微带型慢波结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波功率模块是基于微波功率模块发展而来的毫米波功率放大器,它兼有小型化毫米波行波管和固态放大器的优点。相比于传统的固态放大器和行波放大器,毫米波功率模块在尺寸、重量及效率等方面都具有较大的优势,因此,在军事及民用等领域具有重要的价值。
     目前,微波功率模块用的行波管大多是螺旋线行波管,它的宽频带、工作电压低,而且效率高。但是当工作频段上升到V波段甚至更高时,螺旋线行波管的慢波结构尺寸将变得非常小,以至于传统的加工手段已不能满足其在精度上的要求。利用现代微细加工技术制造小尺寸螺旋线是解决这一问题的出路,然而现代微细加工技术主要适用于二维结构的加工。因此,作为一个三维慢波结构,螺旋线的加工过程是非常繁琐和困难的,而且其加工的一致性与可靠性也得不到保证。在这种情况下,寻求一种既能够适用于二维微细加工技术又具备螺旋线慢波结构优点的新型平面慢波结构具有非常重要的现实和科学意义。
     微带曲折线慢波结构是一种二维平面慢波结构,该类慢波结构具有工作电压低、频带宽、效率高和易于加工等优点。同时由于微带曲折线慢波结构可以与固态电路进行良好的匹配,因此可以将微带曲折线行波管用于毫米波功率模块的末级功率推动器。深入开展微带型慢波结构的研究工作对毫米波功率模块向短毫米波、太赫兹方向的发展具有重要的推动作用。本文从模拟计算和实验两方面对微带型慢波结构进行了深入的研究,主要的工作和创新点如下:
     1.提出了U形微带曲折线慢波结构。设计了Ka波段U形微带曲折线行波管的慢波结构、衰减器和能量耦合结构,建立了具有集中衰减器的注-波互作用三维模型,分析了注-波互作用过程中电子注和高频场的能量变化情况,得到了各频点处的输出功率。研究结果表明:U形微带曲折线行波管的瞬时3-dB带宽为9GHz,即可以在29GHz到38GHz的频带范围内产生大于100瓦的峰值输出功率。同时,该行波管在34GHz频率点的峰值输出功率可达200瓦,与之相对应的增益和平均电子效率分别为33dB和14.4%。
     2.为了拓展微带曲折线慢波结构的工作带宽,本文提出了V形微带曲折线慢波结构。通过对相同尺寸的两种微带曲折线慢波结构的高频特性进行对比发现:V形微带曲折线慢波结构的色散特性要明显优于U形结构,V形结构的“冷”工作带宽比U形结构宽30%。建立了有衰减器的V形微带曲折线行波管三维物理模型,对V形微带曲折线行波管的非线性互作用过程进行了模拟分析。研究结果表明:在W波段,V形微带曲折线行波管的瞬时3-dB带宽可达20GHz,在97GHz频率点该行波管的峰值输出功率可达90瓦。
     3.提出了上下对称的双V形微带曲折线慢波结构。在相同的结构尺寸和互作用电气参数下,本文对两种V形微带曲折线行波管的性能进行了比较。粒子模拟结果显示:双V形微带曲折线行波管的瞬时3-dB带宽为18GHz的带宽,峰值输出功率达到了110瓦;而单V形微带曲折线行波管则有15GHz的瞬时3-dB带宽,峰值输出功率为25瓦。很明显,双V形微带曲折线的行波管的性能要优于单V形微带曲折线行波管。
     4.对W波段V形微带曲折线行波管进行了热分析。行波管的热分析,为提高行波管的稳定性和可靠性提供了有效的途径,同时对完善行波管的设计,尤其是毫米波新型慢波结构行波管的设计也具有重要的意义。本文利用ANSYS软件对V形微带曲折线行波管慢波结构的散热性能进行了计算和分析,得到了V形微带曲折线行波管慢波结构中各部件的温度分布云图及热流密度矢量图。
     5.微带曲折线慢波结构传输特性的测量。详细介绍了微带曲折线慢波结构及其输入输出结构的设计、加工和实验测量。实验结果显示:在32GHz到40GHz的频带范围内,U形微带曲折线慢波结构的传输参量S21大于-3dB,反射参量S11低于-10dB;V形微带曲折线慢波结构的传输参量S21在-4dB左右,反射参量S11低于-14dB。
Millimeter wave power module is a new concept of millimeter wave amplifierdeveloped from microwave power module that has both the advantages of a miniaturemillimeter-wave traveling wave tube (TWT) and a solid state amplifier. Millimeterwave power module is designed for a wide variety of military and commercialapplications, due to its size, weight and efficiency advantages compared to traditionalsolid-state and traveling wave amplifiers.
     So far, the helix TW is a main choice for microwave power module because of itsinherently wide bandwidth, low operating voltage and relatively high RF efficiency.While, as the operating frequency increases to V-band or above, the dimensionalparameters of the helix traveling wave tube become rather small. So, the traditionalmachining precision is insufficient for helix. Micro-fabrication technique, as a way tosolve this problem, is more naturally applicable to two-dimensional structures.Therefore, as a three-dimensional structure, the fabrication process of the helix circuitwill be rather complicated and difficult. It is essential for us to quest a new type ofslow-wave structure which retains the advantages of helix TWT but overcomes thefabrication problems.
     A slow-wave transmission line, of the microstrip type, called microstrip meander-lineslow-wave structure, is now proposed for a low voltage, wide bandwidth and moderatepower millimeter-wave traveling-wave tube. Its fabrication is very convenient byutilizing the two-dimensional micro-fabrication technology, and this type of slow wavestructure can be well-matched with the solid-state circuits. Therefore, it can be used forthe vacuum power booster of MMPM. The development of MMPM will benefit fromthe study of microstrip meander-line slow-wave structure, when its operating frequencyincreases to short millimeter or above. In this thesis, some important and valuableresults which bring forth some new ideas are accomplished and listed as the followings:
     1. Based on the traditional structure, the U-shaped microstrip meander-line slowwave structure is proposed. The beam-wave interaction model, including the slow-wavestructure, attenuator and the energy coupled structures, has been designed for Ka-band U-shaped microstrip meander-line millimeter-wave TWT. The simulation results showthat the instantaneous3-dB bandwidth of this millimeter-wave power amplifier is about9GHz, ranging from29GHz to38GHz. Its peak output power is about200watts withthe corresponding gain of33dB and averaged electronic efficiency of14.4%at34GHz.
     2. In order to extend the operating bandwidth of microstrip meander-line slow-wavestructure, a novel V-shaped microstrip meander-line slow wave structure is proposed.The high frequency properties comparison between U-shaped structure and V-shapedstructure has been put forward with all the dimensional parameters set to be equal. Then,the beam-wave interaction of this V-shaped microstrip meander-line millimeter-waveTWT is investigated in detail. The simulation results show that the instantaneous3-dBbandwidth of the V-shaped microstrip meander-line TWT is about20GHz and the peakoutput power is about90watts at97GHz.
     3. In order to reduce the electron beam density, a symmetric double V-shapedmicrostrip meander-line SWS is proposed. With all the dimensional and electricalparameters ste to be equal, the performance comparison between the double V-shapedmicrostrip meander-line TWT and the single V-shaped microstrip meander-line TWThas been carried out. The simulation results show that the instantaneous3-dB bandwidthof double V-shaped TWT is about18GHz and the peak output power is about110watts.However, the instantaneous3-dB bandwidth of single V-shaped TWT is about15GHzand the peak output power is only25watts. Obviously, the performance of doubleV-shaped TWT is superior to that of single V-shaped TWT.
     4. The thermal analysis of the V-shaped microstrip meander-line slow wave structureis put forward at W-band. The thermal analysis is an effective way to improve thestability and reliability of the TWT. Moreover, it is essential for us to perfect the designof TWT, especially for the millimeter wave TWT with new type slow-wave structure.The temperature distribution and heat flux vector of the V-shaped microstripmeander-line slow wave structure are obtained by utilizing the ANSYS software.
     5. The transmission properties of the microstrip meander-line slow wave structuresare measured. In the thesis, the design and fabrication of the microstrip meander-lineslow wave structures including the energy coupled structures are described in detail.According to the experimental results, the transmission parameter S21of U-shapedmicrostrip meander-line is>-3dB, and its reflection parameter is <-10dB in the frequency range of32-40GHz. The transmission parameter S21of V-shaped microstripmeander-line is about-3dB, and its reflection parameter is <-14dB in the frequencyrange of32-40GHz.
引文
[1]王文祥.微波工程技术.北京:国防工业出版社,2009,1-677
    [2]廖承恩.微波技术基础.西安:西安电子科技大学出版社,1994,1-3
    [3]甘体国.毫米波技术及应用进展.电讯技术,1993,33(5):42-48
    [4]薛良金.毫米波工程基础.哈尔滨:哈尔滨工业大学出版社,2004,1-15
    [5]林为干,时振栋,薛良金.毫米波技术的回顾、现状与展望展.电子科技大学学报,1986,15(4):94-101
    [6]张伦.毫米波技术发展评述.真空电子技术,1989,31(1):6-10
    [7]梁德文.世纪之交的军民两用毫米波技术,电讯技术,1999,(6):93-97
    [8]邬显平.毫米波技术应用及其进展.电子科技导报,1999,(12):7-15
    [9] N. Gopalsami, A. C. Raptis. Millimeter-wave Radar Sensing of Airborne Chemicals. IEEETransactions on Microwave Theory and Techniques,2001,49(4):646-653
    [10] J. H. Wehling. Multifunction Millimeter-wave Systems for Armored Vehicle Application.IEEE Transactions on Microwave Theory and Techniques,2005,53(3):1021-1025
    [11]甘体国.毫米波工程.成都:电子科技大学出版社,2006,1-98
    [12] S. Kharkovsky, et al. Millimeter-wave Detection of Localized Anomalies in the Space ShuttleExternal Fuel Tank Insulating Foam. IEEE Transactions on Instrumentation and Measurement,2006,55(4):1250-1257
    [13] D. C. Ni, H. R. Fetterman, W. Chew. Millimeter-wave Generation and Characterization of aGaAs FET by Optical Mixing. IEEE Transactions on Microwave Theory and Techniques,1990,38(5):608-614
    [14]赵正平.固态微波器件与电路的新进展.中国电子科学研究院学报,2007,2(4):329-335
    [15]廖复疆.大功率微波电子注器件及其发展.真空电子技术,1999,41(1):1-7
    [16]何其文.固态器件、电真空器件的竞争及其产物——微波功率模块.现代雷达,1998,20(1):73-82
    [17]贾战利.微波功率模块:RF真空电子技术的新发展.真空电子技术,1995,37(2):50-52
    [18]曹宏伟,马健云.微波功率模块.半导体情报,1999,36(4):29-34
    [19] L. Nebuloni, G. Orsenigo. Microwave Power Module for Space Applications. IEEETransactions on Electron Devices,2001,48(1):88-94
    [20] John Kennedy, Carl Colombo. Development of a Low Voltage Power Booster TWT for aQ-Band MMPM. IEEE Transactions on Electron Devices,2001,48(1):180-182
    [21] Kunio Tsutaki, Ryouichi Seura, Eiji Fujiwara, et al. Development of Ka-Band100-W PeakPower MMPM. IEEE Transactions on Electron Devices,2005,52(5):660-664
    [22]杨军.微波功率模块微波特性的研究.微波学报,2010,26(4):87-91
    [23] R. H. Abrams. The Microwave Power Module: a ‘Supercomponent’ for Radar Transmitters.IEEE National Radar Conference, Atlanta, USA,1994,1-6
    [24] R. H. Abrams, B. Levush, A. A. Mondelli, et al. Vacuum Electronics for the21st Century. IEEEMicrowave Magazine,2001,2(3):61-72
    [25] C. R. Smith. Power Module Technology for the21st Century. IEEE National Aerospace andElectronics Conference, Dayton, USA,1995,106-113
    [26] A. Bress, G. Doller, J. Duthie, et al. Microwave Power Module (MPM) Development andResults. IEEE Int. Electron Devices Meeting, Washington DC, USA,1993,145-148
    [27] C. R. Smith, C. M. Armstrong, J. Duthie. The Microwave Power Module: a Versatile RFBuilding Block for High-power Transmitters. Proceedings of the IEEE,1999,87(5):717-737
    [28]高志忠.雷达用微波功率器件的发展趋势.真空电子技术,1995,37(6):8-14
    [29]柏光东.微波功率模块——雷达发射机的新型功率器件.现代电子,1998,(2):16-21
    [30]盛柏桢,莫火石.微波功率模块.通用元器件,1998,(6):40-41
    [31]廖复疆.空间通信应用的微波功率模块.真空电子技术,2003,45(2):33-36
    [32]李建兵,牛忠霞,周东方.微波功率模块(MPM)及其最新进展.通信技术,2005,38(S):4-9
    [33]廖复疆,吴固基.真空电子技术——信息装备的心脏.北京:国防工业出版社,1999,25-27
    [34] L. Cosby. MPM Applications: a Forecast of Near-and Long-term Applications. IEEE MTT-SInt. Microwave Symposium Digest, Atlanta, USA,1993,111-114
    [35] J. A. Christensen, T. J. Grant, P. M. Lally. MPM Technology Developments: an IndustryPerspective. IEEE MTT-S Int. Microwave Symposium Digest, Atlanta, USA,1993,115-118
    [36] R. Kompfner. The Traveling Wave Tube. Wireless World,1946,53(11):369-372
    [37]陈常婷.微带曲折线慢波结构的高频特性研究:[硕士学位论文],成都:电子科技大学,2011,1-50
    [38] R. K. Parker, R. H. Abrams, B. Danly, et al. Vacuum Electronics. IEEE Transactions onMicrowave Theory and Techniques,2002,50(3):835-845
    [39] B. K. Vancil, E. G. Wintucky. A Low Cost Traveling Wave Tube for Wireless Communications.IEEE MTT-S Int. Microwave Symposium Digest, Seattle, USA,2002,465-468
    [40] R. K. Parker, C. M. Armstrong. Vacuum Electronics at the Dawn of the Twenty-First Century.IEEE Microwave Magazine,1999,87(5):702-716
    [41]皮尔斯.行波管(吴鸿适,田志仁译).北京:科学出版社,1961,10-239
    [42] J. R. Pierce, L. M. Field. Traveling Wave Tubes. Proceedings of the IRE,1947,35(2):108-111
    [43]刘盛纲,李宏福,王文祥.微波电子学导论.北京:国防工业出版社,1995,167-236
    [44] J. R. Pierce. Traveling wave tubes. Princeton NJ: Van Nostrand,1950,231-259
    [45]吴鸿适.微波电子学原理.北京:科学出版所,1987,58-91
    [46]杨祥林,张兆镗,张祖舜.微波器件原理.北京:电子工业出版社,1994,143-198
    [47] M. K. Alaria, A. K. Sinha, V. Srivastava. Analysis of Helix Slow-Wave Structure for SpaceTWT using Ansoft HFSS. IEEE Int. Vacuum Electron. Conf., Monterey, USA,2006,147-148
    [48] M. K. Alaria, A. Bera, R. K. Sharma, et al. Design and Development of Helix Slow-WaveStructure for Ku-Band TWT. IEEE Transactions on Plasmas Science,2011,39(1):550-554
    [49] C. K. Chong, W. L.Menninger. Latest Advancements in High Power Millimeter-Wave HelixTWTs. IEEE Transactions on Plasma Science,2010,38(6):1227-1238
    [50]王文祥,余国芬,宫玉彬,等.行波管慢波系统的新进展——全金属慢波结构.真空电子技术,1995,37(5):30-37
    [51]王文祥,宫玉彬,魏彦玉,等.大功率行波管新型慢波线技术的进展.真空电子技术,2002,44(6):13-18
    [52]蔡绍伦.环圈行波管设计新进展.电子学报,1992,20(12):61-63
    [53]殷海荣,宫玉彬,魏彦玉,等.介质加载环板慢波结构高频特性研究.强激光与粒子束,2006,18(9):1553-1558
    [54] D. R. Whaley. Sixty-percent-efficient Miniature C-Band Vacuum Power Booster for theMicrowave Power Module. IEEE Transactions on Plasma Science,1998,26(3):912-921
    [55]廖燕.MPM用小型化行波管的研究和设计:[硕士学位论文],成都:电子科技大学,2005,4-7
    [56]张宏志,寇建勇.脉冲MPM小型化行波管螺旋线慢波结构的设计和改进.真空电子技术,2009,49(5):39-41
    [57]韩博,朱永亮,陈汉兴.毫米波小型化行波管发射机.现代雷达,2008,30(11):83-85
    [58]朱兆君.MPM用小型化行波管CAD设计.[博士学位论文],成都:电子科技大学,2007,1-20
    [59] J. A. Dayton, C. L. Kory, G. T. Mearini, et al. Applying Microfabrication to Helical VacuumElectron Devices for THz Applications. IEEE Int. Vacuum Electron. Conf., Rome, Italy,2009,41–44.
    [60] R. Lawrence Ives. Microfabrication of High-frequency Vacuum Electron Devices. IEEETransactions on Plasma Science,2004,32(3):127-1291
    [61] J. H. Booske. New Opportunities in Vacuum Electronics through the Application ofMicrofabrication Technologies. IEEE Int. Vacuum Electron. Conf., Monterey, USA,2002,11-12
    [62] L. Sadwick, R. J. Hwu, G. Scheitrum. Microfabrication of Vacuum Compatible MillimeterWave Sources. IEEE Int. Vacuum Electron. Conf., Seoul, Korea,2003,360-361
    [63] J. A. Dayton, Jr., C. L. Kory, G. T. Mearini, et al. A650GHz Helical BWO. IEEE Int. VacuumElectron. Conf., Monterey, USA,2008,396–397.
    [64] C. L. Kory, J. A. Dayton, Jr., et al. Design of650GHz Helical BWO Using CST Studio Suite.IEEE Int. Vacuum Electron. Conf., Monterey, USA,2008,392–393.
    [65] C. L. Kory, J. A. Dayton, G. T. Mearini, et al.95GHz Helical TWT Design. IEEE Int. VacuumElectron. Conf., Rome, Italy,2009,125-126
    [66] R. K. Arora, B. Bhat, S. Aditya. Guided Waves on a Flattenecl Sheath-helix. IEEETransactions on Microwave Theory and Techniques,1977,25(1):71-72
    [67] Booske J H, Mcvey B D, Antonsen T M, et al. Stability and Confinement of NonrelativisticSheet Electron Beams with Periodic Cusped Magnetic Focusing. J. Appl. Phys.,1993,73(9):4140-4155
    [68] O. Buneman. Stability of Crossed-field Electron Beams. J. Appl. Phys.,1966,5(37):3203-3222
    [69] B. E. Carlsten, S. J. Russell, L. M. Earley, et al. Technology Development for a MillimeterWave Sheet-beam Traveling-wave Tube. IEEE Transactions on Plasma Science,2005,33(1):85-93
    [70] C. F. Fu, Y. Y. Wei, W. X. Wang, et al. Radio-Frequency Characteristics of a PrintedRectangular Helix Slow-Wave Structure. Chinese Physics Letters,2008,25(9):3478-3481
    [71] C. F. Fu, Y. Y. Wei, W. X. Wang, et al. Small-Signal Theory of a Rectangular Helix StructureTraveling-Wave-Tube. Chinese Physics B,2009,18(7):2749-2756
    [72]付成芳,魏彦玉,宫玉彬,等.矩形螺旋线慢波电路高频特性的数值分析.真空科学与技术学报,2009,29(4):386-390
    [73] R. K. Arora. Surface Wave on a Pair of Parallel Unidirectionlly Conducting Screens. IEEETransactions on Antennas Propagation,1966,14(6):795-797
    [74] S. Aditya, R. K. Arora. Guided Waves on a Planar Helix. IEEE Transactions on MicrowaveTheory and Techniques,1979,27(10):860-863
    [75] S. Aditya, R. K. Arora. Nonreciprocal Dispersion Characteristics of a Planar Helix onMagnetized Ferrite Slabs. IEEE Transactions on Microwave Theory and Techniques,1979,27(10):864–868
    [76] D. Chadha, S. Aditya, R. K. Arora. Field Theory of Planar Helix Traveling-Wave Tube. IEEETransactions on Microwave Theory and Techniques,1983,31(1):73-76
    [77] S. Aditya, M. Tan, R. Nair, et al. Confined Planar Helix: A Novel Waveguide Structure. IEEEMTT-S Int. Microwave Symposium Digest, San Francisco, USA,2006,1295-1298
    [78] C. F. Fu, Y. Y. Wei, W. X. Wang, et al. Dispersion Characteristics of a Rectangular HelixSlow-Wave Structure. IEEE Transactions on Electron Devices,2008,55(12):3582-3589
    [79] C. Chua, S. Aditya, Z. X. Shen. Effective Dielectric Constant Method for a Planar Helix withStraight-edge Connections. IEEE Electron Device Letter,2009,30(11):1215–1217
    [80] C. Chua, S. Aditya, Z. X. Shen. Planar Helix with Straight-Edge Connections in the Presenceof Multilayer Dielectric Substrate. IEEE Transactions on Electron Device,2010,57(12):3451–3459
    [81] C. Chua, S. Aditya, J. M. Tsai, et al. Microfabricated Planar Helical Slow-wave StructuresBased on Straight-edge Connections for THz Vacuum Electron Devices. Terahertz Science andTechnology,2011,4(4):208-229
    [82] A.M.Skellett. The Magnetically Focused Radial Beam Vacuum Tube. J. Appl. Phys.,1944,15(10):704-709
    [83] V. S. Savel’yev. Interaction of a Radially Diverging Electron Stream and a Radially TravelingElectromagnetic Wave. Radio Engineering and Electronic Physics,1967,12(6):941-947
    [84] V. S. Savel’yev, G. I. Kushcenko. Experimental Investigation of a TWT with a Radial ElectronStream. Radio Engineering and Electronic Physics,1970,15(12):2267-2272
    [85] V. I. Molyavko, A. L. Kurbatov and K. P. Yatsuk. Interaction Between a Radially DivergentElectron Beam and a Slow Electromagnetic Wave. Radio Engineering and Electronic Physics,1971,16(6):1330-1335
    [86] Tore Wessel-Berg. Basics of Radial Sheet Beam Interactions with Potential Applications in theMicrowave K-and W-Bands. AIP Conference Proceedings, Kalamata, Greece,2005,55-64
    [87] A.M.Skellett. Electrostatically Focused Radial-beam Tube. Proceedings of the IRE,1948,36(11):1354-1357
    [88] A.W.Scott, Microwave Generator with Interleaved Focusing and Interaction Structures. USAPatent,149191,1971-7-2.
    [89]沈飞,魏彦玉,王少萌,等.一种新型微带曲折线慢波结构的研究.全国微波毫米波会议,青岛,2011,941-943
    [90] D. G. Zhang, Edward K. N. Yung, H. Y. Ding. Dispersion Characteristics of a Novel ShieldedPeriodic Meander Line. Microwave and Optical Technology Letters,1996,12(1):1-5
    [91] Jerald A.Weiss. Dispersion and Field Analysis of a Microstrip Meanderline Slow WaveStructure. IEEE Transactions on Microwave Theory and Techniques,1974,22(12):1194-1201,
    [92] Sean Sengele, Hongrui Jiang, John H. Booske, et al. A Selectively Metallized, MicrofabricatedW-Band Meander-Line TWT Circuit. IEEE Int. Vacuum Electron. Conf., Monterey, USA,2008,447-448.
    [93] Sean Sengele, Hongrui Jiang, John H. Booske, et al. Microfabrication and Characterization ofa Selectively Metallized W-Band Meander-Line TWT Circuit. IEEE Transactions on ElectronDevices,2009,56(5):730-737
    [94]彭自安.微带型曲折线慢波结构的研究.电子学报,1983,11(4):68-75
    [95]刘跃武,张其劭.微带曲折线周期慢波结构色散特性研究.电子学报,1984,12(4):70-76
    [96]张大勇.应用于微波管的微带型曲折线慢波结构的理论研究:[硕士学位论文],山东:山东大学,2006,5-18
    [97]张大勇,冯进军,廖复疆,等.微带型曲折线慢波结构冷测特性的计算机仿真.电子器件,2006,29(4):1223-1226
    [98] F. Shen, Y. Y. Wei, H. R. Yin, et al. A Novel V-Shaped Microstrip Meander-Line Slow-WaveStructure for W-band MMPM. IEEE Transactions on Plasma Science,2012,40(2):463-469
    [99] F. Shen, Y. Y. Wei, X. Xu.140GHz V-shaped Microstrip Meander-line Traveling Wave Tube.Journal of Electromagnetic Waves and Applications,2012,26(1):89-98
    [100]沈飞,魏彦玉,许雄,等.140GHz菱形微带曲折线慢波结构行波管的模拟计算.强激光与粒子束,2012,24(1):139-141
    [101] F. Shen, Y. Y. Wei, Z. Y. Duan, et al. Cold-Test Characteristics Simulation of a V-typeMicrostrip Meander-Line Slow Wave Structure. Proceedings of IEEE IVESC, Nanjing, China,2010,288-289.
    [102]魏彦玉,沈飞,宫玉彬,等.一种V型微带曲折线慢波结构.中国,实用新型专利,授权号:ZL201020259495.7,2011-04-13
    [103]沈飞,魏彦玉,许雄,等.一种V形微带曲折线慢波结构的研究.中国电子学会真空电子学分会第十八届学术年会论文集,张家界,2011,195-198
    [104] Ansoft Corp., Ansoft HFSS User’s Reference. http://www.ansoft.com.cn/
    [105]付成芳.带状束矩形螺旋线行波管的研究:[博士学位论文].成都:电子科技大学,2009,1-102
    [106]付成芳,魏彦玉,蒋艺.矩形螺旋线行波管注-波互作用3维模拟.强激光与粒子束,2011,23(5):1341-1345
    [107]何俊.毫米波新型曲折波导行波管的研究:[博士学位论文].成都:电子科技大学,2010,1-120
    [108]任大鹏,冯进军.W波段斜注管高频结构的设计和注波互作用模拟.真空电子技术,2011,51(6):21-25
    [109] CST Corp., CST MWS Tutorials. http://www.cstchina.cn/
    [110] Chao Zhang, G. C. Stevens. Dielectric Properties of Boron Nitride Filled Epoxy Composites.Proceedings of IEEE CEIDP, Kansas, USA,2006,19-22.
    [111]清华大学《微带电路》编写组.微带电路.北京:人民邮电出版社,1976,4-28
    [112] CST Corp., CST PS Tutorials. http://www.cstchina.cn/
    [113]蔡军.W波段折叠波导慢波结构的研究:[博士学位论文].济南:山东大学,2006,8-63
    [114] J. C. Simon, A. A. Mondelli, B. Levush, et al. CTLSS-An Advanced ElectromagneticSimulation Tool for Designing High-power Microwave Sources. IEEE Transactions onPlasma Science,2000,28(3):841-866
    [115] D. P. Chernin, T. M. Antonsen, Jr., B. Levush, et al. A Three-dimensional MultifrequencyLarge-signal Model for Helix Traveling Wave Tubes. IEEE Transactions on Electron Devices,2001,48(1):3–11
    [116] J. Cai, J. J. Feng, X. P. Wu, Y. F. Hu, B. Qu, M. G. Huang, S. Y. Ma “Analysis and TestPreparation of Attenuator for W-band Folded Waveguide TWT”, in IEEE Int. VacuumElectron. Conf., May2007, pp.15-17.
    [117]任裕安.开敞型慢波线热传导的一维分析.电子学通讯,1981,3(7):160-166
    [118]王基奎.螺旋线慢波结构的散热能力分析.电子学报,1982,6(11):25-32
    [119] Y. Han, Y. W. Liu, Y. G. Ding, et al. Thermal Analysis of a Helix TWT Slow-Wave Structure.IEEE Transactions on Electron Devices,2008,55(5):1269–1272
    [120] J. A. Lucken. Some Aspects of Circuit Power Dissipation in High Power CW Helix TravelingWave Tubes (Part1, General Theory). IEEE Transactions on Electron Devices,1969,16(9):813-820
    [121] J. A. Lucken. Some Aspects of Circuit Power Dissipation in High Power CW Helix TravelingWave Tubes (Part2, Scaling Law). IEEE Transactions on Electron Devices,1969,16(9):821-826
    [122] Crivello R, Richard W. and Grow R. Thermal Analysis of PPM Focused Rod Supported TWTHelix Structures. IEEE Transactions on Electron Devices,1988,35(10):1701-1720
    [123]颜胜美.热形变对螺旋线行波管性能参数的影响研究:[硕士学位论文],成都:电子科技大学,2009,7-26
    [124] ANSYS, Inc. ANSYS Thermal Analysis Guide, Release5.6.2000
    [125]尚艳华,蔡绍伦.Q波段行波管的螺旋线结构的热分析.真空电子技术,2008,50(1):5-9
    [126]姚列明.微波管的热分析:[博士学位论文],成都:电子科技大学,2007,49-110
    [127]张洪林,袁景中.Ka波段脊波导到微带过渡器的设计.中国科技信息,2009,(20):135-136
    [128]周文,凌明芳,梁素珍.印刷电路返波管的特性计算与实验研究.浙江大学学报,1980,14(2):66-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700