行波管设计方法的改进与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着卫星事业的蓬勃发展,空间行波管具有广阔的发展和应用前景。由于特殊的工作环境,高效率对于空间行波管具有极其重要的意义。本文从提高空间行波管的效率出发,对电子枪和慢波线的设计以及影响注波互作用特性的几个因素进行了分析,模拟计算结果在制管实验中进行了验证,主要工作如下:
     (1)介绍了电子枪的一种优化方法,首先利用综合迭代法初步确定用于高效率行波管的电子枪几何尺寸,然后考虑电子枪设计对导流系数、注腰半径、层流性等参数提出的要求,建立了评价电子注性能优劣的目标函数以量化设计结果,最后利用EGUN软件采用一定的优化方法对目标函数进行优化;应用该优化方法设计了一支电子枪,并讨论了磁聚焦系统与该电子枪的匹配。在制管实验中对电子枪和磁聚焦系统进行了验证,实验结果证明了该电子枪优化方法的有效性。
     (2)分析了夹持杆对螺旋线慢波系统螺旋对称性的影响,利用HFSS软件提供的主一从边界条件,将慢波线计算模型由一个周期长度缩短为1/3周期长度,在同样的计算精度下,计算时间缩短为原来的三分之一;设计了工作于一定频带内的慢波系统,计算结果达到了设计要求;加工了该慢波系统,运用行波法和微扰法进行慢波线冷测实验,实验结果与计算结果做比较,验证了改进后计算方法的可行性。
     (3)使用TWTCAD软件包中的Christine一维程序分析了几个因素对空间行波管互作用特性的影响;做了样管热测实验,根据实测数据对设计做出了相应的调整,最后各项指标达到了设计要求,同时也验证了TWTCAD软件包中Christine一维程序的有效性,尽管程序的计算结果跟实际值相比存在一定的误差,但趋势是正确的,说明模拟计算对制管具有一定的指导意义。
Space traveling wave tube (TWT) have a potential application in satelliteindustry in the future. Due to the extremely rigorous work condition, high efficiencyplay a key role in the performance of the space TWT. This dissertation is focused onseveral hands of the design of a high efficient space TWT, the main contents of thisdissertation can be concluded as follows:
     (1) A new method for optimizing the electron beam performance is introduced.At first, the so-called 'synthesis method' used for Pierce gun design was employed toget the prototype gun. Secondly, in order to evaluate the electron beam performance,an objective function is defined, which can take perveance, beam waist and laminarityinto account. Finally, a direct optimization method and the EGUN program areapplied to optimize the objective function.
     An electron gun is obtained by the above method, and then the dissertation tooka short discussion about how to design a periodic permanent magnetic focusingsystem for matching the above-mentioned electron gun. In the electron gunexperiment, the beam performance is consistent with the initial requirement very well.This result is an evident example that exhibits the optimization method beingeffective.
     (2) A detailed analysis of the influences on the helical symmetry produced fromthe support rods in the helical slow-wave structure (SWS) is studied. By use of themaster-slave boundary condition of HFSS, at the condition of keeping the sameprecision, reducing the one pitch helical model to one-third pitch that cancorrespondingly shorten the original running time to one-third. The SWS used in aspace TWT was designed and the simulation result has met with the initial target.
     Moreover, the SWS is manufactured and its dispersion characteristic andinteraction impedance are tested by the traveling-wave method and non-resonant perturbation method respectively. The measurement data agree with the simulationresult.
     (3) Using the Christine 1D program in TWTCAD (a TWT simulation software),the variation of interaction characteristics with several parameters is analyzed. Nineexperimental tubes have been manufactured, and the hot test is finished in about oneyear. During this period, the tube design parameters were adjusted according to thesimulation and experiment results. At last, all targets are satisfied. Meanwhile, theavailability of the Christine 1D program in TWTCAD is verified. Although thesimulation result is not very precise, it still can provide a qualitative guidance to thedevice engineers.
引文
[1] 廖复疆.真空电子技术——信息装备的心脏,北京:国防工业出版社,1999
    [2] 苏小保.长寿命空间行波管研制进展与规划.2003年5月
    [3] 童林夙,西门纪业.电子光学系统计算机辅助设计,北京:国防工业出版社,1990年
    [4] Guenter K. K. 60-GHz space TWT to address future market. IEEE Transactions on Electron Devices, v 48, n1, Jan., 2001, p68-71
    [5] David S. K., et al. Advances in space TWT efficiencies. IEEE Transactions on Electron Devices, v 48, n1, April, 2001, p174-176
    [6] Robert T. B., et al. First pass TWT design success. IEEE Transactions on Electron Devices, v 48, n1, April, 2001, p176-178
    [7] Wetzer, J. M.; Danikas, M. G.; van der Lama, R C. T. Analysis and improvement of HV components for spacecraft traveling-wave tubes. IEEE Transactions on Electrical Insulation, v25, n6, Dec, 1990, p1117-1124
    [8] Theiss, A.J.; Lyon, D.B. High-power Ka-band TWTs for airborne radars. IEEE Aerospace and Electronic Systems Magazine, v10, n11, Nov, 1995, p33-36
    [9] 杨中海,李斌等.螺旋线行波管三维CAD技术发展.真空电子技术,2004,第三期
    [10] 韩博.高效率螺旋线行波管慢波系统的研究.硕士学位论文,2006
    [11] C.L. Kory, J.A. Dayton, Jr. Accurate cold-test model of helical TWT slow-wave circuits, IEEE Trans. on Electron Devices, 1998, 45(4): 966—971.
    [12] C.L. Kory. Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA, IEEE Trans, on Electron Devices, 1996, 43(8): 1937—1319.
    [13] J.D.Wilson. Design of high-efficiency wide-bandwidth coupled-cavity traveling-wave tube phase velocity tapers with simulated annealing algorithms, IEEE Trans. on Electron Devices, 2001, 48(1): 95—100.
    [14] 雷文强,杨中海,廖莉等.螺旋慢波电路高频特性的三维计算模拟.强激光与粒子束,2002,Vol.14,No.6:892—896.
    [15] 李实,刘韦,苏小保等.螺旋线慢波结构的参数变化对其冷测特性的影响.电子学报,2004,32(9):1511-1514
    [16] 段兆云,宫玉彬,王文祥等.一种具有新型分立介质支撑的翼片加载螺旋带慢波结构的研究.电子学报,2004,32(9):1515-1519
    [17] M.Aloisio and P.Waller. 3D analysis of helical slow-wave structures for space TWTs: Critical comparison of Ansoft and CST MICROWAVE STUDIO. Proc. IVEC, 2004, pp. 353-353
    [18] A.Nordsieck. Theory of the large-signal behavior of traveling-wave amplifiers. Proc.I.R.E, 1953, 630-637
    [19] P.K.Tien, L.R.Walker, and V.M.Wolontis. A large-signal theory of traveling-wave amplifiers. Proe.I.R.E, 1955, Vol. 43, No.3:260-277
    [20] J.E.Rowe. Nonlinear electron-wave interaction phenomenon. Academic Press, Inc., New York, 1965
    [21] L.A.Vainshtein. The Nonlinear Theory of Traveling Wave Tubes: Part Ⅲ, Influence of the Space Charge Forces. Radio Eng. Electron, v9, 1958, p 116-123
    [22] J.G.Wohlbier, J.H.Booske, and I.Dobson. The multifrequency spectral Eulerian(MUSE) model of a traveling wave tube. IEEE Trans. on Plasma Science, 2002, Vol.30, No.3:1063-1075
    [23] T.M.Antonsen, Jr., and B.Levush. Traveling-wave tube devices with dielectric elements. IEEE Trans. on Plasma Science, 1998, Vol.26, No.3:774-786
    [24] David Chernin, T.M.Antonsen, Jr., and B.Levush et al. A three-dimensional multifrequency large signal model for helix traveling wave tubes. IEEE Trans, on Electron Devices, 2001,Vol.48, No.1:3-11
    [25] David Chernin, T.M.Antonsen, Jr., and B.Levush. "Power holes" and nonlinear forward and backward wave gain competition in helix traveling-wave tubes. IEEE Trans, on Electron Devices. 2003,Vol.50, No. 12:2540-2547
    [26] H.P.Freund. Three-dimensional nonlinear theory of helix traveling-wave tubes. IEEE Trans, on Plasma Science, 2000,Vol.28, No.3:748-759
    [1] 电子管设计手册编辑委员会编.微波管电子光学系统设计手册,北京:国防工业出版社,1981
    [2] 张以忱编著.电子枪与离子束技术,冶金工业出版社,2004
    [3] 电子管设计手册编辑委员会编.微波电子管磁路设计手册,北京:国防工业出版社,1984
    [4] 章林夙,西门纪业.电子光学系统计算机辅助设计,北京:国防工业出版社,1990年
    [5] THOMAS M. ANTONSEN, JR., ALFRED A. MONDELLI, Advance in Modeling and Simulation of Vacuum Electronic Devices. PROCEEDINGS OF THE IEEE, VOL (87), NO.5, MAY 1999.
    [6] O.Buneman. Dissipation of currents in ionized media. Phys. Rev., vol (115).. 503-517, 1959.
    [7] J.M. Dawson. One-dimensional plasma model. Phys. Fluids, Vol (5): 445-459, 1962.
    [8] C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer simulation. New York:McGraw-Hill, 1981.
    [9] R. W. Hockney and J. W. Eastwood. Computer simulation Using Particles. New York: McGraw-Hill, 1981.
    [10] 廖平,杨中海,雷文强,肖礼.微波管电子枪三维粒子模拟研究.强激光与粒子束,2004(16):353-357
    [11] 盛剑霓等.电磁场数值分析,北京:科学出版社,1984
    [12] K.S. YEE. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat, Vol. AP-14: 302-307, May.1966.
    [13] 葛德彪,闫玉波著.电磁波时域有限差分法,西安电子科技大学出版社,2002.
    [14] 电子管设计手册编辑委员会.中小功率行波管设计手册,北京,1976
    [15] Vaughan J R M. Synthesis of the Pierce gun. IEEE Trans Electron Devices, 1981, 28(1): 37—41.
    [16] Sharma R K, Sinha A K, Joshi S N. An improved method for the synthesis of aperture for Pierce guns. IEEE Trans Electron Devices, 2001, 48(2): 395—396.
    [17] 孔潇潇,李泉凤.基于综合法的用于灭菌加速器的电子枪设计.强激光与粒子束,2003,15(11):1130-1132.
    [18] 廖燕,贾宝富,罗正祥.轴对称收敛型电子枪设计方法再讨论.强激光与粒子束,2005,17(3):427—430.
    [19] B.M.Lewis, H.T.Tran. Design of an electron gun using computer optimization. Department of Mathematics center for research in scientific computation. North Carolina State University, 2003.
    [20] 阳明盛.最优化原理、方法及求解软件,北京:科学出版社,2006:50—52.
    [21] D.E.Finkel. Direct optimization algorithm user guide. CRSC Technical Report CRSC-TR03-11, NCSU, Raleigh, North Carolina, Mar, 2003.
    [22] 《数学手册》编写组.数学手册,北京:高等教育出版社,1977:927—929.
    [23] S.I.Molokovsky, A.D.Sushkov. Intense Electron and Ion Beams. Saint-Petersburg 2004.
    [1] 杨祥林,张兆镗,张祖舜.微波器件原理,北京:电子工业出版社,1994
    [2] 邮电部506厂《行波管》编写组.行波管,北京:人民邮电出版社,1979
    [3] 张克潜,李德杰.微波与光电子学中的电磁理论,北京:电子工业出版社.2001
    [4] J.R.Pierce. Theory of the beam type traveling-wave tube. Proc.I.R.E., 1947, Vol.35:108-110
    [5] S.Sensiper. Electromagnetic wave propagation on helical structure. Proc.I.R.E., 1955, Vol.43:149-161
    [6] P. K.Tien. Traveling-Wave Tube Helix Impedance. Proc.I.R.E, pp.1617-1623, Nov. 1953
    [7] 段兆云,宫玉彬等.考虑螺旋带径向厚度的螺旋线慢波系统的研究.强激光与粒子束,2002,No.2:905-910
    [8] D.Chermin. Extract treatment of the dispersion and beam interaction impedance of a thin tape helix surrounded by a raidally stratified dielectric. IEEE Trans. on Electron Devices, 1999, Vol. 46:1472-1483
    [9] T.M. Antonsen et al. Advances in Modeling and Simulation of Vacuum Electronic Devics. Proceedings of the IEEE. 1999, Vol.5: 804-839
    [10] Ansoft HFSS Use's Guide, Edition REV 1.0, June 2005
    [11] 张兆镗.微波管高频系统的测量,北京:国防工业出版社,1982
    [12] P.T.Greninger. Quasi-Three-Dimensional Perturbation Technique, Including Dielectrics for TWT's. IEEE Ttans. on ED. 1994, Vol.41, No.3: 445-451
    [13] Carol L.Kory. Computational Investigation of Experimental Interaction Impedance obtained by Perturbation for Helical Traveling-Wave Tube Structures. NASA Technical Paper. 4615.1999
    [14] 刘盛刚,李宏福,王文祥等.微波电子学导论,北京:国防工业出版社,1985
    [15] A.W.Horsley, A.Pearson. Measure of Dispersion and Interaction Impedance Characteristics of Slow wave Structure by Resonance Methods. IEEE Trans. on Electron Devices. 1966, Vol.13, No.12:962-969
    [16] Sun-shin Jung, Andrei V Soukhov and Gun-Sik Park. Effect of conductive perturber diameter on nonresonant measurement of interaction impedance for helical slow-wave structures. IEEE Trans. on Microwave Theroy and Techniques, 2002, Vol.50, No.9:2196-2198.
    [17] 邱正安,尹德华,廖复疆.非线性慢波电路中跳变幅度对饱和输出功率的影响.山东电子,2002年第1期:34-36
    [1] T. M. Antonsen, JR. and B. Levush. Christine: a Multifrequency Parametric Simulation Code for Traveling Wave Tube Amplifier. Naval Research Laboratory, May, 1997
    [2] 肖刘.行波管电磁慢波系统及电子注—波互作用研究.中国科学院电子学研究所博士学位论文,2006
    [3] David K. Abe, Mai T. Ng6, Baruch Levush, Thomas M. Antonsen, Jr. and David P. Chemin. A Comparison of L-Band Helix TWT Experiments with CHRISTINE, a 1-D Multifrequency Helix TWT Code, IEEE Trans. on Plasma Science, 2000, Vol. 28, No.3: 576-587
    [4] 电子科技大学物理电子学院理论与计算机模拟研究室.宽带大功率行波管CAD集成环境用户手册,2006.6
    [5] 电子管设计手册编辑委员会.中小功率行波管设计手册,1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700