浓缩诱导含钙离子的海藻酸钠与高酯果胶体系胶凝及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻酸钠与高酯果胶是来源广泛的天然水溶性多糖,因其具有独特的胶凝特性而被广泛应用于食品和医药领域。海藻酸钠凝胶通常用钙离子胶凝方法制备,而高酯果胶的胶凝作用也受钙离子影响。然而,海藻酸钠的遇钙胶凝机理还有待完善,而钙离子对高酯果胶胶凝过程的作用机理还不清楚,并且常用的钙离子胶凝方法存在难以控制胶凝过程或需引入研究对象以外的化学物质的弊端,因此不适用于研究海藻酸钠与高酯果胶的涉钙胶凝过程。本文首先建立了一种新的钙离子胶凝方法;其次在此基础上,从有利于实际生产应用的角度出发,研究了海藻酸钠与高酯果胶的涉钙胶凝过程,以期进一步完善其涉钙胶凝机理;最后,探究了此钙离子胶凝方法在保健食品中的应用前景,以期拓宽海藻酸钠与高酯果胶的应用范围。
     首先,以相同来源但粘度等级不同的海藻酸钠(分别用LA和MA指代低等粘度和中等粘度的海藻酸钠)为研究对象,通过流变学方法构建了海藻酸钠的浓缩诱导型钙离子胶凝体系,并研究了海藻酸钠分子链在含钙离子体系浓缩过程中的相互作用。凝胶渗透色谱和1H核磁共振光谱分析结果表明,LA和MA的结构差异主要在于其分子量分布不同。流变学研究结果表明,1%(w/v)海藻酸钠与4μmol/mL CaCl2是构建LA和MA的浓缩诱导型钙离子胶凝体系的较适初始条件,该体系在水分蒸发过程中由具有良好流动特性的溶液状态转变成了具有均一网状结构的凝胶状态。另外,LA和MA分别按照重量比0:4、1:3、2:2、3:1和4:0复配而成的含钙离子水溶性体系在流动特性和胶凝行为方面呈现出显著差异,说明海藻酸钠的分子量分布对以钙离子为媒介的海藻酸钠分子链相互作用具有重要的影响。
     其次,以海藻酸钠的浓缩诱导型钙离子胶凝过程和“蛋盒”结构胶凝机理为参考,用浓缩诱导型钙离子胶凝方法研究了钙离子在高酯果胶胶凝过程中的作用。结果表明,在水分蒸发过程中,含有2.72μmol/mL CaCl2的浓度为1%(w/v)的高酯果胶(甲酯化度为75.6%)水溶性体系所形成凝胶的强度(储存模量G′约为1140000Pa)高于海藻酸钠参照体系,证明钙离子参与了高酯果胶的胶凝过程,同时说明可能还存在其它因素导致高酯果胶形成凝胶;与海藻酸钠水溶性体系相比,相同的钙离子添加量对高酯果胶水溶性体系的流体行为具有更强的削弱作用:其流动指数n降低了29%、粘稠指数k升高了1226%、损耗角δ减小了30°,说明钙离子很可能通过非结合性方式与高酯果胶分子相互作用而参与了高酯果胶的胶凝过程;不含钙离子的高酯果胶水溶性体系在单独水分蒸发作用下,δ角减小了33.7%,但该体系不能在水分蒸发过程中形成凝胶,并且钙离子的存在使其δ角从62°减小到29°,说明钙离子对高酯果胶的胶凝过程具有引发和加速的作用;高酯果胶分子与钙离子之间不存在明显的最适相互作用比例,而高酯果胶含钙离子水溶性体系需要蒸发大量水分后才能形成凝胶,并且所形成的凝胶具有明显高于海藻酸钠参照体系的游离钙离子含量,这些研究结果表明,钙离子通过与其在海藻酸钠胶凝过程中不同的作用方式引发和加速了高酯果胶的胶凝过程。
     再次,在明确海藻酸钠与高酯果胶的浓缩诱导型钙离子胶凝作用的基础上,将海藻酸钠与高酯果胶分别以3:1、2:2和1:3重量比复配成水溶性体系(分别用A3P1、A2P2和A1P3表示),研究了钙离子对该体系流动特性(用流动指数n和粘稠指数k来表征)、物理状态特性(用损耗角δ来表征)和浓缩诱导型钙离子胶凝特性(用储存模量G′和损耗模量G″来表征)的影响。结果表明,钙离子的存在改变了A/P(指代海藻酸钠与高酯果胶复配)水溶性体系的n值、k值和δ值与其A/P配比之间的线性关系,使得A1P3、A3P1和A2P2体系的n值依次降低、k值依次升高,而A2P2和A1P3体系的δ值因钙离子的存在而减小至45°以下;在水分蒸发过程中,A3P1和A1P3的含钙离子水溶性体系(分别用CaA3P1与CaA1P3表示)呈现了浓缩诱导型钙离子胶凝过程,而A2P2的含钙离子水溶性体系(CaA2P2)始终保持非凝胶状态。这些研究结果表明,钙离子的存在使A/P体系具有与海藻酸钠/高酯果胶单一体系所不同的流变学性质。
     最后,将浓缩诱导型钙离子胶凝方法与喷雾干燥法结合制备出海藻酸钠/高酯果胶的浓缩诱导型钙离子凝胶,并将其用作原淀粉的生味掩盖剂和共轭亚油酸(CLA)的抗氧化控释载体。首先研究了该凝胶作为淀粉生味掩盖剂的应用效果:用扫描电子显微镜观察淀粉-海藻酸钠凝胶微球发现,海藻酸钠凝胶包覆于淀粉颗粒表面;与原料蜡质玉米淀粉相比,淀粉-海藻酸钠凝胶微球在牛奶中的淀粉生味、粗糙口感和入喉异感都明显减小,使得牛奶依然保持原来的风味和光滑的口感,因此,该凝胶可用作淀粉生味掩盖剂促进禾谷类原淀粉作为慢消化淀粉的直接应用。然后,研究了浓缩诱导型钙离子凝胶作为CLA载体的应用效果:CaA3P1形成的浓缩诱导型钙离子凝胶在模拟胃和小肠消化试验中显示出相对适用于构建小肠定位释放载体的消化稳定性;25mL1%(w/v)辛烯基琥珀酸淀粉酯(OSA淀粉)糊液能与1mL CLA形成稳定性较好的乳状液,并且OSA淀粉糊液中的游离直链淀粉在乳化操作过程中能与CLA相互作用形成稳定的复合物,因而,利用OSA淀粉的乳化稳定作用能将CLA引至海藻酸钠/高酯果胶的水溶性体系中;钙离子的存在使CaA3P1与OSA淀粉-CLA乳状液的混合物(以4:1体积比混合)经过喷雾干燥后能形成CLA载体;经过同等条件的加速氧化处理后,无载体保护的CLA的过氧化值(POV)是原来的10.3倍,而受载体保护的CLA的POV是原来的1.6倍,说明浓缩诱导型钙离子凝胶载体对CLA具有较好的抗氧化保护作用;该载体在模拟胃和小肠消化条件下对CLA的释放率分别为44(±1.8)%和50(±2.9)%,说明该载体对CLA的小肠定位释放性能还有待进一步提高。
     从上述研究内容与结果可以看出:1.浓缩诱导型钙离子胶凝方法是一种简单且便于控制的钙离子胶凝方法;2.可以通过调整粘度等级不同的普通海藻酸钠商品的复配比例来调控海藻酸钠与钙离子的相互作用,以获得具有理想应用性能的海藻酸钠产品;3.高酯果胶在含钙离子水溶性体系浓缩过程中所展现的胶凝特性可应用于生产新的钙离子类果胶凝胶;4. CaA2P2具有最弱流动特性和最强固体状态特性,并且在水分蒸发过程中不能形成凝胶,使其可作为热稳定型增稠剂应用于食品工业,而CaA3P1和CaA1P3具有较好的流动特性和浓缩诱导型钙离子胶凝特性,使其可作为胶凝剂应用于食品和医药工业;5.海藻酸钠与高酯果胶的浓缩诱导型钙离子胶凝过程及其与喷雾干燥法相结合的胶凝方法在食品和医药领域具有较好的实际应用前景。
Sodium alginate (SA) and high methoxy pectin (HMP) are water-soluble polysaccharides with naturaland abundant sources, and they are widely applied in the food and pharmaceutical industries due to theirgel-forming properties. SA gels are usually produced by Ca~(2+)gelling methods (CGMs), and the gelation ofHMP is also affected by Ca~(2+). However, the gelling mechanism of SA with Ca~(2+)still needs to be improved,and the acting mechanism of Ca~(2+)in the gelation of HMP is still unclear. Furthermore, the commonly usedCGMs are not appropriate for the investigation of the Ca~(2+)-involved gelling processes (CIGPes) of SA andHMP as the methods either fail to control the gelling process or introduce other materials besides thesubjects into the investigated systems. Therefore, in order to better understand the Ca~(2+)-involved gellingmechanisms of SA and HMP as well as to broaden their application range, a new method namedconcentration-induced Ca~(2+)gelling method (CICGM) was developed in the study, and the CIGPes of SAand HMP were investigated using the gelling method from the aspects beneficial to practical applications.
     Firstly, a concentration-induced Ca~(2+)gelling system (CICGS) of SA was developed using two SAshaving different viscosity (low-viscosity alginate (LA) and medium-viscosity alginate (MA)) obtained fromthe same brown algae, and their chain interactions during the concentration-induced Ca~(2+)gelling process(CICGP) were investigated rheologically. The main structural differences between LA and MA were foundto be their molecular weight distributions according to the analysis results of gel permeationchromatography and1H nuclear magnetic resonance. As shown by the rheological investigation results,1%(w/v) of SA and4μmol/mL of CaCl2were the appropriate initial conditions for preparing a SA CICGSwhich can be converted from a solution state with good flow properties to a gel state of uniform meshstructure during water evaporation. Furthermore, the Ca~(2+)-containing aqueous systems composed of LAand MA mixed at ratios of0:4,1:3,2:2,3:1and4:0(weight basis) showed significantly different flowproperties and concentration-induced Ca~(2+)gelling behavior, indicating that the molecular weightdistributions of SAs have important influence on their molecular chain interactions mediated by Ca~(2+).
     Secondly, using the CICGP of SA and its “egg-box” gelling mechanism as references, the effect ofCa~(2+)on the gelation of HMP was investigated by the CICGM. The aqueous system composed of1%(w/v)of HMP (75.6%of degree of methyl esterification) and4μmol/mL of CaCl2formed a gel whose strength(storage modulus G′≈1140000Pa) was higher than that of the referenced SA system during waterevaporation. This result confirms that Ca~(2+)participates in the gelation of HMP, and also suggests that thegelation of HMP likely involves other factors besides the participation of Ca~(2+). Compared with the SAaqueous system, the flow behavior of the HMP aqueous system was weakened in a greater extent by thesame amount of Ca~(2+)addition (flow index n decreased by29%, consistency index k increased by1226%,and loss angle δ reduced by30°), indicating that the Ca~(2+)likely participates in the gelling process of HMPthrough a non-binding interaction with the HMP molecules. Furthermore, the Ca~(2+)-free aqueous system ofHMP could not form gels in the water evaporation although33.7%of its δ value was reduced by the waterevaporation. However, the δ value of the HMP aqueous system was reduced from62°to29°due to theexistence of Ca~(2+). These results indicate that Ca~(2+)plays a role of triggering and accelerating in the gelationof HMP, and the function of Ca~(2+)was achieved through an acting way different from its acting way in thegelation of SA as supported by the absence of an optimal ratio of HMP-Ca~(2+)interactions and the high freeCa~(2+)content in the HMP gel formed after large amount of water was evaporated in comparison with the SAsystem.
     Thirdly, the effect of Ca~(2+)on the flow properties (charactered by n and k), physical state properties(charactered by δ) and concentration-induced Ca~(2+)gelling properties (charactered by storage modulus G′and loss modulus G″) of the aqueous systems composed of mixed SA and HMP (A/P) at weight-basis ratios of3:1,2:2and1:3(labelled as A3P1, A2P2and A1P3, respectively) were investigated basingunderstanding the gelation of Ca~(2+)-containing aqueous systems of SA and HMP during water evaporation.The existence of Ca~(2+)changed the linear relationship between the n, k and δ values of the A/P systems andtheir A/P ratios. Specifically, due to the existence of Ca~(2+), the n values of the A1P3, A3P1and A2P2decreased orderly while their k values increase orderly, and the δ values of the A2P2and A1P3werereduced below45°. During water evaporation, the Ca~(2+)-containing aqueous systems of both A3P1andA1P3(labelled as CaA3P1and CaA1P3, respectively) showed a CICGP while the Ca~(2+)-containing aqueoussystem of A2P2(CaA2P2) kept in a non-gel state all the time. These results manifest that the rheologicalproperties of the A/P aqueous systems are distinctly different from those of the aqueous systems of SA orHMP alone due to the existence of Ca~(2+).
     Finally, the CICGM was combined with spray drying method to prepare a concentration-induced Ca~(2+)gel (CICG), and the gels were applied as a masked agent of raw taste for starch and an antioxidative andcontrol-release carrier for conjugated linoleic acid (CLA). The CICG of SA in the starch-SA gel microbeadswas observed to be coating on the surface of the starch granules using scanning electron microscopy.Compared with the raw material waxy corn starch, the starch-SA gel microbeads showed much weaker rawtaste, rough feeling and unpleasant throat feeling in milk, and kept the original flavor and smoothmouthfeel of the milk. This comparison result indicates that the CICGP of SA can be applied as a maskedagent of raw taste for starch to facilitate the direct application of cereal raw starch as slowly digestiblestarch. In addition, the CICG formed by the CaA3P1showed digestion stability relatively appropriate fordeveloping small intestine-target release carriers. Octenyl succinic anhydride modified starch (OSA starch)paste (1%, w/v) and CLA mixed at a volume ratio of25:1could form a stable emulsion, and the freeamylose in the paste could form stable complexes with CLA during the emulsifying operation, so CLA canbe introduced into the aqueous systems of SA and HMP through the emulsifying and stabilizing effects ofthe OSA starch on it. CaA3P1and OSA starch-CLA emuolsion mixed at a volume ratio of4:1could formCLA carriers through spray drying due to the existence of Ca~(2+). After the same accelerated oxidationtreatment, the peroxide value (POV) of the CLA without carrier protection was10.3times of its originalPOV while the POV of the CLA in the carriers was1.6times of its original POV, indicating that the CICGcarriers have a good antioxidative protection effect on CLA. Besides, the CICG carriers released44(±1.8)%and50(±2.9)%of CLA in simulated stomach and small intestine conditions, repectively, suggesting thatthe small intestine-target release properties of the carriers for CLA need to be improved.
     Briefly, the following conclusions can be drawn based on the above investigated contents and results:1. CICGM is simple and easy for controlling the gelling process;2. the SA-Ca~(2+)interactions can beregulated through adjusting the mixing ratios of the commercial SAs of different viscosity to produce SAproducts with desirable application properties;3. the gelling properties of HMP shown in the concentratingprocess of its Ca~(2+)-containing aqueous systems can be used to produce new Ca~(2+)-related pectin gels;4. theCaA2P2, which can not form gels in water evaporation but has the weakest flow properties and thestrongest solid state properties, can be applied as a heat-stable thickener in the food industry, and theCaA3P1and CaA1P3having good flow properties and concentration-induced Ca~(2+)gelling properties canbe applied as gelling agents in the food and pharmaceutical industries;5. the CICGM combined with spraydrying, and the CICGPs of SA and HMP have good practical application prospects in the field of food andmedicine.
引文
[1] Dumitriu S. Polysaccharides: structural diversity and functional versatility[M]. Second ed. New York: MarcelDekker,2005. chapter21.
    [2] Stanford E C C. On algin: a new substance obtained from some of the commoner species of marine algae[J].Chemistry News,1883,47:254-257.
    [3]王孝华.海藻酸钠的提取及应用[J].重庆工学院学报(自然科学版),2007,(05):124-128.
    [4] Augst A D, Kong H J and Mooney D J. Alginate hydrogels as biomaterials[J]. Macromolecular Bioscience,2006,6(8):623-633.
    [5] Kong H-J, Lee K Y and Mooney D J. Decoupling the dependence of rheological/mechanical properties ofhydrogels from solids concentration[J]. Polymer,2002,43(23):6239-6246.
    [6] K. A and Y. T. Studies on seaweeds of Japan I. The chemical constituents of Laminaria[J]. Journal of theSociety of Chemical Industry, Japan,1926,29:509-517.
    [7] Nelson W L and Cretcher L H. The alginic acid from macrocystis pyrifera [J]. Journal of the AmericanChemical Society,1929,51(6):1914-1922.
    [8] Fischer F G and Dorfel H. Polyuronic acids in brown algae[J]. Hoppe-Seyler's Zeitschrift fur physiologischeChemie,1955,302(4-6):186-203.
    [9] Haug A. Fractionation of alginic acid[J]. Acta Chemica Scandinavica,1959,13:601-603.
    [10] Haug A and Smidsr d O. Fractionation of alginates by precipitation with calcium and magnesium ions[J].Acta Chemica Scandinavica,1965,19:1221-1226.
    [11] Smidsr d O and Skjak-Br k G. Alginate as immobilization matrix for cells[J]. Trends in Biotechnology,1990,8(3):71-78.
    [12] Jorgensen T E, Sletmoen M, Draget K I, et al. Influence of oligoguluronates on alginate gelation, kinetics,and polymer organization[J]. Biomacromolecules,2007,8(8):2388-2397.
    [13] Racovita S, Vasiliu S, Popa M, et al. Polysaccharides based on micro-and nanoparticles obtained by ionicgelation and their applications as drug delivery systems[J]. Revue Roumaine De Chimie,2009,54(9):709-718.
    [14] Morch Y A, Donati I, Strand B L, et al. Effect of Ca2+, Ba2+, and Sr2+on alginate microbeads[J].Biomacromolecules,2006,7(5):1471-1480.
    [15] Yu C-Y, Wei H, Zhang Q, et al. Effect of ions on the aggregation behavior of natural polymer alginate[J].Journal of Physical Chemistry B,2009,113(45):14839-14843.
    [16] Qin Y M. Alginate fibres: an overview of the production processes and applications in woundmanagement[J]. Polymer International,2008,57(2):171-180.
    [17] Cui S W. Food carbohydrates: chemistry, physical properties, and applications[M]. Boca Raton: CRC Press,Taylor&Francis Group,2005a.293-295.
    [18] Brownlee I A, Allen A, Pearson J P, et al. Alginate as a source of dietary fiber[J]. Critical Reviews in FoodScience and Nutrition,2005,45(6):497-510.
    [19] Jensen M G, Kristensen M and Astrup A. Effect of alginate supplementation on weight loss in obesesubjects completing a12-wk energy-restricted diet: a randomized controlled trial[J]. American Journal ofClinical Nutrition,2012,96(1):5-13.
    [20] George M and Abraham T E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginateand chitosan-a review[J]. Journal of Controlled Release,2006,114(1):1-14.
    [21] Chan L W, Lim L T and Heng P W. Microencapsulation of oils using sodium alginate[J]. Journal ofMicroencapsulation,2000,17(6):757-766.
    [22] Cagri A, Ustunol Z and Ryser E T. Antimicrobial edible films and coatings[J]. Journal of Food Protection,2004,67(4):833-848.
    [23] Sriamornsak P and Kennedy R A. A novel gel formation method, microstructure and mechanical propertiesof calcium polysaccharide gel films[J]. International Journal of Pharmaceutics,2006,323(1-2):72-80.
    [24] Boateng J S, Matthews K H, Stevens H N E, et al. Wound healing dressings and drug delivery systems: areview[J]. Journal of Pharmaceutical Sciences,2008,97(8):2892-2923.
    [25] Josef E, Zilberman M and Bianco-Peled H. Composite alginate hydrogels: an innovative approach for thecontrolled release of hydrophobic drugs[J]. Acta Biomaterialia,2010,6(12):4642-4649.
    [26] Li Y, Hu M, Du Y, et al. Control of lipase digestibility of emulsified lipids by encapsulation within calciumalginate beads[J]. Food Hydrocolloids,2011,25(1):122-130.
    [27] Krause Bierhalz A C, da Silva M A and Kieckbusch T G. Natamycin release from alginate/pectin films forfood packaging applications[J]. Journal of Food Engineering,2012,110(1):18-25.
    [28] Lai H, Zhu F, Yuan W, et al. Development of multiple-unit colon-targeted drug delivery system by usingalginate: in vitro and in vivo evaluation[J]. Drug Development and Industrial Pharmacy,2011,37(11):1347-1356.
    [29] Murtaza G, Waseem A, Nisar ur R, et al. Alginate microparticles for biodelivery: a review[J]. AfricanJournal of Pharmacy and Pharmacology,2011,5(25):2726-2737.
    [30] Abd El-Ghaffar M A, Hashem M S, El-Awady M K, et al. pH-sensitive sodium alginate hydrogels forriboflavin controlled release[J]. Carbohydrate Polymers,2012,89(2):667-675.
    [31] Cuadros T R, Skurtys O and Aguilera J M. Mechanical properties of calcium alginate fibers produced with amicrofluidic device[J]. Carbohydrate Polymers,2012,89(4):1198-1206.
    [32] Dalmoro A, Barba A A, Lamberti G, et al. Pharmaceutical applications of biocompatible polymer blendscontaining sodium alginate[J]. Advances in Polymer Technology,2012,31(3):219-230.
    [33] Lee K Y and Mooney D J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science,2012,37(1):106-126.
    [34] Paradee N, Sirivat A, Niamlang S, et al. Effects of crosslinking ratio, model drugs, and electric fieldstrength on electrically controlled release for alginate-based hydrogel[J]. Journal of Materials Science-Materialsin Medicine,2012,23(4):999-1010.
    [35] Patil S B, Kaul A, Babbar A, et al. In vivo evaluation of alginate microspheres of carvedilol for nasaldelivery[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials,2012,100B(1):249-255.
    [36] Thu H-E, Zulfakar M H and Ng S-F. Alginate based bilayer hydrocolloid films as potential slow-releasemodern wound dressing[J]. International Journal of Pharmaceutics,2012,434(1-2):375-383.
    [37]孙磊,张柏青,陈磊,等.海藻酸钠凝胶复合异种骨构建组织工程骨及体内成骨[J].中国修复重建外科杂志,2008,(06):732-736.
    [38] Acarturk F and Takka S. Calcium alginate microparticles for oral administration: II. effect of formulationfactors on drug release and drug entrapment efficiency[J]. Journal of Microencapsulation,1999,16(3):291-301.
    [39] Tonnesen H H and Karlsen J. Alginate in drug delivery systems[J]. Drug Development and IndustrialPharmacy,2002,28(6):621-630.
    [40]吴秋惠,吴皓,王令充,等.海藻酸钠微球的制备及其在药物载体中的应用进展[J].中华中医药杂志,2011,(08):791-794.
    [41] Rayment P, Wright P, Hoad C, et al. Investigation of alginate beads for gastro-intestinal functionality, part1:in vitro characterisation[J]. Food Hydrocolloids,2009,23(3):816-822.
    [42] Cui S W. Food carbohydrates: chemistry, physical properties, and applications[M]. Boca Raton: CRC Press,Taylor&Francis Group,2005b.59.
    [43]王卫平.食品品质改良剂:亲水胶体的性质及应用(之五)──果胶[J].食品与发酵工业,1996,(04):81-84.
    [44]焦云鹏,徐伟,朱秀灵,等.低酯果胶的制备、应用和研究进展[J].四川工业学院学报,2004,(04):57-58+62.
    [45]容天雨,陈浩年,陈建锋. LM果胶甲酯化反应的研究[J].广州大学学报(自然科学版),2004,(01):24-26.
    [46]张庆坤,雷激,张大凤.果胶酯酶制备低酯果胶的研究进展[J].食品工业科技,2007,(08):243-246.
    [47]任建辉,徐雅琴.低甲氧基果胶的研究概况[J].食品工程,2006,(02):19-20+26.
    [48] El-Nawawi S A and Heikal Y A. Production of a low ester pectin by de-esterification of high ester citruspectin[J]. Carbohydrate Polymers,1995,27(3):191-195.
    [49] May C D. Industrial pectins: sources, production and applications[J]. Carbohydrate Polymers,1990,12(1):79-99.
    [50] Sinha V R and Kumria R. Polysaccharides in colon-specific drug delivery[J]. International Journal ofPharmaceutics,2001,224(1-2):19-38.
    [51] Scheller H V, Jensen J K, Sorensen S O, et al. Biosynthesis of pectin[J]. Physiologia Plantarum,2007,129(2):283-295.
    [52] Harholt J, Suttangkakul A and Scheller H V. Biosynthesis of pectin[J]. Plant Physiology,2010,153(2):384-395.
    [53] Gidley M, Morris E, Murray E, et al. Spectroscopic and stoichiometric characterization of thecalcium-mediated association of pectate chains in gels and in the solid-state[J]. Journal of the ChemicalSociety-Chemical Communications,1979,(22):990-992.
    [54] Oakenfull D and Scott A. Hydrophobic interaction in the gelation of high methoxyl pectins[J]. Journal ofFood Science,1984,49(4):1093-1098.
    [55] Garnier C, Axelos M A V and Thibault J F. Dynamic viscoelasticity and thermal behavior of pectin calciumgels[J]. Food Hydrocolloids,1991,5(1-2):105-108.
    [56] Capel F, Nicolai T, Durand D, et al. Calcium and acid induced gelation of (amidated) low methoxylpectin[J]. Food Hydrocolloids,2006,20(6):901-907.
    [57] Liu L S, Fishman M L, Kost J, et al. Pectin-based systems for colon-specific drug delivery via oral route[J].Biomaterials,2003,24(19):3333-3343.
    [58]王友平.浅析果胶作为膳食纤维的研究与开发状况[J].食品安全导刊,2010,(04):50-51.
    [59] Onumpai C, Kolida S, Bonnin E, et al. Microbial utilization and selectivity of pectin fractions with variousstructures[J]. Applied and Environmental Microbiology,2011,77(16):5747-5754.
    [60] Brouns F, Theuwissen E, Adam A, et al. Cholesterol-lowering properties of different pectin types in mildlyhyper-cholesterolemic men and women[J]. European Journal of Clinical Nutrition,2012,66(5):591-599.
    [61] Wei X, Chen Z, Lu Y, et al. Physicochemical characterization of a pectin/calcium matrix containing a largefraction of calcium chloride: implications for sigmoidal release characteristics[J]. Journal of Applied PolymerScience,2009,113(4):2418-2428.
    [62] Thakur B R, Singh R K and Handa A K. Chemistry and uses of pectin--a review[J]. Critical Reviews inFood Science and Nutrition,1997,37(1):47-73.
    [63] Giancone T, Torrieri E, Di Pierro P, et al. Effect of surface density on the engineering properties of highmethoxyl pectin-based edible films[J]. Food and Bioprocess Technology,2011,4(7):1228-1236.
    [64] da Silva V R, Hamerski F and Scheer A P. Pretreatment of aqueous pectin solution by cross-flowmicrofiltration: analysis of operational parameters, degree of concentration and pectin losses[J]. InternationalJournal of Food Science and Technology,2012,47(6):1246-1252.
    [65] Maxwell E G, Belshaw N J, Waldron K W, et al. Pectin-an emerging new bioactive food polysaccharide[J].Trends in Food Science&Technology,2012,24(2):64-73.
    [66]李敏,李拖平,赵中胜,等.食品添加剂果胶的研究进展[J].农产品加工(学刊),2010,(05):61-63.
    [67]杨桂馥.果胶及其在食品中的应用[J].食品工业科技,1989,(04):26-29.
    [68] Cerda J J. The role of grapefruit pectin in health and disease[J]. Transactions of the American Clinical andClimatological Association,1988,99:203-213.
    [69] Sande S A. Pectin-based oral drug delivery to the colon[J]. Expert Opin Drug Deliv,2005,2(3):441-450.
    [70]魏秀莉.果胶/钙在体交联结肠定位释药系统的研究[D].博士,复旦大学,2006.
    [71] Liu L S, Fishman M L and Hicks K B. Pectin in controlled drug delivery-a review[J]. Cellulose,2007,14(1):15-24.
    [72] Sriamornsak P. Application of pectin in oral drug delivery[J]. Expert Opinion on Drug Delivery,2011,8(8):1009-1023.
    [73] Sanko N, Alund S J, Hiorth M, et al. Studies on pectin coating of liposomes for drug delivery[J]. Colloidsand Surfaces B-Biointerfaces,2011,88(2):664-673.
    [74] Bobokalonov J T, Kasimova G F, Muhidinov Z K, et al. Kinetics of piroxicam release from low-methylatedpectin/zein hydrogel microspheres[J]. Pharmaceutical Chemistry Journal,2012,46(1):50-53.
    [75] Bosio V E, Machain V, Gomez Lopez A, et al. Binding and encapsulation of doxorubicin on smart pectinhydrogels for oral delivery[J]. Applied Biochemistry and Biotechnology,2012,167(5):1365-1376.
    [76] Patel B D, Patel D V, Chavda J R, et al. Development and evaluation of pectin based colon targeted herbaldrug delivery system[J]. African Journal of Pharmacy and Pharmacology,2012,6(25):1815-1820.
    [77] Smistad G, Boyum S, Alund S J, et al. The potential of pectin as a stabilizer for liposomal drug deliverysystems[J]. Carbohydrate Polymers,2012,90(3):1337-44.
    [78] Grant G T, Morris E R, Rees D A, et al. Biological interactions between polysaccharides and divalentcations: the egg-box model[J]. FEBS Letters,1973,32:195-198.
    [79] Draget K I, Skjak-Braek G and Smidsrod O. Alginate based new materials[J]. International Journal ofBiological Macromolecules,1997,21(1-2):47-55.
    [80] Liu X X, Qian L Y, Shu T, et al. Rheology characterization of sol-gel transition in aqueous alginate solutionsinduced by calcium cations through in situ release[J]. Polymer,2003,44(2):407-412.
    [81] Donati I, Holtan S, Morch Y A, et al. New hypothesis on the role of alternating sequences incalcium-alginate gels[J]. Biomacromolecules,2005,6(2):1031-1040.
    [82] Funami T, Fang Y, Noda S, et al. Rheological properties of sodium alginate in an aqueous system duringgelation in relation to supermolecular structures and Ca2+binding[J]. Food Hydrocolloids,2009,23(7):1746-1755.
    [83] Willats W G T, McCartney L, Mackie W, et al. Pectin: cell biology and prospects for functional analysis[J].Plant Molecular Biology,2001,47(1-2):9-27.
    [84] Morris E R, Powell D A, Gidley M J, et al. Conformations and interactions of pectins: I. polymorphismbetween gel and solid states of calcium polygalacturonate[J]. Journal of Molecular Biology,1982,155(4):507-516.
    [85] Morris E, Gidley M, Murray E, et al. Characterization of pectin gelation under conditions of low wateractivity, by circular dichroism, competitive inhibition and mechanical properties[J]. International Journal ofBiological Macromolecules,1980,2(5):327-330.
    [86] Neidhart S, Hannak C, Gierschner K, et al. Investigations of the influence of various cations on therheological properties of high-esterified pectin gels. In Progress in Biotechnology[M]: Elsevier,1996. Vol.Volume14:583-590.
    [87] Lofgren C, Guillotin S, Evenbratt H, et al. Effects of calcium, pH, and blockiness on kinetic rheologicalbehavior and microstructure of HM pectin gels[J]. Biomacromolecules,2005,6(2):646-652.
    [88] MacDougall A J, Needs P W, Rigby N M, et al. Calcium gelation of pectic polysaccharides isolated fromunripe tomato fruit[J]. Carbohydrate Research,1996,293(2):235-249.
    [89] Tibbits C W, MacDougall A J and Ring S G. Calcium binding and swelling behaviour of a high methoxylpectin gel[J]. Carbohydrate Research,1998,310(1-2):101-107.
    [90] Iijima M, Hatakeyama T, Nakamura K, et al. Thermomechanical analysis of calcium alginate hydrogels inwater[J]. Journal of Thermal Analysis and Calorimetry,2002,70(3):807-814.
    [91] Tu J, Bolla S, Barr J, et al. Alginate microparticles prepared by spray-coagulation method: preparation, drugloading and release characterization[J]. International Journal of Pharmaceutics,2005,303(1-2):171-181.
    [92] Bellich B, Borgogna M, Cok M, et al. Release properties of hydrogels: water evaporation from alginate gelbeads[J]. Food Biophysics,2011,6(2):259-266.
    [93] Straatmann A and Borchard W. Phase separation in calcium alginate gels[J]. European Biophysics Journalwith Biophysics Letters,2003,32(5):412-417.
    [94] Lu L, Liu X, Tong Z, et al. Critical exponents and self-similarity for sol-gel transition in aqueous alginatesystems induced by in situ release of calcium cations[J]. Journal of Physical Chemistry B,2006,110(49):25013-25020.
    [95] Audebrand M, Kolb M and Axelos M A V. Combined rheological and ultrasonic study of alginate and pectingels near the sol-gel transition[J]. Biomacromolecules,2006,7(10):2811-2817.
    [96] Wang Q, Hu X, Du Y, et al. Alginate/starch blend fibers and their properties for drug controlled release[J].Carbohydrate Polymers,2010,82(3):842-847.
    [97] Gohil R M. Synergistic blends of natural polymers, pectin and sodium alginate[J]. Journal of AppliedPolymer Science,2011,120(4):2324-2336.
    [98] Harding S E, Smith I H, Lawson C J, et al. Studies on macromolecular interactions in ternary mixtures ofkonjac glucomannan, xanthan gum and sodium alginate[J]. Carbohydrate Polymers,2011,83(2):329-338.
    [99] Young N W G, Kappel G and Bladt T. A polyuronan blend giving novel synergistic effects and bake-stablefunctionality to high soluble solids fruit fillings[J]. Food Hydrocolloids,2003,17(4):407-418.
    [100] Sandoval-Castilla O, Lobato-Calleros C, Garcia-Galindo H S, et al. Textural properties of alginate-pectinbeads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt[J]. FoodResearch International,2010,43(1):111-117.
    [101] Madziva H, Kailasapathy K and Phillips M. Evaluation of alginate-pectin capsules in cheddar cheese as afood carrier for the delivery of folic acid[J]. LWT-Food Science and Technology,2006,39(2):146-151.
    [102] da Silva M A, Krause Bierhalz A C and Kieckbusch T G. Alginate and pectin composite films crosslinkedwith Ca2+ions: effect of the plasticizer concentration[J]. Carbohydrate Polymers,2009,77(4):736-742.
    [103] Jaya S, Durance T D and Wang R. Effect of alginate-pectin composition on drug release characteristics ofmicrocapsules[J]. Journal of Microencapsulation,2009,26(2):143-153.
    [104] Pillay V and Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug deliveryto the gastrointestinal tract. II. physicochemical characterization of calcium-alginate, calcium-pectinate andcalcium-alginate-pectinate pellets[J]. Journal of controlled release: official journal of the Controlled ReleaseSociety,1999,59(2):243-256.
    [105] Liu P and Krishnan T R. Alginate-pectin-poly-L-lysine particulate as a potential controlled releaseformulation[J]. Journal of Pharmacy and Pharmacology,1999,51(2):141-149.
    [106] Islan G A, Perez de Verti I, Marchetti S G, et al. Studies of ciprofloxacin encapsulation on alginate/pectinmatrixes and its relationship with biodisponibility[J]. Applied Biochemistry and Biotechnology,2012,167(5):1408-1420.
    [107] Thom D, Dea I C, Morris E R, et al. Interchain association of alginate and pectins[J]. Progress in Food andNutrition Science,1982,6:97-108.
    [108] Walkenstrom P, Kidman S, Hermansson A-M, et al. Microstructure and rheological behaviour ofalginate/pectin mixed gels[J]. Food Hydrocolloids,2003,17(5):593-603.
    [109]周爱梅,郝淑贤,刘欣,等.海藻酸钠高甲氧基果胶复合体系凝胶特性的研究[J].华南农业大学学报,2003,(04):75-78.
    [110] Fishman M L and Jen J J. Chemistry and function of pectin[M]. Washington DC: American ChemicalSociety,1986.117-132.
    [111]周爱梅,刘欣,李立虹,等.海藻酸钠-高甲氧基果胶复合体系凝胶特性的研究——蔗糖、Ca~(2+)、葡萄糖酸-δ-内酯对复合体系凝胶特性的影响[J].食品科技,2003,(08):66-68+71.
    [112]陈宗淇,王宁华,韩恩山,等.钙离子和pH值对海藻酸钠溶液流变性能影响[J].化学学报,1991,(05):462-467.
    [113]陈宗道,李洪军.海藻酸钠溶液的流变学特性研究[J].西南农业大学学报,1992,(01):94-97.
    [114]汪海波,徐群英,汪芳安.低酯果胶的流变学性能研究[J].农业工程学报,2006,(11):223-227.
    [115]王元兰,李忠海,张乐华.低浓度海藻酸钠的流变性及影响因素研究[J].食品与机械,2008,(01):29-31.
    [116] Agoub A A, Giannouli P and Morris E R. Gelation of high methoxy pectin by acidification withD-glucono-delta-lactone (GDL) at room temperature[J]. Carbohydrate Polymers,2009,75(2):269-281.
    [117] O'Brien A B, Philp K and Morris E R. Gelation of high-methoxy pectin by enzymic de-esterification in thepresence of calcium ions: a preliminary evaluation[J]. Carbohydrate Research,2009,344(14, Sp. Iss. SI):1818-1823.
    [118] Panouille M and Larreta-Garde V. Gelation behaviour of gelatin and alginate mixtures[J]. FoodHydrocolloids,2009,23(4):1074-1080.
    [119] Slavov A, Garnier C, Crepeau M-J, et al. Gelation of high methoxy pectin in the presence of pectinmethylesterases and calcium[J]. Carbohydrate Polymers,2009,77(4):876-884.
    [120] Kastner H, Einhorn-Stoll U and Senge B. Structure formation in sugar containing pectin gels-Influence ofCa2+on the gelation of low-methoxylated pectin at acidic pH[J]. Food Hydrocolloids,2012,27(1):42-49.
    [121] Gigli J, Garnier C and Piazza L. Rheological behaviour of low-methoxyl pectin gels over an extendedfrequency window[J]. Food Hydrocolloids,2009,23(5):1406-1412.
    [122] Vithanage C R, Grimson M J, Wills P R, et al. Rheological and structural properties of high-methoxylesterified, low-methoxyl esterified and low-methoxyl amidated pectin gels[J]. Journal of Texture Studies,2010,41(6):899-927.
    [123] Turco G, Donati I, Grassi M, et al. Mechanical spectroscopy and relaxometry on alginate hydrogels: acomparative analysis for structural characterization and network mesh size determination[J]. Biomacromolecules,2011,12(4):1272-1282.
    [124] Ngouemazong D E, Jolei R P, Cardinaels R, et al. Stiffness of Ca2+-pectin gels: combined effects of degreeand pattern of methylesterification for various Ca2+concentrations[J]. Carbohydrate Research,2012,348:69-76.
    [125] Ngouemazong D E, Kabuye G, Fraeye I, et al. Effect of debranching on the rheological properties ofCa2+-pectin gels[J]. Food Hydrocolloids,2012,26(1):44-53.
    [126] Ngouemazong D E, Tengweh F F, Fraeye I, et al. Effect of de-methylesterification on networkdevelopment and nature of Ca2+-pectin gels: Towards understanding structure-function relations of pectin[J].Food Hydrocolloids,2012,26(1):89-98.
    [127]左榘,安英丽,赵曦光,等.动态光散射法研究海藻酸钠凝胶化行为[J].高分子材料科学与工程,1998,(01):71-74.
    [128]郑洪河,张庆芝,王键吉,等.溶剂效应与海藻酸钠溶液溶胶-凝胶相转移[J].物理化学学报,1996,(07):604-608.
    [129] Fang Y, Al-Assaf S, Phillips G O, et al. Binding behavior of calcium to polyuronates: comparison of pectinwith alginate[J]. Carbohydrate Polymers,2008,72(2):334-341.
    [130]周世海,蔡继业,陈勇.钙离子对海藻酸钠自组装行为影响的AFM研究[J].药物生物技术,2004,(02):81-85.
    [131]王康,何志敏.海藻酸钠与钙或锌离子凝胶动力学过程研究[J].离子交换与吸附,2004,(05):424-429.
    [132] Kimura S. Glycemic carbohydrate and health: background and synopsis of the symposium[J]. NutritionReviews,2003,61(5): S1-S4.
    [133] Slavin J. Whole grains and human health[J]. Nutrition Research Reviews,2004,17(1):99-110.
    [134] Clifton P M. Dietary treatment for obesity[J]. Nature Clinical Practice Gastroenterology&Hepatology,2008,5(12):672-681.
    [135] Tudor M, Havranek J and Serafini M. Dairy foods and body weight management[J]. Mljekarstvo,2009,59(2):88-95.
    [136] Guesry P R. Impact of 'functional food'[J]. Forum Nutr,2005,(57):73-83.
    [137] Zhang G Y and Hamaker B R. slowly digestible starch: concept, mechanism, and proposed extendedglycemic index[J]. Critical Reviews in Food Science and Nutrition,2009,49(10):852-867.
    [138] Ao Z, Simsek S, Zhang G, et al. Starch with a slow digestion property produced by altering its chain length,branch density, and crystalline structure[J]. Journal of Agricultural and Food Chemistry,2007,55(11):4540-4547.
    [139] Sands A L, Leidy H J, Hamaker B R, et al. Consumption of the slow-digesting waxy maize starch leads toblunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans[J].Nutrition Research,2009,29(6):383-390.
    [140] Venkatachalam M, Zhang G Y, Kushnick M R, et al. Biopolymer-entrapped starch microspheres as novelslowly digestible carbohydrate ingredients with moderated and extended glycemic response[J]. Faseb Journal,2007,21(5): A344-A344.
    [141] He J H, Liu J and Zhang G Y. Slowly digestible waxy maize starch prepared by octenyl succinic anhydrideesterification and heat-moisture treatment: glycemic response and mechanism[J]. Biomacromolecules,2008,9(1):175-184.
    [142] Zhang G, Ao Z and Hamaker B R. Slow digestion property of native cereal starches[J]. Biomacromolecules,2006,7(11):3252-3258.
    [143] Zhang G, Venkatachalam M and Hamaker B R. Structural basis for the slow digestion property of nativecereal starches[J]. Biomacromolecules,2006,7(11):3259-3266.
    [144] Seal C J, Daly M E, Thomas L C, et al. Postprandial carbohydrate metabolism in healthy subjects andthose with type2diabetes fed starches with slow and rapid hydrolysis rates determined in vitro[J]. BritishJournal of Nutrition,2003,90(05):853-864.
    [145] McClements D J, Decker E A and Weiss J. Emulsion-based delivery systems for lipophilic bioactivecomponents[J]. Journal of Food Science,2007,72(8): R109-R124.
    [146] Liu L, Fishman M L and Hicks K B. Pectin in controlled drug delivery-a review[J]. Cellulose,2007,14(1):15-24.
    [1] Iijima M, Hatakeyama T, Nakamura K, et al. Thermomechanical analysis of calcium alginate hydrogels inwater[J]. Journal of Thermal Analysis and Calorimetry,2002,70(3):807-814.
    [2] Tu J, Bolla S, Barr J, et al. Alginate microparticles prepared by spray-coagulation method: preparation, drugloading and release characterization[J]. International Journal of Pharmaceutics,2005,303(1-2):171-181.
    [3] Rayment P, Wright P, Hoad C, et al. Investigation of alginate beads for gastro-intestinal functionality, part1:in vitro characterisation[J]. Food Hydrocolloids,2009,23(3):816-822.
    [4] Bellich B, Borgogna M, Cok M, et al. Release properties of hydrogels: water evaporation from alginate gelbeads[J]. Food Biophysics,2011,6(2):259-266.
    [5] Li Y, Hu M, Du Y, et al. Control of lipase digestibility of emulsified lipids by encapsulation within calciumalginate beads[J]. Food Hydrocolloids,2011,25(1):122-130.
    [6] Morris E R, Powell D A, Gidley M J, et al. Conformations and interactions of pectins: I. polymorphismbetween gel and solid states of calcium polygalacturonate[J]. Journal of Molecular Biology,1982,155(4):507-516.
    [7] MacDougall A J, Needs P W, Rigby N M, et al. Calcium gelation of pectic polysaccharides isolated fromunripe tomato fruit[J]. Carbohydrate Research,1996,293(2):235-249.
    [8] Liu X X, Qian L Y, Shu T, et al. Rheology characterization of sol-gel transition in aqueous alginate solutionsinduced by calcium cations through in situ release[J]. Polymer,2003,44(2):407-412.
    [9] Straatmann A and Borchard W. Phase separation in calcium alginate gels[J]. European Biophysics Journalwith Biophysics Letters,2003,32(5):412-417.
    [10] Lu L, Liu X, Tong Z, et al. Critical exponents and self-similarity for sol-gel transition in aqueous alginatesystems induced by in situ release of calcium cations[J]. Journal of Physical Chemistry B,2006,110(49):25013-25020.
    [11] Funami T, Fang Y, Noda S, et al. Rheological properties of sodium alginate in an aqueous system duringgelation in relation to supermolecular structures and Ca2+binding[J]. Food Hydrocolloids,2009,23(7):1746-1755.
    [12] Josef E, Zilberman M and Bianco-Peled H. Composite alginate hydrogels: an innovative approach for thecontrolled release of hydrophobic drugs[J]. Acta Biomaterialia,2010,6(12):4642-4649.
    [13] Audebrand M, Kolb M and Axelos M A V. Combined rheological and ultrasonic study of alginate and pectingels near the sol-gel transition[J]. Biomacromolecules,2006,7(10):2811-2817.
    [1] Grant G T, Morris E R, Rees D A, et al. Biological interactions between polysaccharides and divalent cations:the egg-box model[J]. FEBS Letters,1973,32:195-198.
    [2] Donati I, Holtan S, Morch Y A, et al. New hypothesis on the role of alternating sequences in calcium-alginategels[J]. Biomacromolecules,2005,6(2):1031-1040.
    [3] Morch Y A, Donati I, Strand B L, et al. Effect of Ca2+, Ba2+, and Sr2+on alginate microbeads[J].Biomacromolecules,2006,7(5):1471-1480.
    [4] Funami T, Fang Y, Noda S, et al. Rheological properties of sodium alginate in an aqueous system duringgelation in relation to supermolecular structures and Ca2+binding[J]. Food Hydrocolloids,2009,23(7):1746-1755.
    [5] Draget K I, Skjak-Braek G and Smidsrod O. Alginate based new materials[J]. International Journal ofBiological Macromolecules,1997,21(1-2):47-55.
    [6] Liu X X, Qian L Y, Shu T, et al. Rheology characterization of sol-gel transition in aqueous alginate solutionsinduced by calcium cations through in situ release[J]. Polymer,2003,44(2):407-412.
    [7] Yu C-Y, Wei H, Zhang Q, et al. Effect of ions on the aggregation behavior of natural polymer alginate[J].Journal of Physical Chemistry B,2009,113(45):14839-14843.
    [8] Smidsr d O and Skjak-Br k G. Alginate as immobilization matrix for cells[J]. Trends in Biotechnology,1990,8(3):71-78.
    [9] Jorgensen T E, Sletmoen M, Draget K I, et al. Influence of oligoguluronates on alginate gelation, kinetics,and polymer organization[J]. Biomacromolecules,2007,8(8):2388-2397.
    [10] Augst A D, Kong H J and Mooney D J. Alginate hydrogels as biomaterials[J]. Macromolecular Bioscience,2006,6(8):623-633.
    [11] Kong H-J, Lee K Y and Mooney D J. Decoupling the dependence of rheological/mechanical properties ofhydrogels from solids concentration[J]. Polymer,2002,43(23):6239-6246.
    [12] Iijima M, Hatakeyama T, Nakamura K, et al. Thermomechanical analysis of calcium alginate hydrogels inwater[J]. Journal of Thermal Analysis and Calorimetry,2002,70(3):807-814.
    [13] Tu J, Bolla S, Barr J, et al. Alginate microparticles prepared by spray-coagulation method: preparation, drugloading and release characterization[J]. International Journal of Pharmaceutics,2005,303(1-2):171-181.
    [14] Rayment P, Wright P, Hoad C, et al. Investigation of alginate beads for gastro-intestinal functionality, part1:in vitro characterisation[J]. Food Hydrocolloids,2009,23(3):816-822.
    [15] Bellich B, Borgogna M, Cok M, et al. Release properties of hydrogels: water evaporation from alginate gelbeads[J]. Food Biophysics,2011,6(2):259-266.
    [16] Li Y, Hu M, Du Y, et al. Control of lipase digestibility of emulsified lipids by encapsulation within calciumalginate beads[J]. Food Hydrocolloids,2011,25(1):122-130.
    [17] Straatmann A and Borchard W. Phase separation in calcium alginate gels[J]. European Biophysics Journalwith Biophysics Letters,2003,32(5):412-417.
    [18] Lu L, Liu X, Tong Z, et al. Critical exponents and self-similarity for sol-gel transition in aqueous alginatesystems induced by in situ release of calcium cations[J]. Journal of Physical Chemistry B,2006,110(49):25013-25020.
    [19] Josef E, Zilberman M and Bianco-Peled H. Composite alginate hydrogels: an innovative approach for thecontrolled release of hydrophobic drugs[J]. Acta Biomaterialia,2010,6(12):4642-4649.
    [20] Theisen A, Johann C, Deacon M P, et al. Refractive increment data-book for polymer and biomolecularscientists[M]. Nottingham: Nottingham University Press,2000a.4-5.
    [21] Grasdalen H, Larsen B and Smidsr d O. A p.m.r. study of the composition and sequence of uronate residuesin alginates[J]. Carbohydrate Research,1979,68(1):23-31.
    [1] Oakenfull D and Scott A. Hydrophobic interaction in the gelation of high methoxyl pectins[J]. Journal ofFood Science,1984,49(4):1093-1098.
    [2] Morris E, Gidley M, Murray E, et al. Characterization of pectin gelation under conditions of low wateractivity, by circular dichroism, competitive inhibition and mechanical properties[J]. International Journal ofBiological Macromolecules,1980,2(5):327-330.
    [3] Neidhart S, Hannak C, Gierschner K, et al. Investigations of the influence of various cations on therheological properties of high-esterified pectin gels. In Progress in Biotechnology[M]: Elsevier,1996. Vol.Volume14:583-590.
    [4] Lofgren C, Guillotin S, Evenbratt H, et al. Effects of calcium, pH, and blockiness on kinetic rheologicalbehavior and microstructure of HM pectin gels[J]. Biomacromolecules,2005,6(2):646-652.
    [5] MacDougall A J, Needs P W, Rigby N M, et al. Calcium gelation of pectic polysaccharides isolated fromunripe tomato fruit[J]. Carbohydrate Research,1996,293(2):235-249.
    [6] Tibbits C W, MacDougall A J and Ring S G. Calcium binding and swelling behaviour of a high methoxylpectin gel[J]. Carbohydrate Research,1998,310(1-2):101-107.
    [7]王卫平.食品品质改良剂:亲水胶体的性质及应用(之五)──果胶[J].食品与发酵工业,1996,(04):81-84.
    [8]焦云鹏,徐伟,朱秀灵,等.低酯果胶的制备、应用和研究进展[J].四川工业学院学报,2004,(04):57-58+62.
    [9]容天雨,陈浩年,陈建锋. LM果胶甲酯化反应的研究[J].广州大学学报(自然科学版),2004,(01):24-26.
    [10]张庆坤,雷激,张大凤.果胶酯酶制备低酯果胶的研究进展[J].食品工业科技,2007,(08):243-246.
    [11]任建辉,徐雅琴.低甲氧基果胶的研究概况[J].食品工程,2006,(02):19-20+26.
    [12] El-Nawawi S A and Heikal Y A. Production of a low ester pectin by de-esterification of high ester citruspectin[J]. Carbohydrate Polymers,1995,27(3):191-195.
    [13] May C D. Industrial pectins: sources, production and applications[J]. Carbohydrate Polymers,1990,12(1):79-99.
    [14] Gidley M, Morris E, Murray E, et al. Spectroscopic and stoichiometric characterization of thecalcium-mediated association of pectate chains in gels and in the solid-state[J]. Journal of the ChemicalSociety-Chemical Communications,1979,(22):990-992.
    [15] Morris E R, Powell D A, Gidley M J, et al. Conformations and interactions of pectins: I. polymorphismbetween gel and solid states of calcium polygalacturonate[J]. Journal of Molecular Biology,1982,155(4):507-516.
    [16] Willats W G T, McCartney L, Mackie W, et al. Pectin: cell biology and prospects for functional analysis[J].Plant Molecular Biology,2001,47(1-2):9-27.
    [17] Whistler R L. Methods in carbohydrate chemistry[M]. New York: Academic Press,1965. Vol.5:189-194.
    [18]中国预防医学科学院环境卫生与卫生工程研究所. GB7476-87.水质钙的测定EDTA滴定法[S].北京:中国标准出版社,1987.
    [1] Young N W G, Kappel G and Bladt T. A polyuronan blend giving novel synergistic effects and bake-stablefunctionality to high soluble solids fruit fillings[J]. Food Hydrocolloids,2003,17(4):407-418.
    [2] Sandoval-Castilla O, Lobato-Calleros C, Garcia-Galindo H S, et al. Textural properties of alginate-pectinbeads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt[J]. FoodResearch International,2010,43(1):111-117.
    [3] Madziva H, Kailasapathy K and Phillips M. Evaluation of alginate-pectin capsules in cheddar cheese as afood carrier for the delivery of folic acid[J]. LWT-Food Science and Technology,2006,39(2):146-151.
    [4] Gohil R M. Synergistic blends of natural polymers, pectin and sodium alginate[J]. Journal of AppliedPolymer Science,2011,120(4):2324-2336.
    [5] Krause Bierhalz A C, da Silva M A and Kieckbusch T G. Natamycin release from alginate/pectin films forfood packaging applications[J]. Journal of Food Engineering,2012,110(1):18-25.
    [6] da Silva M A, Krause Bierhalz A C and Kieckbusch T G. Alginate and pectin composite films crosslinkedwith Ca2+ions: effect of the plasticizer concentration[J]. Carbohydrate Polymers,2009,77(4):736-742.
    [7] Jaya S, Durance T D and Wang R. Effect of alginate-pectin composition on drug release characteristics ofmicrocapsules[J]. Journal of Microencapsulation,2009,26(2):143-153.
    [8] Pillay V and Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery tothe gastrointestinal tract. II. physicochemical characterization of calcium-alginate, calcium-pectinate andcalcium-alginate-pectinate pellets[J]. Journal of controlled release: official journal of the Controlled ReleaseSociety,1999,59(2):243-256.
    [9] Liu P and Krishnan T R. Alginate-pectin-poly-L-lysine particulate as a potential controlled releaseformulation[J]. Journal of Pharmacy and Pharmacology,1999,51(2):141-149.
    [10] Thom D, Dea I C, Morris E R, et al. Interchain association of alginate and pectins[J]. Progress in Food andNutrition Science,1982,6:97-108.
    [11] Walkenstrom P, Kidman S, Hermansson A-M, et al. Microstructure and rheological behaviour ofalginate/pectin mixed gels[J]. Food Hydrocolloids,2003,17(5):593-603.
    [12]周爱梅,郝淑贤,刘欣,等.海藻酸钠高甲氧基果胶复合体系凝胶特性的研究[J].华南农业大学学报,2003,(04):75-78.
    [13] Fishman M L and Jen J J. Chemistry and function of pectin[M]. Washington DC: American ChemicalSociety,1986.117-132.
    [14]周爱梅,刘欣,李立虹,等.海藻酸钠-高甲氧基果胶复合体系凝胶特性的研究——蔗糖、Ca~(2+)、葡萄糖酸-δ-内酯对复合体系凝胶特性的影响[J].食品科技,2003,(08):66-68+71.
    [15] Agoub A A, Giannouli P and Morris E R. Gelation of high methoxy pectin by acidification withD-glucono-delta-lactone (GDL) at room temperature[J]. Carbohydrate Polymers,2009,75(2):269-281.
    [16] Funami T, Fang Y, Noda S, et al. Rheological properties of sodium alginate in an aqueous system duringgelation in relation to supermolecular structures and Ca2+binding[J]. Food Hydrocolloids,2009,23(7):1746-1755.
    [17] O'Brien A B, Philp K and Morris E R. Gelation of high-methoxy pectin by enzymic de-esterification in thepresence of calcium ions: a preliminary evaluation[J]. Carbohydrate Research,2009,344(14, Sp. Iss. SI):1818-1823.
    [18] Panouille M and Larreta-Garde V. Gelation behaviour of gelatin and alginate mixtures[J]. FoodHydrocolloids,2009,23(4):1074-1080.
    [19] Slavov A, Garnier C, Crepeau M-J, et al. Gelation of high methoxy pectin in the presence of pectinmethylesterases and calcium[J]. Carbohydrate Polymers,2009,77(4):876-884.
    [1] Zhang G, Ao Z and Hamaker B R. Slow digestion property of native cereal starches[J]. Biomacromolecules,2006,7(11):3252-3258.
    [2] Zhang G, Venkatachalam M and Hamaker B R. Structural basis for the slow digestion property of nativecereal starches[J]. Biomacromolecules,2006,7(11):3259-3266.
    [3] Acarturk F and Takka S. Calcium alginate microparticles for oral administration: II. effect of formulationfactors on drug release and drug entrapment efficiency[J]. Journal of Microencapsulation,1999,16(3):291-301.
    [4] Tonnesen H H and Karlsen J. Alginate in drug delivery systems[J]. Drug Development and IndustrialPharmacy,2002,28(6):621-630.
    [5] Lai H, Zhu F, Yuan W, et al. Development of multiple-unit colon-targeted drug delivery system by usingalginate: in vitro and in vivo evaluation[J]. Drug Development and Industrial Pharmacy,2011,37(11):1347-1356.
    [6]吴秋惠,吴皓,王令充,等.海藻酸钠微球的制备及其在药物载体中的应用进展[J].中华中医药杂志,2011,(08):791-794.
    [7] Liu L, Fishman M L and Hicks K B. Pectin in controlled drug delivery-a review[J]. Cellulose,2007,14(1):15-24.
    [8]魏秀莉.果胶/钙在体交联结肠定位释药系统的研究[D].博士,复旦大学,2006.
    [9] Liu L S, Fishman M L, Kost J, et al. Pectin-based systems for colon-specific drug delivery via oral route[J].Biomaterials,2003,24(19):3333-3343.
    [10] Sande S A. Pectin-based oral drug delivery to the colon[J]. Expert Opin Drug Deliv,2005,2(3):441-450.
    [11] Liu L S, Fishman M L and Hicks K B. Pectin in controlled drug delivery-a review[J]. Cellulose,2007,14(1):15-24.
    [12] Sriamornsak P. Application of pectin in oral drug delivery[J]. Expert Opinion on Drug Delivery,2011,8(8):1009-1023.
    [13] Rayment P, Wright P, Hoad C, et al. Investigation of alginate beads for gastro-intestinal functionality, part1:in vitro characterisation[J]. Food Hydrocolloids,2009,23(3):816-822.
    [14] Wei X, Chen Z, Lu Y, et al. Physicochemical characterization of a pectin/calcium matrix containing a largefraction of calcium chloride: implications for sigmoidal release characteristics[J]. Journal of Applied PolymerScience,2009,113(4):2418-2428.
    [15] Madziva H, Kailasapathy K and Phillips M. Evaluation of alginate-pectin capsules in cheddar cheese as afood carrier for the delivery of folic acid[J]. LWT-Food Science and Technology,2006,39(2):146-151.
    [16] Evans M, Brown J and McIntosh M. Isomer-specific effects of conjugated linoleic acid (CLA) on adiposityand lipid metabolism[J]. J Nutr Biochem,2002,13(9):508-516.
    [17] Pariza M W, Park Y and Cook M E. The biologically active isomers of conjugated linoleic acid[J]. Progressin Lipid Research,2001,40(4):283-298.
    [18] Evans M E, Brown J M and McIntosh M K. Isomer-specificeffects of conjugatedlinoleicacid (CLA) onadiposity and lipidmetabolism[J]. The Journal of Nutritional Biochemistry,2002,13(9):508-516.
    [19] Brown J M and McIntosh M K. Conjugated linoleic acid in humans: regulation of adiposity and insulinsensitivity[J]. Journal of Nutrition,2003,133(10):3041-3046.
    [20] Larsen T M, Toubro S and Astrup A. Efficacy and safety of dietary supplements containing CLA for thetreatment of obesity: evidence from animal and human studies[J]. Journal of Lipid Research,2003,44(12):2234-2241.
    [21] Terpstra A H. Effect of conjugated linoleic acid on body composition and plasma lipids in humans: anoverview of the literature[J]. American Journal of Clinical Nutrition,2004,79(3):352-361.
    [22] Wang Y W and Jones P J H. Conjugated linoleic acid and obesity control: efficacy and mechanisms[J].International Journal of Obesity,2004,28(8):941-955.
    [23]高芃,顾光,马宁.共轭亚油酸减肥作用的人体试食试验研究[J].上海预防医学杂志,2004,(09):421-423.
    [24] Navarro V, Fernández-Quintela A, Churruca I, et al. The body fat-lowering effect of conjugated linoleic acid:a comparison between animal and human studies [J]. Journal of Physiology and Biochemistry2006,62(2):137-147.
    [25] Ouignard-Boulange A, Clouet P and Schmitt B. Effects of dietary conjugated linoleic acids in the control ofadiposity and obesity-related disorders[J]. European Journal of Lipid Science and Technology,2007,109(9):935-944.
    [26] Park Y and Pariza M W. Mechanisms of body fat modulation by conjugated linoleic acid (CLA)[J]. FoodResearch International,2007,40:311-323.
    [27] Kennedy A, Martinez K, Schmidt S, et al. Antiobesity mechanisms of action of conjugated linoleic acid[J].The Journal of Nutritional Biochemistry,2010,21(3):171-179.
    [28] von Soosten D, Meyer U, Piechotta M, et al. Effect of conjugated linoleic acid supplementation on bodycomposition, body fat mobilization, protein accretion, and energy utilization in early lactation dairy cows[J].Journal of Dairy Science,2012,95(3):1222-1239.
    [29] Onakpoya I J, Posadzki P P, Watson L K, et al. The efficacy of long-term conjugated linoleic acid (CLA)supplementation on body composition in overweight and obese individuals: a systematic review andmeta-analysis of randomized clinical trials[J]. European Journal of Nutrition,2012,51(2):127-134.
    [30] Chen S-C, Lin Y-H, Huang H-P, et al. Effect of conjugated linoleic acid supplementation on weight loss andbody fat composition in a Chinese population[J]. Nutrition,2012,28(5):559-565.
    [31] Martin J C and Valeille K. Conjugated linoleic acids: all the same or to everyone its own function?[J].Reproduction Nutrition Development,2002,42(6):525-536.
    [32] Zulet M A, Marti A, Parra M D, et al. Inflammation and conjugated linoleic acid: mechanisms of action andimplications for human health[J]. Journal of Physiology and Biochemistry,2005,61(3):483-494.
    [33] Bhattacharya A, Banu J, Rahman M, et al. Biological effects of conjugated linoleic acids in health anddisease[J]. Journal of Nutritional Biochemistry,2006,17:789-810.
    [34] Kovacs E M R and Mela D J. Metabolically active functional food ingredients for weight control[J]. ObesityReviews,2006,7(1):59-78.
    [35] Benjamin S and Spener F. Conjugated linoleic acids as functional food: an insight into their healthbenefits[J]. Nutrition&Metabolism,2009,6.
    [36] Li J-J, Huang C J and Xie D. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, andeicosapentaenoic acid[J]. Molecular Nutrition&Food Research,2008,52(6):631-645.
    [37] Oleszczuk J, Oleszczuk L, Siwicki A K, et al. Biological effects of conjugated linoleic acidssupplementation[J]. Polish Journal of Veterinary Sciences,2012,15(2):403-408.
    [38] Heinze V M and Actis A B. Dietary conjugated linoleic acid and long-chain n-3fatty acids in mammary andprostate cancer protection: a review[J]. International Journal of Food Sciences and Nutrition,2012,63(1):66-78.
    [39] Dilzer A and Park Y. Implication of conjugated linoleic acid (CLA) in human health[J]. Critical Reviews inFood Science and Nutrition,2012,52(6):488-513.
    [40] DeClercq V, Taylor C G, Wigle J, et al. Conjugated linoleic acid improves blood pressure by increasingadiponectin and endothelial nitric oxide synthase activity[J]. Journal of Nutritional Biochemistry,2012,23(5):487-493.
    [41] Wahle K W J, Heys S D and Rotondo D. Conjugated linoleic acids: are they beneficial or detrimental tohealth?[J]. Progress in Lipid Research,2004,43(6):553-587.
    [42] Gorissen L, Raes K, De Smet S, et al. Microbial production of conjugated linoleic and linolenic acids infermented foods: technological bottlenecks[J]. European Journal of Lipid Science and Technology,2012,114(4):486-491.
    [43] Yurawecz M P, Hood J K, Mossoba M M, et al. Furan fatty acids determined as oxidation products ofconjugated actadecadienoic acid[J]. Lipids,1995,30:595-598.
    [44] Zhang A and Chen Z Y. Oxidative stability of conjugated linoleic acids relative to other polyunsaturatedfatty acids[J]. Journal of the American Oil Chemists' Society,1997,74:1611-1613.
    [45] Yang L, Leung L K, Huang Y, et al. Oxidative stability of conjugated linoleic acid isomers[J]. Journal ofAgricultural and Food Chemistry,2000,48(8):3072-3076.
    [46] Tesch S, Gerhards C and Schubert H. Stabilization of emulsions by OSA starches[J]. Journal of FoodEngineering,2002,54(2):167-174.
    [47] Bhosale R and Singhal R. Process optimization for the synthesis of octenyl succinyl derivative of waxy cornand amaranth starches[J]. Carbohydrate Polymers,2006,66(4):521-527.
    [48] Modig G, Nilsson L, Bergenstahl B, et al. Homogenization-induced degradation of hydrophobicallymodified starch determined by asymmetrical flow field-flow fractionation and multi-angle light scattering[J].Food Hydrocolloids,2006,20(7):1087-1095.
    [49] Nilsson L and Bergenstahl B. Adsorption of hydrophobically modified starch at oil/water interfaces duringemulsification[J]. Langmuir,2006,22(21):8770-8776.
    [50] Nilsson L, Leeman M, Wahlund K G, et al. Mechanical degradation and changes in conformation ofhydrophobically modified starch[J]. Biomacromolecules,2006,7(9):2671-2679.
    [51] Nilsson L and Bergenstahl B. Adsorption of hydrophobically modified anionic starch at oppositely chargedoil/water interfaces[J]. Journal of Colloid and Interface Science,2007,308(2):508-513.
    [52] Nilsson L and Bergenstahl B. Emulsification and adsorption properties of hydrophobically modified potatoand barley starch[J]. Journal of Agricultural and Food Chemistry,2007,55(4):1469-1474.
    [53] Nilsson L, Leeman M, Wahlund K G, et al. Competitive adsorption of a polydisperse polymer duringemulsification: experiments and modeling[J]. Langmuir,2007,23(5):2346-2351.
    [54] Liu Z Q, Li Y, Cui F J, et al. Production of octenyl succinic anhydride-modified waxy corn starch and itscharacterization[J]. Journal of Agricultural and Food Chemistry,2008,56(23):11499-11506.
    [55] Segura-Campos M, Chel-Guerrero L and Betancur-Ancona D. Synthesis and partial characterization ofoctenylsuccinic starch from phaseolus lunatus[J]. Food Hydrocolloids,2008,22(8):1467-1474.
    [56]张燕萍,郑茂强.辛烯基琥珀酸木薯淀粉酯在乳化桔子香精中的应用[J].无锡轻工大学学报,2004,(05):74-77.
    [57]黄强,罗发兴,李琳.辛烯基琥珀酸淀粉钠的乳化性和流变性[J].华南理工大学学报(自然科学版),2005,(11):42-45.
    [58]朱卫红,许时婴,江波.微胶囊壁材辛烯基琥珀酸酯化淀粉的界面性质和乳化稳定性[J].食品科学,2006,(12):79-84.
    [59] Krstonosic V, Dokic L, Nikolic I, et al. Influence of the sodium dodecyl sulphate (SDS) concentration on thedisperse and rheological characteristics of oil-in-water emulsions stabilized by octenyl succinic anhydridemodified starch-SDS mixtures[J]. Journal of the Serbian Chemical Society,2012,77(1):83-94.
    [60]中国预防医学科学院环境卫生与卫生工程研究所. GB7476-87.水质钙的测定EDTA滴定法[S].北京:中国标准出版社,1987.
    [61] He G Q, Song X Y, Ruan H, et al. Octenyl succinic anhydride modified early indica rice starches differingin amylose content[J]. Journal of Agricultural and Food Chemistry,2006,54(7):2775-2779.
    [62] Lalush I, Bar H, Zakaria I, et al. Utilization of amylose-lipid complexes as molecular nanocapsules forconjugated linoleic acid[J]. Biomacromolecules,2005,6(1):121-130.
    [63]上海市卫生防疫站,天津市卫生防疫站,安徽省卫生防疫站,等. GB/T5009.37-2003.食用植物油卫生标准的分析方法[S].北京:中国标准出版社,2003.
    [64] Jimenez M, Garcia H S and Beristain C I. Spray-dried encapsulation of conjugated linoleic acid (CLA) withpolymeric matrices[J]. Journal of the Science of Food and Agriculture,2006,86(14):2431-2437.
    [65] Polaczek E, Starzyk F, Maleńki K, et al. Inclusioncomplexes of starches with hydrocarbons[J].Carbohydrate Polymers,2000,43(3):291-297.
    [66] Gelders G G, Vanderstukken T C, Goesaert H, et al. Amylose-lipid complexation: a new fractionationmethod[J]. Carbohydrate Polymers,2004,56(4):447-458.
    [67] Godet M C, Bizot H and Buléon A. Crystallization of amylose-fatty acid complexes prepared with differentamylose chain lengths[J]. Carbohydrate Polymers,1995,27(1):47-52.
    [68] Karkalas J, Ma S, Morrison W R, et al. Some factors determining the thermal properties of amyloseinclusion complexes with fatty acids[J]. Carbohydrate Research,1995,268(2):233-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700