鼻息肉中LIVIN,SMAC及MCM3的表达及与其临床分型分期和复发率的相关性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:鼻息肉(Nasal Polyps, NP)是一种常见的鼻科增生性疾病,其发病机制复杂,至今没有真正阐明。自从内窥镜手术广泛开展以来,其术后复发率已明显降低。但部分鼻息肉,如“鼻息肉病”,其手术后的复发率始终较高。有些患者往往在经历多次手术以及长期使用局部皮质类固醇激素喷鼻剂,甚至部分患者须服用较长时间的低剂量激素口服制剂后,仍然会再次复发息肉,大大增加了患者的痛苦及思想与经济负担。
     对此类鼻息肉患者个体的预后,目前几乎完全依赖鼻科医师的临床经验进行主观判断,尚无广泛认可的具有临床参考价值的客观指标。近年来,在鼻息肉发病机制中关于细胞凋亡方面的研究正在逐步增加。目前已做了一些卓有成效的工作。特别是在腺体促增殖/抑增殖或促凋亡/抑凋亡因素的动态平衡方面、息肉上皮、息肉组织中嗜酸粒细胞等方面均取得一些成果。目前研究结果初步认为鼻息肉上皮细胞有显著的增殖特性;凋亡基因/抑凋亡基因失衡,使细胞凋亡受抑制是鼻息肉组织中嗜酸粒细胞数增多的重要因素之一
     Livin是IAPs(inhibitors of apoptosis proteins, IAPs)蛋白家族的新成员,有BIR和RING锌指结构域,能够与Caspases蛋白结合,抑制其介导的细胞凋亡。它在大多数正常成人组织中不表达、在一些肿瘤及增殖性病变细胞中有高表达。Caspases蛋白在介导细胞凋亡中处于重要地位,大多数的刺激性信号是经由Caspase级联反应,激活并诱导细胞凋亡的。Livin与其中多个成员相互作用,抑制细胞凋亡的执行,例如,Livin可结合caspase-9的前体蛋白及其激活的形式,从而抑制其功能。
     Smac/DIABLO是一个促进凋亡的重要相关蛋白,具有239-氨基酸残基,一般定位于线粒体的膜间隙。当凋亡信号刺激Smac/DIABLO时,Smac会伴随着细胞色素c的释放进入胞浆,成熟的Smac在离开线粒体后,可与XIAP、Livin等IAPs家族成员锌指结构域BIR3上的表面沟结合,而这个沟是用于结合caspase9的部位,因而Smac能竞争性去除IAPs对凋亡的抑制,从而进一步激活Caspase级联反应,最终诱导细胞凋亡。
     Mcm3,即微小染色体维持蛋白3,作为Mcms家族中重要的一员,与生物体DNA复制过程密切相关。MCMs家族目前有7种。微小染色体是指酵母中一系列核小体被包装后形成的结构,是酵母复制的结构基础。
     同经典的增殖性标记物Ki-67相比,两者虽都定位于增殖细胞中。只有Mcm3能够在相当数量的处于生长静止期的细胞中表达阳性,而Ki-67无表达,可以认为Mcm3作为一种细胞增殖标记物,较Ki-67更有意义。
     目前关于Livin, Smac和Mcm3在NP中表达的相关研究很少。三者联合检测分析,并与NP临床分型分期和术后复发率之间做相关性研究,指导耳鼻喉科医师制定更加适宜的个体化手术治疗及随访方案,在国内外目前的检索文件中尚未见报道。
     本文主要研究目的在于:(1)通过联合检测3种典型的细胞凋亡/增殖相关因子:Livin, Smac和Mcm3在NP的表达特点,进一步探索NP在细胞凋亡途径可能的发病机制,为进一步阐明细胞凋亡机制在NP的发生、发展中的重要作用,具有较强的理论意义。(2)并通过对上述3种细胞凋亡/增殖因子的表达水平与NP临床分型分期及术后复发率进行相关性分析,探索一条能较为客观科学地预测NP患者术后复发可能性的分子水平途径,可作为临床参考指标,与鼻科医师的临床经验性判断互为补充,用于指导耳鼻喉科医生对NP患者在手术治疗、围手术期处理以及随访等方面进行个体化的制定,以改善目前主要凭医师临床经验做出判断的现状,有效减少复发,具备实际的临床应用价值。
     方法:于山东大学第二医院病理科检验并保存的2005年6月~2009年6月期间入院的单纯鼻息肉患者蜡块中随机选取80例,男性52例,女性28例,平均年龄34.5岁(19-57岁),临床分型分期为Ⅱ型Ⅰ期24例,Ⅱ型Ⅱ期26例,Ⅱ型Ⅲ期16例,Ⅲ型14例。均病理确诊为鼻息肉.通过详细询问病史、临床症状、鼻内窥镜检查、变应原皮肤试验(参照2008年WHO制定的《过敏性鼻炎的处理及其对哮喘的影响》以及中华医学会呼吸病学分会哮喘学组制定的2008年《支气管哮喘防治指南》),均排除变应性鼻炎、哮喘等变态反应性疾病史。80例患者随访复查期均超过12个月。随访期内经病理证实复发者(所有复发患者均首先在鼻内窥镜复查时发现息肉样新生物,向患者讲明目前病情并由本人签署我院特殊检查治疗知情同意书后,然后行内窥镜下鼻息肉清理并送病理科再次诊断),Ⅱ型Ⅰ期2例,Ⅱ型Ⅱ期6例,Ⅱ型Ⅲ期6例,Ⅲ型8例。
     正常对照组:12例,取自2008年5月~2009年12月间我院外伤性脑脊液鼻漏患者手术修补过程中,为正常钩突粘膜,均排除鼻-鼻窦炎及变应性鼻炎、哮喘等变态反应性疾病史(排除方法同鼻息肉组,并结合鼻窦CT)。
     通过免疫组化SP方法,检测标本组织中Livin, Smac及Mcm3的表达,以胞浆和/或胞核中出现棕黄色或棕褐色颗粒为阳性信号,应用Olympus显微镜和Micro-image图像处理系统,每例标本选取3张切片,每张切片均采用双盲法随机观察10个高倍视野(显微镜下×400),用半定量积分法判断结果,所有数据经统计学处理。
     结果:80例标本中,Livin表达阳性片为54例,阳性率为66.7%(54/80),主要表达在息肉组织内增生的腺体/腺管上皮细胞,定位于胞浆;对照组12例正常粘膜无1例阳性(0/12)。Mcm3表达阳性片为46例,阳性率为56.7%(46/80),主要表达在息肉上皮细胞,定位于胞核。对照组正常粘膜4例阳性,阳性率为33.3%(4/12),定位于粘膜上皮细胞的胞核。Smac表达阳性为42例,阳性率为52.5%(42/80),主要表达在息肉上皮细胞,部分腺体上皮亦可见阳性表达,定位于胞浆。对照组正常粘膜11例阳性,阳性率91.7%(11/12),主要表达在粘膜上皮细胞,定位于胞浆。Livin,Smac在鼻息肉与正常粘膜对照组之间的表达差异具有统计学意义(P<0.05)。Mcm3在鼻息肉与正常粘膜对照组之间的表达差异不具有统计学意义(P>0.05)。Livin, Smac表达强度在鼻息肉不同临床分型分期之间具有统计学上的差异(P<0.05),可以认为鼻息肉不同临床分型分期中Livin, Smac表达强度是不同的。Mcm3表达强度在鼻息肉不同临床分型分期之间不具有统计学上的差异(P>0.05)。Livin、Mcm3联合表达强度与鼻息肉临床分型分期之间呈正相关关系(R's=0.453,P<0.05);而Smac表达强度与鼻息肉临床分型分期之间呈负相关关系(R's=-0.429,P<0.05)。Livin、Mcm3联合表达强度与鼻息肉术后复发率之间呈直线正相关关系(R=0.9569,P<0.05);而Smac表达强度与鼻息肉术后复发率之间呈直线负相关关系(R=-0.9781,P<0.05)。
     结论:(1)Livin过度表达可能在鼻息肉内腺体发生发展的过程中具有重要作用。(2)鼻息肉中存在明显的Smac表达受阻。(3)Mcm3标志的鼻息肉细胞增殖活性的提高在其发病机制中可能处于一个相对次要的地位,而凋亡受抑制可能起首要作用。(4)鼻息肉临床分型分期高低与凋亡受抑程度之间存在正相关关系,其分型分期越高,细胞凋亡可能越弱。(5)Livin, Smac及Mcm3作为在细胞凋亡/增殖动态平衡中具有不同作用机理的三个重要因子,其联合检测结果可作为有临床意义的客观参考指标,在分子水平上预测个体鼻息肉患者术后复发的可能性;与临床经验相结合,使耳鼻喉科医师对鼻息肉患者可采取更适宜的个体化手术方案、围手术期处理及随访。
Background and Objective:Nasal Polyps (NP) is a common proliferative disease of Rhinology, its pathogenesis is complex, has not really been clarified. Since the widespread of functional endoscopic sinus surgery technology, the recurrence rate is significantly reduced. But part of the nasal polyps, such as nasal polyposis, the recurrence rate after surgery is always high. Some patients have to take low-dose hormone oral preparations for a long time after undergoing multiple surgeries and long-term use of topical corticosteroid hormone nasal spray, and even doing like this, some polyps will still relapse again, has greatly increased the suffering, ideas and economic burden of patients.
     Individual prognosis of such patients with nasal polyps, is now almost entirely dependent on the clinical experience of Rhinology physician subjective judgments, there is no widely accepted objective indicators of clinical reference value. In recent years, studies on apoptosis in the pathogenesis of nasal polyp is gradually increasing. some fruitful works Have been made. Especially in glandular proliferation/suppressing proliferation or promoting apoptosis/suppression of apoptotic factors in dynamic equilibrium, the polyp epithelium, polyps, eosinophils. These results in preliminarily that the nasal polyp epithelial cell proliferation; apoptotic genes/antiapoptotic gene imbalance, apoptosis inhibition is an important factor in nasal polyps, the eosinophil count increased.
     Livin is a new member of inhibitors of apoptosis proteins, IAPs. Livin also have the BIR and RING zinc finger domains, ralative to Caspases inhibition mediated apoptosis. It was not expressed in most normal adult tissues, high expression in the tumors and the proliferation of diseased cells. The Caspases protein plays an important position in apoptosis. Necessarily through Caspase cascade reaction, follow the activation and induction of apoptosis. Livin can be of interaction with multiple members of the inhibition of apoptosis protein, for example, Livin can inhibit its function by the combination of caspase-9precursor protein.
     Smac/DIABLO is a pro-apoptosis-related protein, with a239-amino acid residues, usually located in the mitochondrial membrane gap. When apoptotic signals stimulate Smac/DIABLO and Smac release into the cytoplasm along with cytochrome c, the mature Smac after leaving the mitochondria, the domain BIR3surface groove binding of XIAP, of Livin and other IAPs family members, is for the combination with caspase9, through Smac's competitive removal of IAPs inhibition of apoptosis, then further activated Caspase cascade reactions that ultimately induce apoptosis.
     Mcm3, minichromosome maintenance protein3, as an MCMS family, closely related organisms during DNA replication. MCMs family includes seven members. Minichromosome is formed by the yeast nucleosome packaging structure, the structural basis of yeast replication.
     Compared with the classic proliferation marker Ki-67, although both are located in the proliferating cells. Only Mcm3expressed in the growth of a considerable number of quiescent cells positive contrasted to Ki-67's negative expression. Mcm3, considered as a cell proliferation marker, is more meaningful than the Ki-67.
     There is rare report of Livin, Smac and Mcm3expression in NP research. Combined detection and analysis, and make the correlation analysis with NP clinical classification stage and postoperative recurrence rate, and to be worked as meaningful referrence indexes for the otolaryngologist, and to make more appropriate individualized surgical treatment and follow-up program.
     Objective of This research is to explore the apoptosis mechanism of nasal polyps' pathogenesis via detecting the expressions of two related factors of Apoptosis:Livin and Smac, and Mcm3, a kind of index protein which is sensitive to multiplication of human cells, in human nasal polyps (NP). Furthermore, by investigating the relationships with NP's different clinical stages and recurrence rate, to find a reliable, molecular level's approach by which ENT doctor can prejudge the possibility of postoperative recurrence, and may be applied as a referrence index for ENT doctors to make the plan of follow up and treatment.
     Methods:Choosing randomly80cases from the preserved blocks of nasal polyps patients who were followed at least12months after FESS operation.12cases of normal uncinate process mucosa were served as contrast. With polyclonal anti-human Livin, monoclonal anti-human Smac and monoclonal anti-human Mcm3, immunohistochemistry SP method was used to examine the expression of Livin,Smac and Mcm3in every case. Beige or puce granules appearing in NP cells were regarded as positive signal. Every case was observed randomly for ten eyeshots (microscope X400). The results were judged by semi-quantificational integral standard. All the data were disposed by statistics.
     Results:Of the80NP cases, Livin positive were54, positive rate was66.7%(54/80),cytoplasm coloration, the main location was in gland epithelium cells. Of the contrast, Livin positive was none. Mcm3positive were46, positive rate was56.7%(46/80), caryon coloration, the main location was in the epidermis cells of polyps. Two of the contrast was positive, positive rate was33.3%(4/12). Smac positive were42, positive rate was52.5%(42/80), cytoplasm coloration, the main location was in the epidermis cells of polyps. All of the contrast were positive, positive rate was91.7%(11/12). The expressive intensity of Livin、Smac between NP and normal mucosa were statistical different (P<0.05). Contrarily, there was no statistical difference in the expressive intensity of Mcm3between NP and normal mucosa (P>0.05). The expressive intensity of Livin and Smac between different clinical classifications of NP showed statistical difference (P<0.05). However, the expressive intensity of Mcm3between different classifications of NP didn't have statistical difference (P>0.05).There was a positive correlation between co-expressive intensity of Livin and Mcm3;and NP classifications differentiated by type and stage (R's=0.453, P<0.05). Being completely contrary, for Smac, it was a negative correlation (R's=-0.429, P<0.05).Furthermore, between the co-expressive intensity of Livin and Mcm3and the relapse rate of postoperative patients, a positive linear correlation was presented (R=0.9569, P<0.05).For Smac, it showed a negative linear correlation (R=-0.9781, P<0.05)
     Conclusion:Livin plays an important role in the genesis and development of the glands of NP. There is an obvious Smac down regulation in NP epidermis cells. In the pathogenesis of NP, the heightening of cell proliferative potential of NP probably acts as a subordinate role, the principal factor is that normal apoptosis is restrained. There is a positive correlation between the classifications of NP and the depressed extent of apoptosis. Detecting Livin、Smac and Mcm3synchronously can be considered as a reliable reference index by which we can forecast the probability of postoperative recurrence of individual NP patient.
     Objective:To explore the apoptosis mechanism of nasal polyps' pathogenesis via detecting the expressions of two related factors of Apoptosis:Livin and Smac, and Mcm3, a kind of index protein which is sensitive to multiplication of human cells, in human nasal polyps (NP). Furthermore, by investigating the relationships with NP's different clinical stages and recurrence rate, to find a reliable, molecular level's approach by which ENT doctor can prejudge the possibility of postoperative recurrence, and may be applied as a referrence index for ENT doctors to make the plan of follow up and treatment.
     Methods:Choosing randomly80cases from the preserved blocks of nasal polyps patients who were followed at least12months after FESS operation.12cases of normal uncinate process mucosa were served as contrast. With polyclonal anti-human Livin, monoclonal anti-human Smac and monoclonal anti-human Mcm3, immunohistochemistry SP method was used to examine the expression of Livin, Smac and Mcm3in every case. Beige or puce granules appearing in NP cells were regarded as positive signal. Every case was observed randomly for five eyeshots (microscope×400). The results were judged by semi-quantificational integral standard. All the data were disposed by statistics.
     Results:Of the80NP cases, Livin positive were54, positive rate was66.7%(54/80), cytoplasm coloration, the main location was in gland epithelium cells. Of the contrast, Livin positive was none. Mcm3positive were46, positive rate was56.7%(46/80), caryon coloration, the main location was in the epidermis cells of polyps. Two of the contrast was positive, positive rate was16.7%(2/12). Smac positive were42, positive rate was52.5%(42/80),cytoplasm coloration, the main location was in the epidermis cells of polyps. All of the contrast were positive, positive rate was91.7%(11/12). The expressive intensity of Livin、Smac between NP and normal mucosa were statistical different (P<0.05). Contrarily, there was no statistical difference in the expressive intensity of Mcm3between NP and normal mucosa (P>0.05).The expressive intensity of Livin and Smac between different clinical classifications of NP showed statistical difference(P<0.05). However, the expressive intensity of Mcm3between different classifications of NP didn't have statistical difference (P>0.05). There was a positive correlation between co-expressive intensity of Livin and Mcm3;and NP classifications differentiated by type and stage (R's=0.606, P<0.05). Being completely contrary, for Smac, it was a negative correlation (R's=-0.628P<0.05). Furthermore, between the co-expressive intensity of Livin and Mcm3and the relapse rate of postoperative patients, a positive linear correlation was presented (R=0.9588, t=4.7779, P<0.05). For Smac, it showed a negative linear correlation (R=-0.9992, t=33.30, P<0.05)
     Conclusions:Livin plays an important role in the genesis and development of the glands of NP. There is an obvious Smac down regulation in NP epidermis cells. In the pathogenesis of NP, the heightening of cell proliferative potential of NP probably acts as a subordinate role, the principal factor is that normal apoptosis is restrained. There is a positive correlation between the classifications of NP and the depressed extent of apoptosis. Detecting Livin、Smac and Mcm3synchronously can be considered as a reliable reference index by which we can forecast the probability of postoperative recurrence of individual NP patient.
引文
1. Hsu MC, Shun CT, Liu CM. Increased epithelial cell proliferation in nasal polyps[J]. J Formos Med Assoc,2002 Mar,101(3):227-9.
    2.董震,关桂梅.鼻息肉组织中细胞增殖与凋亡相关基因蛋白的表达及意义[J].中华耳鼻咽喉科杂志,2000,6(35):429-32.
    3.鲁祥石,刘彦龙,王涤,等. 凋亡抑制蛋白Livin和Survivin在乳腺癌中的表达及意义[J]. 中国癌症杂志,2007,17(7):542—544.
    4. Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member [J]. J Biol Chem,2001,276(5):3238.
    5. Yuan D, Liu L, Gu D. Transcriptional regulation of livin by beta— catenin/TCF signaling in human lung cancer cell lines [J]. Mol Cell Biochem,2007,306(1/2):171.
    6. Li JH, He WJ, He YJ. Expression and clinical significance of Survivin and Livin in DukesoB colorectal cancer [J]. Ai Zheng,2007,2 6(5):547-549.
    7. Yuan D, Liu L, Gu D. Transcriptional regulation of livin by beta —catenin/TCF signaling in human lung cancer cell lines [J]. Mol Cell Biochem,2007,306 (1/2):171-175.
    8. Ma L, Huang Y, Song Z, et al. Livin promotes Smac/DIABLO degradation by ubiquitin—proteasome pathway [J]. Cell Death Differ,2006,13 (12):2079-2088.
    9. Yang QH, Du CY. Smac/DIABLO selectively reduces the levels of c—IAP1 and c—IAP2 but not that of XIAP and livin in HeLa cells [J]. J Biol Chem,2004,279 (17):16963-16970.
    10.陈晓,杨春鹿,赵君,等. 非小细胞肺癌组织Livin和Smac蛋白表达及其临床意义的研究[J]. 中华肿瘤防治杂志,2008,15(12):905—909.
    11. Jacobson MD, Wei 1M, Raff MC. Programmed cell death in animal development [J]. Cell,1997,88 (3):347-349.
    12. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP— interaction motif in caspase—9 and Smac/DIABLO regulates caspase activity and apoptosis [J]. Natrue,2001,410(6824):112.
    13. Yang QH, Du C. Smac/DIABLO selectively reduces the levels of c —IAP1 and c—IAP2 but not that of XIAP and livin in HeLa cells [J]. J Biol Chem,2004,279(17):163-196.
    14. Gazzaniga P, Gradilone A, Giuliani L, et al. Expression and prognostic significance of Livin, Survivin and other apoptosis —related genes in the progression of superficial bladder can [J]. Ann Oncol,2003, 14(1):85-89.
    15. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c2 dependent caspase activation by eliminating IAP inhibition [J]. Cell,2000,102(1):33-42.
    16. Freeman A, Morris LS, Mills AD, et al. Minichromosome maintenance proteins as biological markers of dysplasia and malignancy[J]. Clin Cancer Res,1999,5(8):2121-2132.
    17. Kato K, Toki T, Shimizu M, et al. Expression of replication-licensing factors MCM2 and MCM3 in normal, hyperplastic, and carcinomatous endometrium:correlation with expression of Ki-67 and estrogen and progesterone receptors [J]. Int J Gynecol Pathol,2003,22 (4):334-340.
    18.中华耳鼻喉科杂志编辑委员会.慢性鼻窦炎鼻息肉临床分型分期及内窥镜鼻窦手术疗效评定标准(1997年,海口)[J].中华耳鼻喉科杂志,1998,33(3):134.
    19.中华医学会呼吸病学分会哮喘学组。支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗管理方案).中华结核和呼吸杂志,2008,31(3):177-185.
    20.陈尚采孙罗曼编著.临床病理组织与免疫组化诊断学[M].上海:上海医科大学出版社,1999:50—57,90—115.
    21. Martin S. J. Destabilizing Influences in Apoptosis:Sowing the Seeds of IAP Destruction[J]. Cell,2002; 109:793-796.
    22. Deveraux Q. L., Reed J. C. IAP family proteins-suppressors of apoptosis[J]. Gene Develop,1999; 13(3):239-252.
    23. Young S. S., Liston P., Xuan J. Y., et al. Genomic organization and physical mapof the human inhibitors of apoptosis; HIAPI and HIAP2[J]. Mamm Genome,1999; 10(1):44-48.
    24. Wang S. L., Hawkins C. J., Yoo S. J., et al. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID[J]. Cell,1999; 98(4):453-63.
    25. Riedl S. J., Renatus M., Schwarzenbacher R., et al. Structural basis for the inhibition of caspase_3 by XIAP[J]. Cell,2001; 104, 791-800.
    26. Srinivasula S. M., Hegde R., Saleh A., et al. A conserved XIAP_interaction motif in caspase_9 and Smac/DIABLO regulates caspase activity and apoptosis[J]. Nature,2001;410(6824):112-116.
    27. Shiozaki E. N., Chai J., Rigotti D. J., et al. Mechanism of XIAP_mediated inhibition of caspase_9. Mol Cell,2003; 11 (2) 519-527.
    28. Wu G., Chai J., Suber T. L., et al. Structural basis of IAP recognition by Smac/DIABLO [J]. Nature,2000; 408:1008-1012.
    29. Oberts D. L., Merrison W., MacFarlane M., et al. The inhibitor of apoptosis protein_binding domain of Smac is not essential for its proapoptotic activity[J]. J Cell Biol,2001:153: 221-228.
    30. Martin SJ, et al. The cytotoxic T cell protease granzyme B initiates apoptosis in a cell free system by proteolytic processing and zceivation of the ICE3 family protease, CPP32, through a novel two step mechanism[J]. EMBO J,199615:2407-2416.
    31.Seinivasula S, et al. Generation of constitutively active recombinant caspase-3 and -6 by rearrangement of their subunits[J]. J Biol Chem, 1998,273:10107-10111.
    32. Song Z,et al, DCP1, a Drosohila cell death protease essential for development[J].Science,1997,275:563-540.
    33. Srinivasula S. M., Datta P., Kobayashi M., et al. Sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP_inhibitory protein[J]. Curr Biol,2002; 12(2):125-130.
    34. Verhagen AM., Silke J., Ekert P. G., et al. HtrA2 promotes cell death throuth its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins [J]. J Biol Chem,2002; 277 (1):445-454.
    35. Holley C. L., Olson M. R., Colon_Ramos D. A., et al. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition[J]. Nature Cell Biol,2002; 4:439-444.
    36. ECKELMAN B P, SALVESEN G S, SCOTT F L. Human inhibitor of apoptosis proteins:why XIAP is the b lack sh eep of the family[J]. EMBO R ep,2006,7 (10):988-994.
    37.旷兴林,罗云萍.促凋亡因子Smac/DIABLO的研究进展[J].国外医学临床生物化学与检验学分册,2003,24(4):213-214.
    38.李晓明,马秀茹,路秀英,等.凋亡抑制蛋白XIAP在喉鳞状细胞癌中的表达及其临床病理学意义[J].临床耳鼻咽喉头颈外科杂志,2007,21(21):973-975.
    39.童强松,郑丽端,阮庆兰,等.Smac和Caspase-3基因在神经母细胞瘤中的表达及其临床意义[J].中国癌症杂志,2004,14(1):90-91.
    40. MEI Z Z, SUN Z X. Inhibitor of apoptos is proteins and regu lation of apoptos is[J]. Foreign Medical Science of Genetics,1999,22 (6):281-285.
    41. RAMP U, KRIEG T, CALISKAN E, et a.1 XIAP expression is an independen t prognost ic mark er in clear cell renal carcinomas[J]. Human Path,2004,35(8):1022-1028.
    42. TAMM I, KOMBLAU S M, SEGALL H, et a.1 Expression and prognostic sign-ificance of IAP family genes in human cancers and myeloid leuk emias[J]. Clin Cancer Res,2000,6(5):1796-1803.
    43. YANG L, CAO Z, YAN H, et a.1 Coex istence of h igh levels of apoptotic signaling and inhibitor of apoptos is proteins in human tumor cells:imp lication for cancer specific therapy [J]. Cancer Res,2003,63 (20):6815-6824.
    44. CREAGH EM, MURPHY BM, DUR IEZ P J, et a.l Smac/D iablo antagonizes ubiquitin ligase activity of inhibitor apoptosis proteins[J]. Bio lCh em,2004,279(26):26906-26914.
    45. Ameisen, JC. On the origin, evolution, and nature of programmed cell death:a timeline of four billion years. Cell Death Differ,2002,9: 367-393.
    46. Ashkenazi,A, Dixit, VM. Death receptors:signaling and modulation. Science,1998,281:1305-1308.
    47. Chen, KH, Guo, X, Ma, D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol,2004,6:872-883.
    48. Chen, Q, Gong, B, Almasan, A. Distinct stages of cytochrome c release from mitochondria:evidence for a feedback amplification loop linking caspase activation to mitochondrialdysfunction in genotoxic stress induced apoptosis. Cell Death Differ,2000,7:227-233.
    49. Chen, Q, Gong, B, Mahmoud-Ahmed, AS, et al. Apo2L/TRAIL and Bcl-2-related proteins regulate type Ⅰ interferon-induced apoptosis in multiple myeloma. Blood,2001,98:2183-2192.
    50. Chung, JG, Yeh, KT, Wu, SL, et al. Novel transmembrane GTPase of non-small cell lung cancer identified by mRNA differential display. Cancer Res,2001,61:8873-8879.
    51. Danial, NN, Korsmeyer, SJ. Cell death:critical control points. Cell, 2004,116:205-219.
    52. Lei M, Tye BK. Initiating DNA synthesis:from recruiting to activating the MCMcomp lex[J]. Cell Sci,2001,114(8):1447-1454.
    53. Desagher,S, Martinou,JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol,2000,10:369-377.
    54. Du, C, Fang, M, Li,Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell,2000,102:33-42.
    55. Edinger, AL, Thompson, CB. Death by design:apoptosis, necrosis and autophagy. Curr Opin Cell Biol,2004,16:663-669.
    56. Frank, S, Gaume, B, Bergmann-Leitner, ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell,2001,1:515-525.
    57. Gozuacik, D, Kimchi,A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene,2004,23:2891-2906.
    58. Gross, A, Jockel,J, Wei,MC, et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J,1998,17:3878-3885.
    59. Hengartner, MO. The biochemistry of apoptosis. Nature,2000,407: 770-776.
    60. Huang, Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene,2000,19:6627-6631.
    61. Jagasia, R, Grote, P, Westermann, B, et al. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature, 2005,433:754-760.
    62. Karbowski,M, Lee, YJ, Gaume, B, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol,2002,159:931-938.
    63. Kerr, JF, Wyllie, AH, Currie, AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26:239-257.
    64. Li,P, Nijhawan, D, Budihardjo, I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell,1997,91:479-489.
    65. Li,P, Nijhawan, D, Wang, X. Mitochondrial activation of apoptosis. Cell,2004,116:S57-9,2.
    66. Liu, X, Kim, CN, Yang, J, et al. Induction of apoptotic program in cell-free extracts requirement for dATP and cytochrome c. Cell,1996, 86:147-157.
    67. Ha SA, Shin SM, Namkoong H, et al. Cancer-associated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis [J].Clin Cancer Res,2004,10(24): 8386-8395.
    68. Soling A, Sackewitz M, Volkmar M, et al. Minichromosome maintenance protein 3 elicits a cancer-restricted immune response in patients with brain malignancies and is a strong independent predictor of survival in patients with anaplastic astrocytoma [J].Clin Cancer Res,2005,11(1):249-258
    69. Mozdy, AD, Shaw, JM. A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol,2003,4:468-478.
    70. Nakagawa, T, Zhu, H, Morishima, N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature,2000,403:98-103.
    71. Ott,M, Robertson, JD, Gogvadze, V, et al. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci US A,2002,99:1259-1263.
    72. Schneider, P, Tschopp, J. Apoptosis induced by death receptors. Pharm Acta Helv,2000,74:281-286.
    73. Shimizu, S, Ide, T, Yanagida, T, et al. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem,2000,275: 12321-12325.
    74. Shimizu, S, Konishi.A, Kodama, T, et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A,2000,97:3100-3105.
    75. mirnova, E, Shurland, DL, Ryazantsev, SN, et al. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol,1998, 143:351-358.
    76. Sugioka, R, Shimizu, S, Tsujimoto, Y. Fzol, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem,2004,279: 52726-52734.
    77. Tsujimoto, Y, Ikegaki.N, Croce, CM. Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma. Oncogene,1987,2:3-7.
    78. Tsukada, M, Ohsumi.Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 1993,333:169-174.
    79. Vander Heiden, MG, Chandel, NS, Li, XX, et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A,2000,97:4666-4671.
    80. Vaux,DL, Korsmeyer, SJ. Cell death in development. Cell,1999,96: 245-254.
    81. Wei,MC, Zong, WX, Cheng, EH, et al. Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death. Science, 2001,292:727-730.
    82. Westermann, B. Mitochondrial membrane fusion. Biochim Biophys Acta, 2003,1641:195-202.
    83. Yuan, J. Molecular control of life and death. Curr Opin Cell Biol, 1995,7:211-214.
    84. Zong, WX, Ditsworth, D, Bauer, DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev,2004, 18:1272-1282.
    85. Zong, WX, Li,C, Hatzivassiliou, G, et al. Bax and Bak can localize to the endoplasmic retieulum to initiate apoptosis. J Cell Biol,2003, 162:59-69.
    86. Zuchner, S, Mersiyanova, Ⅳ, Muglia, M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet,2004,36:449-451.
    87. Hu S, et al. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD[J]. J Biol Chem,2000,275: 30761-30764.
    88. Hofman K, et al. The CARD domain:a new apoptotic signaling motif [J]. Trends Biochem Sci,1997,22:155-156.
    89. Li J, Yen C, Liow D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [J]. Science,1997,275(5308):1943-1947.
    90. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumor suppressor gene, MMC1,at chromosome 10q23.3 that is mutated in multiple advanced cancers[J]. Nat Genet,1997,15(4):356-362.
    91. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a noval protein tyrosine phosphatase regulated by transforming growth factor beta[J]. Cancer Res,1997,57(11):2124-2129.
    92. Tonks, N. K.&Neel, B. G. From form to function:signaling by protein tyrosine phosphatase[J]. Cell,1996,87:365-368.
    93. Maehama T,Dixon JE. PTEN:a tumor suppressor that functions as a phospholipid phosphatase[J]. Trends Cell Biol,1999,9(4):125-8.
    94. Brazil, D. P. and Hemmings, B. A. Ten years of protein kinase B signaling:a hard Akt to follow[J]. Trends Biochem Sci.2001,26:657-664.
    95. Stambolic V, Suzuki A, de la Pompa JL et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN[J]. Cell,1998,95(1):29-39.
    96. Mayo, L. D. et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J]. J Biol Chem,2002,277:5484-5489.
    97. Larsen PL, Tos M. Origin of nasal polyps:an endoscopic autopsy study[J]. Laryngoscope,2004,114(4):710-719.
    98. Thompson CB. Apoptosis in the pathogenesis and treatment of disease [J]. Science,1995,267:1456-1462.
    99. Gu J, Dong RP, Zhang C, et al. Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40[J]. J Biol Chem,1999,274(30):20759-62.
    100. Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis[J]. Proc Natl Acad Sci U S A,1998,95(15):8461-6.
    101. Fukushima K, Kikuchi J, Koshiba S, et al. Solution structure of the DFF-C domain of DFF45/ICAD. A structural basis for the regulation of apoptotic DNA fragmentation[J]. J Mol Biol,2002,321 (2):317-27.
    102.Korn C, Scholz SR, Gimadutdinow 0, et al. Interaction of DNA fragmentation factor (DFF) with DNA reveals an unprecedented mechanism for nuclease inhibition and suggests that DFF can be activated in a DNA-bound State [J]. J Biol Chem,2005,280(7):6005-15.
    103. Liu X, Zou H, Widlak P, et al. Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1[J]. J Biol Chem, 1999,274(20):13836-40.
    104. Widlak P, Garrard WT. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G[J]. J Cell Biochem, 2005,94(6):1078-87.
    105. Zhang JH, Xu M. DNA fragmentation in apoptosis[J]. Cell Res,2000,10(3):205-11.
    106. Namita S, Peterr A. Ki67 structure, function and new antibodies [J]. J Pathol,1992,168:161.
    107. Wang, S. I.. Puc. J., Li, J., et al. Somatic mutations of PTEN in glioblastoma multiforme[J]. Cancer Res.1997,57:4183-4186.
    108. Bostrom, J., Cobbers, J. M. J. L., Wolter, M., et al. Mutation of the PTEN/MMAC1 tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm 10q[J]. Cancer Res. 1998,58:29-33.
    109. Liu, W., James, C. D., Frederick, L.,et al. PTEN/MMAC1 mutation and EGFR amplification in glioblastomas[J]. Cancer Res.1997,57:5254-5257.
    110. Cairns, P., Okami, K., Halachmi,N., et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer[J]. Cancer Res. 1997,57:4997-5000.
    111. Whang, Y. E.., Xinyi, W., Suzuki, H., et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression[J].Proc.Natl Acad. Sci. USA,1998,95:5246-5250.
    112. Risinger, J. I., Hayes, A. K., Berchuck, et al. PTEN/MMAC1 mutations in endometrial cancers[J]. Cancer Res.1997,57:4736-4738.
    113. Tashiro, H., Blazes, M. S., Wu, R., et al. Mutations in PTEN are frequent in endomentrial carcinoma but rare in other common gynecological malignancies[J]. Cancer Res.1997,57:3935-3940.
    114.胡野,凌志强,单小云.细胞凋亡的分子医学[M].北京:军事医学科学出版社,2002:110一113.
    115. Srinivasula S. M., Datta P., Kobayashi M., et al. Sickle, a novel Drosophila death gene in the reaper/hid/grim region,encodes an IAP_inhibitory protein[J]. Curr Biol,2002; 12(2):125-130.
    116. Shimizu,S, Konishi,A, Kodama, T, et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A,2000,97:3100-3105.
    117. Edinger,AL, Thompson, CB. Death by design:apoptosis, necrosis and autophagy. Curr Opin Cell Biol,2004,16:663-669.
    1. Hsu MC, Shun CT, Liu CM. Increased epithelial cell proliferation in nasal polyps[J]. J Formos Med Assoc,2002 Mar,101(3):227-9.
    2. Dong Zhen Guan Guimei nasal polyps cell proliferation and apoptosis related gene protein expression and significance of [J]. Chinese Journal of Otorhinolaryngology,2000,6 (35):429-32.
    3. Lu Xiang Shi, Liu Yanlong, Wang Di. Inhibitor of apoptosis protein Livin and Survivin in breast The expression and significance in adenocarcinoma [J]. Chinese Journal of Cancer,2007,17 (7):542-544.
    4. Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member [J]. J Biol Chem,2001,276(5):3238.
    5. Yuan D, Liu L, Gu D. Transcriptional regulation of livin by beta catenin/TCF signaling in human lung cancer cell lines [J]. Mol Cell Biochem,2007,306(1/2):171.
    6. Li JH, He WJ, He YJ. Expression and clinical significance of Survivin and Livin in DukesoB colorectal cancer [J]. Ai Zheng,2007,2 6(5):547-549.
    7. Yuan D, Liu L, Gu D. Transcriptional regulation of livin by beta — catenin/TCF signaling in human lung cancer cell lines [J]. Mol Cell Biochem,2007,306 (1/2):171-175.
    8. Ma L, Huang Y, Song Z, et al. Livin promotes Smac/DIABLO degradation by ubiquitin—proteasome pathway [J]. Cell Death Differ,2006,13 (12):2079-2088.
    9. Yang QH, Du CY. Smac/DIABLO selectively reduces the levels of c—IAP1 and c—IAP2 but not that of XIAP and livin in HeLa cells [J]. J Biol Chem,2004,279 (17):16963-16970.
    10. Chen, Yang Chun deer, Zhao Jun, and so on. Livin and Smac proteins of the non-small cell lung cancer Expression and clinical significance [J]. Chinese Journal of Cancer Prevention and Treatment, 2008,15 (12):905-909.
    11. Jacobson MD, Wei 1M, Raff MC. Programmed cell death in animal development [J]. Cell,1997,88 (3):347-349.
    12. Srinivasula SM, Hegde R, Sal eh A, et al. A conserved XIAP— interaction motif in caspase—9 and Smac/DIABLO regulates caspase activity and apoptosis [J]. Natrue,2001,410(6824):112.
    13. Yang QH, Du C. Smac/DIABLO selectively reduces the levels of c —IAP1 and c—IAP2 but not that of XIAP and livin in HeLa cells [J]. J Biol Chem,2004,279(17):163-196.
    14. Gazzaniga P, Gradilone A, Giuliani L, et al. Expression and prognostic significance of Livin, Survivin and other apoptosis —related genes in the progression of superficial bladder can [J]. Ann Oncol,2003, 14(1):85-89.
    15. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c2 dependent caspase activation by eliminating IAP inhibition [J]. Cell,2000,102(1):33-42.
    16. Freeman A, Morris LS, Mills AD, et al. Minichromosome maintenance proteins as biological markers of dysplasia and malignancy[J].Clin Cancer Res,1999,5(8):2121-2132.
    17. Kato K, Toki T, Shimizu M, et al. Expression of replication-licensing factors MCM2 and MCM3 in normal, hyperplastic, and carcinomatous endometrium:correlation with expression of Ki-67 and estrogen and progesterone receptors [J]. Int J Gynecol Pathol,2003,22 (4):334-340.
    18. China ENT Magazine Editorial Board of the clinical classification of chronic sinusitis and nasal polyp stage and endoscopic sinus surgery and Evaluation Standards (1997, Haikou) [J]. China Otolaryngology magazine,1998,33 (3):134.
    19. Chinese Medical Association Respiratory Diseases Asthma Study Group. Bronchial asthma prevention and treatment guidelines (definition of bronchial asthma, diagnosis, treatment management program). Journal of Tuberculosis and Respiratory Diseases,2008,31 (3):177-185.
    20. Chen sance Sun Roman clinical histopathological and immunohistochemical diagnostics [M]. Shanghai:Shanghai Medical University Press,1999:50-57,90-115.
    21. Martin S. J. Destabilizing Influences in Apoptosis:Sowing the Seeds of IAP Destruction[J]. Cell,2002; 109:793-796.
    22. Deveraux Q. L., Reed J. C. IAP family proteins-suppressors of apoptosis[J]. Gene Develop,1999; 13(3):239-252.
    23. Young S. S., Liston P., Xuan J. Y., et al. Genomic organization and physical mapof the human inhibitors of apoptosis; HIAPI and HIAP2[J]. Mamm Genome,1999; 10(1):44-48.
    24. Wang S. L., Hawkins C. J., Yoo S. J., et al. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID[J]. Cell,1999; 98(4):453-63.
    25. Riedl S. J., Renatus M., Schwarzenbacher R., et al. Structural basis for the inhibition of caspase_3 by XIAP[J]. Cell,2001; 104, 791-800.
    26. Srinivasula S. M., Hegde R., Saleh A., et al. A conserved XIAP_interaction motif in caspase_9 and Smac/DIABLO regulates caspase activity and apoptosis[J]. Nature,2001;410(6824):112-116.
    27. Shiozaki E. N., Chai J., Rigotti D. J., et al. Mechanism of XIAP_mediated inhibition of caspase_9. Mol Cell,2003; 11 (2): 519-527.
    28. Wu G., Chai J., Suber T. L., et al. Structural basis of IAP recognition by Smac/DIABLO [J]. Nature,2000; 408:1008-1012.
    29. Oberts D. L., Merrison W., MacFarlane M., et al. The inhibitor of apoptosis protein_binding domain of Smac is not essential for its proapoptotic activity[J]. J Cell Biol,2001:153: 221-228.
    30. Martin SJ, et al. The cytotoxic T cell protease granzyme B initiates apoptosis in a cell free system by proteolytic processing and zceivation of the ICE3 family protease, CPP32, through a novel two step mechanism[J]. EMBO J,199615:2407-2416.
    31. Seinivasula S, et al. Generation of constitutively active recombinant caspase-3 and -6 by rearrangement of their subunits[J]. J Biol Chem, 1998,273:10107-10111.
    32. Song Z, et al, DCP1, a Drosohila cell death protease essential for development[J].Science,1997,275:563-540.
    33. Srinivasula S. M., Datta P., Kobayashi M., et al. Sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP_inhibitory protein[J]. Curr Biol,2002; 12(2):125-130.
    34. Verhagen AM., Silke J., Ekert P. G., et al. HtrA2 promotes cell death throuth its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins [J]. J Biol Chem,2002; 277(1):445-454.
    35. Holley C. L., Olson M. R., Colon_Ramos D. A., et al. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition[J]. Nature Cell Biol,2002; 4:439-444.
    36. ECKELMAN B P, SALVESEN G S, SCOTT F L. Human inhibitor of apoptosis proteins:why XIAP is the b lack sh eep of the family[J]. EMBO R ep,2006,7 (10):988-994.
    37. Kuang Xing Lin, Luo Yunping branch of the pro-apoptotic factor Smac /DIABLO [J]. Foreign Medical Clinical Biochemistry and Laboratory, 2003,24 (4):213-214.
    38. Li Xiaoming, Ma Xiuru, Lu Xiu, the inhibitor of apoptosis protein XIAP expression in laryngeal squamous cell carcinoma and its clinicopathological significance [J]. Clinical Otorhinolaryngology Head and Neck Surgery,2007,21 (21):973-975.
    39. Tong Qiang Song, Zheng Li side, Ruan Qinglan of Smac and Caspase-3 gene expression in neuroblastoma and its clinical significance [J]. Chinese Journal of Cancer,2004,14 (1):90-91.
    40. MEI Z Z, SUN Z X. Inhibitor of apoptos is proteins and regu lation of apoptos is[J]. Foreign Medical Science of Genetics,1999,22 (6):281-285.
    41. RAMP U, KRIEG T, CALISKAN E, et a.1 XIAP expression is an independen t prognost ic mark er in clear cell renal carcinomas[J]. Human Path,2004,35(8):1022-1028.
    42. TAMM I, KOMBLAU S M, SEGALL H, et a.1 Expression and prognostic sign-ificance of IAP family genes in human cancers and myeloid leuk emias[J]. Clin Cancer Res,2000,6(5):1796-1803.
    43. YANG L, CAO Z, YAN H, et a.1 Coex istence of h igh levels of apoptotic signaling and inhibitor of apoptos is proteins in human tumor cells:imp lication for cancer specific therapy [J]. Cancer Res,2003,63 (20):6815-6824.
    44. CREAGH EM, MURPHY BM, DUR IEZ P J, et a.l Smac/D iablo antagonizes ubiquitin ligase activity of inhibitor apoptosis proteins[J]. Bio 1Ch em,2004,279(26):26906-26914.
    45. Ameisen, JC. On the origin, evolution, and nature of programmed cell death:a timeline of four billion years. Cell Death Differ,2002,9: 367-393.
    46. Ashkenazi.A, Dixit, VM. Death receptors:signaling and modulation. Science,1998,281:1305-1308.
    47. Chen, KH, Guo, X, Ma, D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol,2004,6:872-883.
    48. Chen, Q, Gong, B, Almasan, A. Distinct stages of cytochrome c release from mitochondria:evidence for a feedback amplification loop linking caspase activation to mitochondrialdysfunction in genotoxic stress induced apoptosis. Cell Death Differ,2000,7:227-233.
    49. Chen, Q, Gong, B, Mahmoud-Ahmed, AS, et al. Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood,2001,98:2183-2192.
    50. Chung, JG, Yeh, KT, Wu, SL, et al. Novel transmembrane GTPase of non-small cell lung cancer identified by mRNA differential display. Cancer Res,2001,61:8873-8879.
    51. Danial.NN, Korsmeyer,SJ. Cell death:critical control points. Cell, 2004,116:205-219.
    52. Lei M, Tye BK. Initiating DNA synthesis:from recruiting to activating the MCMcomp lex[J]. Cell Sci,2001,114(8):1447-1454.
    53. Desagher,S, Martinou, JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol,2000,10:369-377.
    54. Du, C, Fang, M, Li,Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell,2000,102:33-42.
    55. Edinger, AL, Thompson, CB. Death by design:apoptosis, necrosis and autophagy. Curr Opin Cell Biol,2004,16:663-669.
    56. Frank, S, Gaume, B, Bergmann-Leitner, ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell,2001,1:515-525.
    57. Gozuacik, D, Kimchi,A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene,2004,23:2891-2906.
    58. Gross, A, Jockel, J, Wei.MC, et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J,1998,17:3878-3885.
    59. Hengartner, MO. The biochemistry of apoptosis. Nature,2000,407: 770-776.
    60. Huang, Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene,2000,19:6627-6631.
    61. Jagasia, R, Grote, P, Westermann,B, et al. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature, 2005,433:754-760.
    62. Karbowski,M, Lee, YJ, Gaume, B, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drpl, and Mfn2 during apoptosis. J Cell Biol,2002,159:931-938.
    63. Kerr, JF, Wyllie, AH, Currie, AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26:239-257.
    64. Li, P, Nijhawan, D, Budihardjo, I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell,1997,91:479-489.
    65. Li, P, Nijhawan, D, Wang, X. Mitochondrial activation of apoptosis. Cell,2004,116:S57-9,2.
    66. Liu, X, Kim, CN, Yang, J, et al. Induction of apoptotic program in cell-free extracts:requirement for dATP and cytochrome c. Cell,1996, 86:147-157.
    67. Ha SA, Shin SM, Namkoong H, et al. Cancer-associated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis [J]. Clin Cancer Res,2004,10(24): 8386-8395.
    68. Soling A, Sackewitz M, Volkmar M, et al. Minichromosome maintenance protein 3 elicits a cancer-restricted immune response in patients with brain malignancies and is a strong independent predictor of survival in patients with anaplastic astrocytoma [J].Clin Cancer Res,2005,11(1):249-258
    69. Mozdy, AD, Shaw, JM. A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol,2003,4:468-478.
    70. Nakagawa,T, Zhu, H, Morishima, N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature,2000,403:98-103.
    71. Ott, M, Robertson, JD, Gogvadze, V, et al. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci US A,2002,99:1259-1263.
    72. Schneider, P, Tschopp, J. Apoptosis induced by death receptors. Pharm Acta Helv,2000,74:281-286.
    73. Shimizu, S, Ide, T, Yanagida, T, et al. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem,2000,275: 12321-12325.
    74. Shimizu,S, Konishi,A, Kodama, T, et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A,2000,97:3100-3105.
    75. mirnova, E, Shurland, DL, Ryazantsev, SN, et al. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol,1998, 143:351-358.
    76. Sugioka, R, Shimizu, S, Tsujimoto, Y. Fzol, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem,2004,279: 52726-52734.
    77. Tsujimoto, Y, Ikegaki.N, Croce, CM. Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma. Oncogene,1987,2:3-7.
    78. Tsukada, M, Ohsumi,Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 1993,333:169-174.
    79. Vander Heiden, MG, Chandel,NS, Li,XX, et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A,2000,97:4666-4671.
    80. Vaux, DL, Korsmeyer, SJ. Cell death in development. Cell,1999,96: 245-254.
    81. Wei,MC, Zong, WX, Cheng, EH, et al. Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death. Science, 2001,292:727-730.
    82. Westermann, B. Mitochondrial membrane fusion. Biochim Biophys Acta, 2003,1641:195-202.
    83. Yuan,J. Molecular control of life and death. Curr Opin Cell Biol, 1995,7:211-214.
    84. Zong, WX, Ditsworth, D, Bauer, DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev,2004, 18:1272-1282.
    85. Zong, WX, Li,C, Hatzivassiliou, G, et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol,2003, 162:59-69.
    86. Zuchner, S, Mersiyanova, IV, Muglia, M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet,2004,36:449-451.
    87. Hu S, et al. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD[J]. J Biol Chem,2000,275: 30761-30764.
    88. Hofman K, et al. The CARD domain:a new apoptotic signaling motif [J]. Trends Biochem Sci,1997,22:155-156.
    89. Li J, Yen C, Liow D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [J].Science,1997,275(5308):1943-1947.
    90. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumor suppressor gene, MMC1.at chromosome 10q23.3 that is mutated in multiple advanced cancers[J]. Nat Genet,1997,15(4):356-362.
    91. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a noval protein tyrosine phosphatase regulated by transforming growth factor beta[J]. Cancer Res,1997,57(11):2124-2129.
    92. Tonks, N. K.&Neel, B. G. From form to function signaling by protein tyrosine phosphatase[J]. Cell,1996,87:365-368.
    93. Maehama T, Dixon JE. PTEN:a tumor suppressor that functions as a phospholipid phosphatase[J].Trends Cell Biol,1999,9(4):125-8.
    94. Brazil, D. P. and Hemmings, B. A. Ten years of protein kinase B signal ing:a hard Akt to follow[J]. Trends Biochem Sci.2001,26:657-664.
    95. Stambolic V, Suzuki A, de la Pompa JL et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN[J]. Cell,1998,95(1):29-39.
    96. Mayo, L. D. et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J]. J Biol Chem,2002,277:5484-5489.
    97. Larsen PL, Tos M. Origin of nasal polyps:an endoscopic autopsy study [J]. Laryngoscope,2004,114(4):710-719.
    98. Thompson CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science,1995,267:1456-1462.
    99. Gu J, Dong RP, Zhang C, et al. Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40[J]. J Biol Chem,1999,274(30):20759-62.
    100. Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis[J]. Proc Natl Acad Sci U S A,1998,95(15):8461-6.
    101. Fukushima K, Kikuchi J, Koshiba S, et al. Solution structure of the DFF-C domain of DFF45/ICAD. A structural basis for the regulation of apoptotic DNA fragmentation[J]. J Mol Biol,2002,321(2):317-27.
    102.Korn C, Scholz SR, Gimadutdinow 0, et al. Interaction of DNA fragmentation factor (DFF) with DNA reveals an unprecedented mechanism for nuclease inhibition and suggests that DFF can be activated in a DNA-bound State [J]. J Biol Chem,2005,280(7):6005-15.
    103. Liu X, Zou H, Widlak P, et al. Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1[J]. J Biol Chem, 1999,274(20):13836-40.
    104. Widlak P, Garrard WT. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G[J]. J Cell Biochem, 2005,94(6):1078-87.
    105. Zhang JH, Xu M. DNA fragmentation in apoptosis[J]. Cell Res,2000,10(3):205-11.
    106.Namita S, Peterr A. Ki67 structure, function and new antibodies[J]. J Pathol,1992,168:161.
    107. Wang, S. I., Puc, J., Li, J., et al. Somatic mutations of PTEN in glioblastoma multiforme[J]. Cancer Res.1997,57:4183-4186.
    108. Bostrom, J., Cobbers, J. M. J. L., Wolter, M., et al. Mutation of the PTEN/MMAC1 tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm 10q[J]. Cancer Res. 1998,58:29-33.
    109. Liu, W., James, C. D., Frederick, L., et al. PTEN/MMAC1 mutation and EGFR amplification in glioblastomas[J]. Cancer Res.1997,57:5254-5257.
    110. Cairns, P.,Okami, K., Halachmi, N., et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer[J]. Cancer Res.1997,57: 4997-5000.
    111. Whang, Y. E.., Xinyi, W., Suzuki, H., et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression[J].Proc. Natl Acad. Sci. USA,1998,95:5246-5250.
    112.Risinger, J. I., Hayes, A. K., Berchuck, et al. PTEN/MMAC1 mutations in endometrial cancers[J]. Cancer Res.1997,57:4736-4738.
    113. Tashiro, H., Blazes, M. S., Wu, R., et al. Mutations in PTEN are frequent in endomentrial carcinoma but rare in other common gynecological malignancies[J]. Cancer Res.1997,57:3935-3940.
    114. Hu Ye, Ling Zhiqiang, Shan Xiaoyun apoptosis Molecular Medicine [M] Beijing:Military Medical Sciences,2002:110-113.
    115. Srinivasula S. M., Datta P., Kobayashi M., et al. Sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP_inhibitory protein[J]. Curr Biol,2002; 12(2):125-130.
    116. Shimizu, S, Konishi,A, Kodama, T, et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A,2000,97:3100-3105.
    117.Edinger,AL, Thompson, CB. Death by design:apoptosis, necrosis and autophagy. Curr Opin Cell Biol,2004,16:663-669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700