. Lee, J.Y. Shim, J.A. Im, and D.C. Lee, Abdominal visceral fat reduction is associated with favorable changes of serum retinol binding protein-4 in nondiabetic subjects. Endocr J,2008.55(5):811-8.
    173. Vitkova, M., E. Klimcakova, M. Kovacikova, C. Valle, C. Moro, J. Polak, J. Hanacek, F. Capel, N. Viguerie, B. Richterova, M. Bajzova, J. Hejnova, V. Stich, and D. Langin, Plasma levels and adipose tissue messenger ribonucleic acid expression of retinol-binding protein 4 are reduced during calorie restriction in obese subjects but are not related to diet-induced changes in insulin sensitivity. J Clin Endocrinol Metab,2007.92(6):2330-5.
    174. Munkhtulga, L., S. Nagashima, K. Nakayama, N. Utsumi, Y. Yanagisawa, T. Gotoh, T. Omi, M. Kumada, K. Zolzaya, T. Lkhagvasuren, Y. Kagawa, H. Fujiwara, Y. Hosoya, M. Hyodo, H. Horie, M. Kojima, S. Ishibashi, and S. Iwamoto, Regulatory SNP in the RBP4 gene modified the expression in adipocytes and associated with BMI. Obesity (Silver Spring),2010.18(5): 1006-14.
    175. Wallenius, V., E. Elias, G.M. Bergstrom, H. Zetterberg, and C.J. Behre, The lipocalins retinol-binding protein-4, lipocalin-2 and lipocalin-type prostaglandin D2-synthase correlate with markers of inflammatory activity, alcohol intake and blood lipids, but not with insulin sensitivity in metabolically healthy 58-year-old Swedish men. Exp Clin Endocrinol Diabetes,2011.119(2):75-80.
    176. Hida, K., J. Wada, J. Eguchi, H. Zhang, M. Baba, A. Seida, I. Hashimoto, T. Okada, A. Yasuhara, A. Nakatsuka, K. Shikata, S. Hourai, J. Futami, E. Watanabe, Y. Matsuki, R. Hiramatsu, S. Akagi, H. Makino, and Y.S. Kanwar, Visceral adipose tissue-derived serine protease inhibitor:a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A,2005. 102(30):10610-5.
    177. Kloting, N., J. Berndt, S. Kralisch, P. Kovacs, M. Fasshauer, M.R. Schon, M. Stumvoll, and M. Bluher, Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun, 2006.339(1):430-6.
    178. Youn, B.S., N. Kloting, J. Kratzsch, N. Lee, J.W. Park, E.S. Song, K. Ruschke, A. Oberbach, M. Fasshauer, M. Stumvoll, and M. Bluher, Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes,2008.57(2): 372-7.
    179. Handisurya, A., M. Riedl, G. Vila, C. Maier, M. Clodi, T. Prikoszovich, B. Ludvik, G. Prager, A. Luger, and A. Kautzky-Willer, Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss. Obes Surg,2010.20(2):.198-203.
    180. Gulcelik, N.E., J. Karakaya, A. Gedik, A. Usman, and A. Gurlek, Serum vaspin levels in type 2 diabetic women in relation to microvascular complications. Eur J Endocrinol,2009.160(1):65-70.
    181. Tan, B.K., D. Heutling, J. Chen, S. Farhatullah, R. Adya, S.D. Keay, C.R. Kennedy, H. Lehnert, and H.S. Randeva, Metformin decreases the adipokine vaspin in overweight women with polycystic ovary syndrome concomitant with improvement in insulin sensitivity and a decrease in insulin resistance. Diabetes,2008.57(6):1501-7.
    182. Kim, S.M., G.J. Cho, M. Yannakoulia, T.G. Hwang, I.H. Kim, E.K. Park, and C.S. Mantzoros, Lifestyle modification increases circulating adiponectin concentrations but does not change vaspin concentrations. Metabolism,2011. 60(9):1294-9.
    1. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444:847-853.
    2. Sonnenberg GE, Krakower GR, Hoffmann RG, Maas DL, Hennes MM, Kissebah AH. Plasma leptin concentrations during extended fasting and graded glucose infusions:relationships with changes in glucose, insulin, and FFA. J Clin Endocrinol Metab.2001; 86:4895-4900.
    3. Kieffer TJ, Habener JF. The adipoinsular axis:effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab.2000; 278:El-14.
    4. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes.2001; 50:1126-1133.
    5. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes:close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab.2001; 86: 1930-1935.
    6. Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth:relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care. 2004; 27:547-552.
    7. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, et al Identification of omentin as a novel depot-specific adipokine in human adipose tissue:possible role in modulating insulin action.Am J Physiol Endocrinol Metab.2006; 290: E1253-61.
    8. Nagpal S, Patel S, Jacobe H, DiSepio D, Ghosn C, Malhotra M, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol 1997; 109:91-95.
    9. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, et al. Specific recruitment of antigen-presenting cell by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; 198:977-985.
    10. Meder W, Wendland M, Busmann A, Kutzleb C, Spodsberg N, John H, et al. Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett.2003; 555:495-399.
    11. Wittamer V, Bondue B, Guillabert A, Vassart G, Parmentier M, Communi D. Neutrophil-mediated maturation of chemerin:a link between innate and adaptive immunity. J Immunol 2005; 175:487-493.
    12. Goralski KB, Mccarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 2007; 282:28175-88.
    13. Roh SG, Song SH, Choi KC, Katoh K, Wittamer V, Parmentier M, et al.. Chemerin-a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 2007; 362:1013-1018.
    14. Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, Hong KS, Kitazawa R, et al. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett.2008; 582: 573-578.
    15. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 2009; 58:2731-2740.
    16. Becker M, Rabe K, Lebherz C, Zugwurst J, Goke B, Parhofer KG, et al. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels and atherosclerosis in LDL receptor knockout mice on high fat diet. Diabetes 2010; 59:2898-2903.
    17. Kralisch S, Weise S, Sommer G, Lipfert J, Lossner U, Bluher M, et al. Interleukin-1 beta induces the novel adipokine chemerin in adipocytes in vitro. Regul Pept 2009; 154:102-106.
    18. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology.2007; 148:4687-4694.
    19. Stejskal D, Karpisek M, Hanulova Z, Svestak M. Chemerin is an independent marker of the metabolic syndrome in a Caucasian population:a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152: 217-221.
    20. Bozaoglu K, Segal D, Shields KA, Cummings N, Curran JE, Comuzzie AG, et al. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab.2009; 94: 3085-3088.
    21. Lehrke M, Becker A, Greif M, Stark R, Laubender RP, von Ziegler F, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol.2009; 161:339-344.
    22. Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Campbell LV. Moderate alcohol consumption, estrogen replacement therapy and physical activity are associated with increased insulin sensitivity:is abdominal adiposity the mediator? Diabetes Care 2003; 26:2734-2740.
    23. Wandell PE, de Faire U, Hellenius ML. High intake of alcohol is associated with newly diagnosed diabetes in 60 years old men and women. Nutr Metab Cardiovasc Dis.2007; 17:598-608.
    24. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 2007; 31:1581-1588.
    25. Onishi Y, Honda M, Ogihara T, Sakoda H, Anai M, Fujishiro M, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun.2003; 303:788-794.
    26. Nicolas JM, Fernandez-Sola J, Fatjo F, Casamitjana R, Bataller R, Sacanella E, et al. Increased circulating leptin levels in chronic alcoholism. Alcohol Clin Exp Res.2001; 25:83-88.
    27. Sierksma A, Patel H, Ouchi N, Kihara S, Funahashi T, Heine RJ, et al. Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-alpha, and insulin sensitivity. Diabetes Care.2004; 27:184-189.
    28. Pravdova E, Macho L, Fickova M. Alcohol intake modifies leptin, adiponectin and resistin serum levels and their mRNA expressions in adipose tissue of rats. Endocr Regul.2009; 43:117-125.
    29. Pravdova E, Macho L, Hlavacova N, Fickova M. Long-time alcohol intake modifies resistin secretion and expression of resistin gene in adipose tissue. Gen Physiol Biophys.2007; 26:221-229.
    30. Yu HC, Li SY, Cao MF, Jiang XY, Feng L, Zhao JJ, et al. Effects of chronic ethanol consumption on levels of adipokines in visceral adipose tissues and sera of rats. Acta Pharmacol Sin 2010; 31:461-469.
    31. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes:a meta-analysis of prospective observational studies. Diabetes Care 2005; 28:719-725.
    32 Yoon YS, Oh SW, Baik HW, Park HS, Kim WY. Alcohol consumption and the metabolic syndrome in Korean adults:the 1998 Korean National Health and Nutrition Examination Survey. Am J Clin Nutr 2004; 80:217-224.
    33 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28:412-419.
    34. Facchini F, Chen Y-D, Reaven GM. Light-to-moderate alcohol intake is associated with enhanced insulin sensitivity. Diabetes Care 1994; 17:115-119.
    35. Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM. Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver. Hepatology.2003; 38:703-714.
    36. He L, Simmen FA, Mehendale HM, Ronis MJ, Badger TM. Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane. Role of TRB3 in inhibition of Akt/protein kinase B activation. J Biol Chem 2006; 281:11126-11134.
    37. Poirier LA, Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding:regulation by heterotrimeric G-proteins. Biochem J.2001; 354(Pt 2):323-330.
    38. Sebastian BM, Nagy LE. Decreased insulin-dependent glucose transport by chronic ethanol feeding is associated with dysregulation of the Cbl/TC10 pathway in rat adipocytes. Am J Physiol Endocrinol Metab.2005; 289: E1077-1084.
    39 Wan Q, Liu Y, Guan Q, Gao L, Lee KO, Zhao J. Ethanol feeding impairs insulin-stimulated glucose uptake in isolated rat skeletal muscle:role of Gs alpha and cAMP. Alcohol Clin Exp Res.2005; 29:1450-1456.
    40. Zhao LN, Hao LP, Yang XF, Ying CJ, Yu D, Sun XF. The diabetogenic effects of excessive ethanol:reducing beta-cell mass, decreasing phosphatidylinositol 3-kinase activity and GLUT-4 expression in rats. Br J Nutr.2009; 101: 1467-1473.
    41. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes.2005; 54:3458-3465.
    42. Anderwald C, Brunmair B, Stadlbauer K, Krebs M, Furnsinn C, Roden M. Effects of free fatty acids on carbohydrate metabolism and insulin signalling in perfused rat liver. Eur J Clin Invest.2007; 37:774-782.
    43. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes.2002; 51:2005-2011.
    44. Tolstrup JS, Gr(?)nbaek M, Nordestgaard BG. Alcohol intake, myocardial infarction, biochemical risk factors, and alcohol dehydrogenase genotypes. Circ Cardiovasc Genet.2009; 2:507-14.
    45. Volcik KA, Ballantyne CM, Fuchs FD, Sharrett AR, Boerwinkle E. Relationship of alcohol consumption and type of alcoholic beverage consumed with plasma lipid levels:differences between Whites and African Americans of the ARIC study. Ann Epidemiol.200; 18:101-7.
    46. Onat A, Hergenc G, Dursunoglu D, Ordu S, Can G, Bulur S, et al. Associations of alcohol consumption with blood pressure, lipoproteins, and subclinical inflammation among Turks. Alcohol.2008; 42:593-601.
    47. Galli A, Pinaire J, Fischer M, Dorris R, Crabb DW. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem 2001; 276:68-75.
    48. Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 2004; 310:417-424.
    49. Garcia-Villafranca J, Guillen A, Castro J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie.2008; 90:460-466.
    50. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004; 127:1798-1808.
    51. Yin HQ, Kim M, Kim JH, Kong G, Kang KS, Kim HL, et al. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice. Toxicol Appl Pharmacol.2007; 223:225-233.
    52. You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 2002; 277:29342-29347.
    53. Barson JR, Karatayev O, Chang GQ, Johnson DF, Bocarsly ME, Hoebel BG, et al. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides:counteraction by lipid-lowering drugs. Alcohol.2009; 43:433-441.
    54. Geloen A, Collet AJ, Guay G, Bukowiecki LJ. Insulin stimulates in vivo cell proliferation in white adipose tissue. Am J Physiol.1989; 256(1 Pt 1): C190-196.
    55. Suryawan A, Swanson LV, Hu CY. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J Anim Sci 1997; 75:105-111.
    56. Deslex S, Negrel R, Ailhaud G. Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells. Exp Cell Res 1987; 168:15-30.
    57. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10: 1096-1107.
    58. Bell RA, Mayer-Davis EJ, Martin MA, D'Agostino RB Jr, Haffner SM. Associations between alcohol consumption and insulin sensitivity and cardiovascular disease risk factors:the Insulin Resistance and Atherosclerosis Study. Diabetes Care.2000; 23:1630-1636.
    59. Sedman AJ, Wilkinson PK, Sakmar E, Weidler DJ, Wagner JG. Food effects on absorption and metabolism of alcohol. J Stud Alcohol 1976; 37:1197-1214.
    60. Tan BK, Chen J, Farhatullah S, Adya R, Kaur J, Heutling D, et al. Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 2009; 58: 1971-1977.
    61. Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, et al. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 2011; 152:26-35.
    62. Fukui H, Brauner B, Bode J, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease:reevaluation with an improved chromogenic assay. J Hepatol 1991; 12:162-169.
    63. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr-1 contribute to increased TNF-alpha production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol 2002; 282:G 6-15.
    64. Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology 2010; 151:2590-25602.
    65. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin Cytom 2007; 72:408-415.
    66. Ahluwalia B, Wesley B, Adeyiga O, Smith DM, Da-Silva A, Rajguru S. Alcohol modulates cytokine secretion and synthesis in human fetus:an in vivo and in vitro study. Alcohol 2000; 21:207-213.
    67. Valles SL, Blanco AM, Azorin I, Guasch R, Pascual M, Gomez-Lechon MJ, et al. Chronic ethanol consumption enhances interleukin-1-mediated signal transduction in rat liver and in cultured hepatocytes. Alcohol Clin Exp Res 2003; 27:1979-1986.
    68. Hsiang CY, Wu SL, Cheng SE, Ho TY. Acetaldehyde-induced interleukin-1 beta and tumor necrosis factor-alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells. J Biomed Sci2005; 12:791-801.
    69. Lomeo F, Khokher MA, Dandona P. Ethanol and its novel metabolites inhibit insulin action on adipocytes. Diabetes.1988;37:912-5.
    70. Sarkola T, Iles MR, Kohlenberg-Mueller K, Eriksson CJ. Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women:effect of 4-methylpyrazole. Alcohol Clin Exp Res.2002; 26:239-45.
    71. Shelmet JJ, Reichard GA, Skutches CL, Hoeldtke RD, Owen OE, Boden G. Ethanol causes acute inhibition of carbohydrate, fat, and protein oxidation and insulin resistance. J Clin Invest.1988; 81:1137-45.
    72. Nuutinen HU, Salaspuro MP, Valle M, Lindros KO. Blood acetaldehyde concentration gradient between hepatic and antecubital venous blood in ethanol-intoxicated alcoholics and controls. Eur J Clin Invest.1984; 14: 306-11.
    73. Lundquist F, Tygstrup N, Winkler K, Mellemgaard K, Munck-petersen S. Ethanol metabolism and production of free acetate in the human liver. J Clin Invest.1962; 41:955-61.
    74. Yki-Jarvinen H, Koivisto VA, Ylikahri R, Taskinen MR. Acute effects of ethanol and acetate on glucose kinetics in normal subjects. Am J Physiol.1988; 254(2 Pt 1):E175-80.
    75. Spolarics Z, Bagby GJ, Pekala PH, Dobrescu C, Skrepnik N, Spitzer JJ. Acute alcohol administration attenuates insulin-mediated glucose use by skeletal muscle. Am J Physiol.1994;267(6 Pt 1):E886-91.
    76. Scheppach W, Wiggins HS, Halliday D, Self R, Howard J, Branch WJ, et al. Effect of gut-derived acetate on glucose turnover in man. Clin Sci (Lond).1988; 75:363-70.
    1. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444:847-853.
    2. Nagpal S, Patel S, Jacobe H, DiSepio D, Ghosn C, Malhotra M, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol 1997; 109:91-95.
    3. Goralski KB, Mccarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 2007; 282:28175-88.
    4. Roh SG, Song SH, Choi KC, Katoh K, Wittamer V, Parmentier M, et al. Chemerin a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 2007; 362:1013-1018.
    5. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, et al. Specific recruitment of antigen-presenting cell by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; 198:977-985.
    6. Becker M, Rabe K, Lebherz C, Zugwurst J, Goke B, Parhofer KG, et al. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels and atherosclerosis in LDL receptor knockout mice on high fat diet. Diabetes 2010; 59:2898-2903.
    7. Kralisch S, Weise S, Sommer G, Lipfert J, Lossner U, Bluher M, et al. Interleukin-1 beta induces the novel adipokine chemerin in adipocytes in vitro. Regul Pept 2009; 154:102-106.
    8. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 2009; 58:2731-2740.
    9. Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Campbell LV. Moderate alcohol consumption, estrogen replacement therapy and physical activity are associated with increased insulin sensitivity:is abdominal adiposity the mediator? Diabetes Care 2003; 26:2734-2740.
    10. Wandell PE, de Faire U, Hellenius ML. High intake of alcohol is associated with newly diagnosed diabetes in 60 years old men and women. Nutr Metab Cardiovasc Dis.2007; 17:598-608.
    11. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 2007; 31:1581-1588.
    12. Onishi Y, Honda M, Ogihara T, Sakoda H, Anai M, Fujishiro M, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun.2003; 303:788-794.
    13. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419.
    14. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes:a meta-analysis of prospective observational studies. Diabetes Care 2005; 28:719-725.
    15. Yoon YS, Oh SW, Baik HW, Park HS, Kim WY. Alcohol consumption and the metabolic syndrome in Korean adults:the 1998 Korean National Health and Nutrition Examination Survey. Am J Clin Nutr 2004; 80:217-224.
    16. Lieber CS, DeCarli LM, Sorrell MF. Experimental methods of ethanol administration. Hepatology.1989; 10:501-10.
    17. DeCarli LM, Lieber CS. Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr.1967; 91:331-6.
    18. Basat O, Ucak S, Ozkurt H, Basak M, Seber S, Altuntas Y. Visceral adipose tissue as an indicator of insulin resistance in nonobese patients with new onset type 2 diabetes mellitus.Exp Clin Endocrinol Diabetes.2006; 114:58-62.
    19. Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome:implications for controlling dietary carbohydrates:a review.Nutr Metab (Lond).2004; 1:12.
    20. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB Sr, O'Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study.Circulation.2007; 116:39-48.
    21. Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM. Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver. Hepatology.2003; 38:703-714.
    22. He L, Simmen FA, Mehendale HM, Ronis MJ, Badger TM. Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane. Role of TRB3 in inhibition of Akt/protein kinase B activation. J Biol Chem 2006; 281:11126-11134.
    23. Poirier LA, Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding:regulation by heterotrimeric G-proteins.Biochem J.2001; 354(Pt 2):323-330.
    24. Sebastian BM, Nagy LE. Decreased insulin-dependent glucose transport by chronic ethanol feeding is associated with dysregulation of the Cbl/TC10 pathway in rat adipocytes. Am J Physiol Endocrinol Metab.2005; 289:E1077-1084.
    25. Wan Q, Liu Y, Guan Q, Gao L, Lee KO, Zhao J. Ethanol feeding impairs insulin-stimulated glucose uptake in isolated rat skeletal muscle:role of Gs alpha and cAMP. Alcohol Clin Exp Res.2005; 29:1450-1456.
    26. Zhao LN, Hao LP, Yang XF, Ying CJ, Yu D, Sun XF. The diabetogenic effects of excessive ethanol:reducing beta-cell mass, decreasing phosphatidylinositol 3-kinase activity and GLUT-4 expression in rats. Br J Nutr.2009; 101: 1467-1473.
    27. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor- kappaB pathway in rat liver. Diabetes.2005; 54:3458-3465.
    28. Anderwald C, Brunmair B, Stadlbauer K, Krebs M, Furnsinn C, Roden M. Effects of free fatty acids on carbohydrate metabolism and insulin signalling in perfused rat liver. Eur J Clin Invest.2007; 37:774-782.
    29. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes.2002; 51:2005-2011.
    30. Obradovic T, Meadows GG. Chronic ethanol consumption increases plasma leptin levels and alters leptin receptors in the hypothalamus and the perigonadal fat of C57BL/6 mice. Alcohol Clin Exp Res.2002; 26:255-262.
    31. Geloen A, Collet AJ, Guay G, Bukowiecki LJ. Insulin stimulates in vivo cell proliferation in white adipose tissue. Am J Physiol.1989; 256(1 Pt 1):C190-196.
    32. Suryawan A, Swanson LV, Hu CY. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J Anim Sci 1997; 75:105-111.
    33. Deslex S, Negrel R, Ailhaud G. Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells. Exp Cell Res 1987; 168: 15-30.
    34. You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 2002; 277:29342-29347.
    35. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10:1096-1107.
    36. Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 2004; 310:417-424.
    37. Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, et al. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 2011; 152:26-35.
    38. Fukui H, Brauner B, Bode J, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease:reevaluation with an improved chromogenic assay. J Hepatol 1991; 12:162-169.
    39. Yu HC, Li SY, Cao MF, Jiang XY, Feng L, Zhao JJ, et al. Effects of chronic ethanol consumption on levels of adipokines in visceral adipose tissues and sera of rats. Acta Pharmacol Sin 2010; 31:461-469.
    40. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr-1 contribute to increased TNF-alpha production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol 2002; 282:G 6-15.
    41. Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology 2010; 151:2590-25602.
    42. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin Cytom 2007; 72:408-415.
    43. Ahluwalia B, Wesley B, Adeyiga O, Smith DM, Da-Silva A, Rajguru S. Alcohol modulates cytokine secretion and synthesis in human fetus:an in vivo and in vitro study. Alcohol 2000; 21:207-213.
    44. Valles SL, Blanco AM, Azorin I, Guasch R, Pascual M, Gomez-Lechon MJ, et al. Chronic ethanol consumption enhances interleukin-1-mediated signal transduction in rat liver and in cultured hepatocytes. Alcohol Clin Exp Res 2003; 27: 1979-1986.
    45. Hsiang CY, Wu SL, Cheng SE, Ho TY. Acetaldehyde-induced interleukin-1 beta and tumor necrosis factor-alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells. J Biomed Sci 2005; 12: 791-801.
    46. Tan BK, Chen J, Farhatullah S, Adya R, Kaur J, Heutling D, et al. Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 2009; 58: 1971-1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700