充等离子体微波管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对填充等离子体微波管的理论和实验发展作了较系统的综述分析,在此基础上重点对等离子体辅助慢波振荡器(PASOTRON)的实验装置和实验结果做深入而细致的研究,并对PASOTRON模式变换器的数学模型进行了数值计算,优化设计了模式变换器的结构尺寸。具体主要有以下内容:
     1、从等离子体—注—波互作用的理论综述分析填充等离子体对微波器件性能参数的影响,并具体分析等离子体加载耦合腔链行波管中混合模式的形成,通过加载等离子体耦合腔行波管的实验数据来证实此类器件的特点。
     2、对PASOTRON系统的实验装置进行了设计与制作。尤其是对空心阴极等离子体电子枪、电子注自聚焦传输系统、填充等离子体慢波结构以及真空馈气系统等子系统进行分析、设计,参与制作和调试。
     3、对PASOTRON的实验测试并对实验结果进行分析。对空心阴极等离子体电子枪的放电实验和传输聚束实验进行了重点研究,对实验结果的分析为以后进一步开展等离子体填充微波管的研究打下了很好的基础。同时还设计了单次脉冲微波的测试系统,为这个项目的进一步实验创造了条件。
     4、设计了PASOTRON所用的一种新型圆波导TM_(01)—圆波导TE_(11)的宽带射频输出模式变换器。对模式变换器的数学模型进行数值计算,并得到了归一化阻抗、驻波系数和频率相关的曲线,同时根据数值计算的综合曲线优化了模式变换器各部分的结构尺寸。
     我们是国内首先开展填充等离子微波器件实验研究的课题组,因而本论文得到的一些结果无论是对于PASOTRON的进一步研究工作,还是对于其它类型的填充等离子体微波器件的开发均有很重要的参考价值。
This paper summary presents the development of the microwave devices with plasma-filled. Based on this issue, it is important studied in detail that the experimental apparatus and experimental results of the PASOTRON(Plasma Assisted Slow-wave Oscillator). And designed the mode converter from the results of the numerical calculation for the mathmatics model,and acquired the structure scale of the mode converter. This paper mainly has the following contents:
    1. Based on the interaction of the plasma,beam and wave, it is summary presents the performance parameters of the microwave devices filled with plasma. And analyse the formation of the hybrid mode in the chain of coupled cavity, it is confirm the performance of the type devices through the experimental results of the loaded plasma coupled cavity traveling wave tube.
    2. Designed and made the experimental apparatus of PASOTRON. Especially analysed and designed the plasma hollow-cathode electron gun,the electric-beam self-pinching and transmitting system,the slow wave structure filled with plasma,the vacuum and gas-feed system,and take part in the formation and debug.
    3. Taken part in the experimental and analysed the experiment results. Especially to studied the discharge experimental of the plasma hollow-cathode E-gun and the E-beam transmissin testing. The experimental results grounded researching and developing in the plasma-filled microwave devices. And designed the pluse microwave measure system for the next step of the project created useful condation.
    4. Designed a novel wideband TMoi - TEn circular waveguide RF mode converter. Calculate the mathmatics model of the mode converter, and acquired the relation of the normalized input impedance,normalized input reactance and input VSWR versus frquency. Optimized the structure scale of the mode
    
    
    
    converter.
    Our subject project is develop the microwave devices filled with plasma in the first. So the results of this paper are valuable not only to the next resarch of the PASOTRON but also to the development of the other type plasma microwave devices.
引文
[1] Y.Carmel, W.R.Lou, et.al. Relativistic Plasma Microwave Electronics: Studies of High-Power Plasma-Filled Backward-wave oscillators, Phys.Fluids B4(7) . July 1992.
    [2] Gregory S.Nusinovich, Yuval Carmel, et.al. Recent Progress in the Development of Plasma-filled traveling-tubes and backward-wave Oscillators. IEEE Trans.on Plasma science, 1998. Vol.26. pp628-645.
    [3] Ranjana, Sanwhney, et.al. Effect of Plasma on Efficiency Enhancement in a High Power Relativistic Backward-wave Oscillator. IEEE Trans.on Plasma Science, Vol.21 No.6 Dec.1993.
    [4] Brauch lewsh, et.al. Theory of Relativistic Back-Wave Oscillators with End Reflections, IEEE Trans.on Plasma Science, Vol.20 No.3. June 1992
    [5] Xiaoling Zhai, et.al.Experimental Study of a Plasma-Filled Backward-Wave Oscillator. IEEE Trans.on Plasma Science, Vol.21 No.1. Feb.1993.
    [6] D.M.Goebal, Elmira S.Ponti, et.al. PASOTRON?High-Power Microwave Source Performance. SPIE Conference. 1996.
    [7] J.M.Butler, D.M.Goebal, et.al. PASOTRON?High-Energy Microwave Source. Beam 92 Conference.
    [8] Dan.M.Goebal, Robert W.Schumacher, et.al. Performance and Pulse Shortening effects in a 200-kV PASOTRON HPM Source. IEEE Trans, on Plasma Science, 1998, Vol.26 pp354-365.
    [9] D.M.Goebel, R.W.Schumacher, J.Hyman, et.al. PASOTRON?High-Energy Microwave Source. IEEE.Trans.on MTT-S Digest. 1992
    [10] Md.Mortuza ALI, Kazuo MINAMI, et.al. Linear Analysis of Localized Plasma-Loaded Backward Wave Oscillator Driven by an Annular Intense Relativistic Elector Beam. Journal of the Phusical Society of Japan, Vol.60 1994 pp2655-2664.
    [11] K.Minami, Yuval Carmel, Virctor L.Grantstein, et.al. Linear Theory of electromagnetic Wave Generation in a Plasma-Loaded Corrugated-Wall Resonator. IEEE Trans. On Plasma Science, 1990,18(3) . Pp537-544.
    [12] M.M.Ali et.al. Linear Analysis of a Finite Length Plasma-Filled Backward Wave Oscillator, Phys.Fluids B4(4) , April 1992.
    
    
    [13] Joel D.Miller and Ronald M.Gilgenbach, Transport of Long-Pulse,High-Current Electron Beams in Preformd Monatomic Plasma Channels in the Ion Regime. IEEE Trans. on Plasma Science, Vol. 18,No.3,June 1990
    [14] S.P. Kuo, Y.S.Zhang and A.Ren. Observation of Frenquency up-Conversion in the Propagation of a High-Power Microwave Pulse in a Self-Generated Plasma. Physics Letters A, Vol. 150,No.2, 29 October 1990.
    [15] H.Lee Buchanan, Electron beam Propagation in the ion-focused Regime. Phys. Fluids 30(1) ,January 1987
    [16] M.A.Zavjalov, L.A.Mitin, et.al. Powerful Wideband Amplifiers based on Hybrid Plasma-Cavity Slow-Wave Structure. IEEE Trans.on Plasma Science. 1994.Vol.22. pp600~607.
    [17] Denis J.Connolly. Determination of the Interaction Impedance of Coupled Cavity Slow Wave Structures. IEEE Trans.on Electron Devices, Vol. Ed-23, No.5, May 1976. pp491~493.
    [18] 谢文楷,等离子体辅助慢波振荡器技术研究方案论证报告,1996
    [19] D.M.Goebel, R.W. Schumacher, R.M.Watkins, et.al. Long Pulse,Plasma Cathode E-Gun. Beams'92 Conferece.
    [20] 谢文楷,等离子体阴极电子枪及其特性,Vol.25,No.7,Aug.1996:17~23
    [21] D.M.Goebal, R.W. Schumacher. High Current, Low Pressure Plasma Cathode Electron Gun. U.S.Patent 5527005, July 1996.
    [22] M.Georgieva, etc.al Self-focusing of Waves in a Cylindrical Plasma Waveguide. J.Plasma Physics. 1994.Vol.52. pp391~407
    [23] Elmira S.Ponti, Dan M.Goebel, Robert L.Poeschel. Beam Focusing and Plasma Channel Formation in the PASOTRON~(TM) HPW Source. SPIE Vol.2843, No.2,1996. pp240~250.
    [24] 谢文楷、蒙林,等离子体通道中的电子注传输,高能电子学研究所技术报告,1996
    [25] D.M.Goebal, J.M.Butler, et.al. High-Power Microwave Source based on an Unmagnetized Backward-Wave Oscillator. IEEE Trans.on Plasma Science. 1994.Vol.22. pp547~553.
    [26] 蒙林、黎晓云、谢文楷等,充等离子体微波源高压电源的撬棒保护,强激光与粒子束,2001 13(3):338~340
    [27] 科技报告—高功率脉冲技术与自由电子激光分册,中国工程物理研究院应用电子学研究所,1990
    
    
    [28] S.Burkhart. Coaxial E-field Probe for High-power Microwave Measurement. IEEE Trans.on Microwave and Techniques. 1985.Vol. MTT-33. pp262~265.
    [29] 汤世贤编著,微波测量,国防工业出版社,1981
    [30] 顾茂章、张克潜,微波技术,清华大学出版社,1988
    [31] Rober L.Eisenhart. Wideband TM_(01)-T_(11) Circular Waveguide mode Convertor. U.S.Patent 5399999 Mar. 1995.
    [32] Manohar D.Deshpande, B.N.Das, Gitindra S.Sanyal. Analysis of an End Launcher for an X-band Rectangular Waveguide. IEEE,Trans.on Microwave Theory and Techniques, Vol.MTT-27, No.8,Aug 1979.
    [33] D.M.goebel. Pulse Shortening Causes in High Power BWO and TWT microwave Sourcese. IEEE Trans.on Plasma Science. Vol 26, No.3. June 1998.
    [34] A.S.Gilmour, Jr. Principles of Traveling Wave Tubes. Boston, MA:Artech House. 1994.
    [35] 刘盛纲、蒙林等,高功率微波,电子科技大学学报,Vol.22,Supp.,Aug.1993
    [36] 谢文楷、蒙林,等离子体加载微波管技术,中国国防科学技术报告,GF20101007,2001
    [37] 刘盛纲著,相对论电子学,国防工业出版社,1987
    [38] 刘盛纲主编著,微波电子学导论,国防工业出版社,1985.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700