变温结晶制备大米慢消化淀粉研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢消化淀粉(SDS)是指在小肠中被完全消化吸收但酶解速率较慢的一类淀粉的统称。制备慢消化淀粉的主要方法有物理改性(湿热处理、压热处理)、酶脱支改性(普鲁兰酶脱支)、化学改性(环氧丙烷交联或糊精化)、复合变性(酶法-物理法、酯化-物理法等),此类方法或对设备要求高,或成本较高,或存在化学试剂污染为食品安全性带来隐患。因此,本课题拟采用变温结晶的方法制备质量分数较高的大米慢消化淀粉,该方法简便易行、无需添加任何化学试剂,具有良好的社会效益和经济利益。
     本文确定了沸水浴相比高压蒸煮,可以更显著提高慢消化淀粉质量分数。因此,本研究采用沸水浴处理糯米淀粉进行单因素试验和正交试验优化慢消化淀粉制备工艺参数,得出:淀粉干基与水的比例为1:2,变温温度为4/25℃,时间间隔为24 h,变温时间为7 d时可得到慢消化淀粉质量分数最高为51.62%。
     本文还研究了变温结晶对淀粉的体外消化性、热力学性质、结晶性、血糖(GI)指数和膨胀度(SF)的影响,结果表明:变温回生的糯米淀粉中SDS质量分数最高为51.62%,远高于粳米淀粉中SDS的最高质量分数(19.58%);变温回生的糯米淀粉具有较高的起始温度(To)以及较低的熔融温度范围(Tc-To)和焓变(ΔH);变温结晶处理7 d的糯米淀粉1047 cm-1/1022 cm-1最大为0.899;变温回生处理21 d的糯米淀粉GI指数最小为59;变温结晶的样品具有较低的膨胀度,膨胀度的降低使酶不易靠近淀粉链,从而引起其慢消化特性。
     最后,本文研究了变温结晶形成慢消化淀粉的机理。变温回生动力学特征分析发现:变温回生处理的糯米淀粉,Avrami指数n值小于1(0.8234),晶体成核为一次成核;变温条件下成核速率常数k值(0.785)大于恒温条件下的k值(0.725,0.0570)。分析残基表面结构发现:变温结晶使糯米淀粉的表面更光滑,内部支链淀粉排列更紧密,酶解后形成结构紧凑、互相分离的实心小块;通过分析SDS质量分数与Tc-To关系发现:SDS质量分数与Tc-To呈负相关。因此,变温回生形成慢消化淀粉的机理为:支链淀粉晶体在适宜温度下以较高的成核速率结晶,晶体一次成核形成大量不完美同质性晶体的过程。
Slowly digestible starch is the portion that digested slowly by amylase from 20 to 120 min in small intestine, and has significant implications on human health, such as, cardiovascular diseases, non-insulin diabetes, obesity and providing sustained and stable energy for athletes. Recently, there are a number of techniques to prepare slowly digestible starch, such as pullulanase debranching, hydrothermal treatment, microwave heat treatment and a citric acid modification.
     The paper studied the influence of autoclaving and heat treatment on the digestibility of rice starch and found that waxy rice starch treated by heated gelatinization and temperature-cycled retrogradation was a new technique to prepare slowly digestible starch. The paper also studied the influence of cycled-temperature, cycled-time, cycled-time interval, moisture on the forming of slowly digestible starch, and determinated the optimal SDS content by orthogonal test. It was found that the maximum SDS content was 51.62%, when the starch: water was 1:2, stored under cycled-temperature 4/25°C for 7 days and cycled-time interval for 24 h.
     The results indicated that there was a higher onset temperature (To), a narrower melting temperature range (Tc-To), a lower enthalpy change and a higher ratio (1047 cm-1/1022 cm-1 was 0.899) of the slowly digestible starch products prepared under the temperature cycled condition than that under the isothermal retrogradation. Furthermore, it was evident that the in vitro glycemic index and swelling factors of slowly digestible starch products with temperature cycled retrogradation was reduced more than that with isothermal storage. Therefore, the waxy rice starch stored under cycled-temperature was more difficult to hydrolyzed by amylase than that under isothermal storage.
     At last, amylopectin of waxy rice starch recrystallized more quickly at 4/25°C (0.785) than at isothermal temperature (0.725, 0.0570) and its crystal nucleus formed once for all as same as that at 4°C while crystal nucleus at 25°C formed step by step . Meanwhile, our results showed the similar kinetics of crystallization characters in normal rice starch stored at 4°C, 25°C and 4/25°C. The results from the enzymatic hydrolysis procedure found that waxy rice starch stored under cycled temperature showed a more ordered and smooth surface, and a solid section appeared after hydrolysed for 120 min. Besides, the SDS content and melting temperature range was negative correlation. The mechanism of temperature-cycled retrogradation formed slowly digestible starch was that crystal nucleus formed once for all, and amylopectin recrystallised and a large amount of imperfect and homogeneous crystals formed.
引文
1.Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions [J]. European journal of clinical nutrition, 1992, 46 (Suppl. 2): 33-50.
    2.Englyst H N, Hudson G J. The classification and measurement of dietary carbohydrates [J]. Food Chemistry, 1996, 57 (1): 15-21.
    3.Englyst K N, Englyst H N, Hudson G J, et al. Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response [J]. American Journal of Clinical Nutrition, 1999, 69: 448-454.
    4.Jane J L, Wong K S, McPherson A E. Branch structure difference in starches of A- and B- x-ray patterns revealed by their naegeli dextrin [J]. Carbohydrate Research, 1997, 300: 219-227.
    5.Shin S I, Choi H J, Chung K M, et al. Slowly digestible starch from debranched waxy sorghum starch: preparation and properties [J]. Cereal Chemistry, 2004, 81 (3): 404-408.
    6.Miao M, Jiang B, Zhang T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch [J]. Carbohydrate Polymers, 2009, 76: 214-221.
    7.Anderson A K, Guraya H S, James C, et al. Digestibility and pasting properties of rice starch heat-moisture treated at the melting temperature (Tm) [J]. Starch/St?rke, 2002, 54: 401-409.
    8.Wolf B W, Bauer L L, Fahey G C. Effect s of chemical modification on in vitro rate and extent of food starch digestion: An attempt to discover a slowly digested starch [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 4178-4183.
    9.Han J A, Bemiller J N. Preparation and physical characteristics of slowly digesting modified food starches [J]. Carbohydrate Polymers, 2007, 67: 366-374.
    10.Guraya H S, James C, Champagne E T. Effect of enzyme concent ration and storage temperature on the formation of slowly digestible starch from cooked debranched rice starch [J]. Starch/St?rke, 2001, 53: 131-139.
    11.Bjǒrck I, Asp N G. Controlling the nutritional properties of starch in foods-a challenge to the food industry [J]. Trends in Food Science and Technology, 1994, 5: 213-218.
    12.Eliasson A C. Starch in food: Structure, function and applications [M]. Cambridge: Woodhead Publishing Limited, 2004: 477-505.
    13.Shin S I, Kim H J, Ha H J, et al. Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch [J]. Starch/St?rke, 2005, 57: 421-430.
    14.Shin S I, Choi H J, Chung K M, et al. Slowly digestible starch from debranched waxy sorghum starch: preparation and properties [J]. Cereal Chemestry, 2004, 81 (3): 404-408.
    15.Han X Z, Ao Z H, Janaswamy S, et al. Development of a low glycemic maize starch: preparation and characterization [J]. Biomacromolecules, 2006, 7: 1162-1168.
    16.Truswell A S. Glycaemic index of foods [J]. European Journal of Clinical Nutrition, 1992, 46 (suppl12): 91-101.
    17.Biliaderis C G. Structures and phase transitions of starch polymers [M]. In Walter R H,eds,Polysaccharide associate structures in food, 1998: 57-168.
    18.Zhang G Y, Ao Z H, Hamaker B R. Slow digestion property of native Cereal starches [J]. Biomacromolecules, 2006, 7: 3252-3258.
    19.王月慧,丁文平.大米淀粉凝胶在储藏过程中消化特性的变化[J].粮食与饲料工业, 2003, 11: 9-10.
    20. Zhou X, Baik B K, Wang R, et al. Retrogradation of waxy and normal corn starch gels by temperaturecycling [J]. Journal of Cereal Science, 2010: 51-57, 65.
    21.丁文平,夏文水.变温储藏对淀粉回生的影响[J].研究与探讨, 2005, 26: 87-88, 92.
    22.Park E Y, Baik B K, Lim S T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel [J]. Journal of Cereal Science, 2009, 50: 43-48.
    23.Tian Y Q, Li Y, Jin Z, et al. A novel molecular simulation method for evaluating the endothermic transition of amylose recrystallite [J]. European Food Research and Technology, 2009, 229: 853-858.
    24.Yuan R C, Thompson D B, Boyer C D. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines [J]. Cereal Chemistry, 70, 236: 81-89.
    25.Tian Y Q, Li Y, Manthey F A, et al. Influence of cyclodextrin on the short-term retrogradation of rice starch [J]. Food Chemistry, 2009, 116: 54-58.
    26.王月慧,丁文平.大米淀粉凝胶储藏过程中消化特性的变化[J].食品科学, 2005, 1: 64-66.
    27.Granfeldt Y, Bjǒrck I, Drews A, et al. An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume product [J]. European Journal of Clinical Nutrition, 1992, 46: 649-660.
    28.Isabel G, Alejandra G A, Fulgencio S C. A starch hydrolysis procedure to estimate glycemic index [J]. Nutrition Research, 1997, 17(3): 427-437.
    29.Jenkins J A, Thorne M J, Wolever M S, et al. The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion [J]. American Journal of Clinical Nutrition, 1987, 45: 946-951.
    30.Hamaker B R, Bugusu B A. Overview: sorghum proteins and food quality. Pretoria, South Africa: Paper presented at the Workshop on the proteins of sorghum and millets: enhancing nutritional and functional properties for Africa [CD]. 2003.
    31.Zobel H F. Molecules to granules: a comprehensive starch review [J]. Starch/St?rke, 1988, 40: 44-50.
    32. Zhou Z, Robards K, Helliwell S, et al. Effect of the addition of fatty acids on rice starch properties [J]. Food Research International, 2007, 40: 209-214.
    33.Godet M C, Tran V, Delagw M M. Molecular modeling of the specific interactions in amylose complexation by fatty acids [J]. International Journal of Biological Macromolecules, 1993, 15: 11-16.
    34.Crowe T C, Seligman S A, Copeland L. Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation [J]. Journal of Nutrition, 2000, 130: 2006-2008.
    35.Alonso R, Aguirre A, Marzo F. Effect of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans [J]. Food Chemistry, 2000, 68: 159-165.
    36.Altan A, McCarthy K L, Maskan M. Effect of extrusion cooking on functional properties and in vitro starch digestibility of barley-based extrudates from fruit and vegetable by-products [J]. Journal of Food Science, 2009, 74: E77-E86.
    37.Guha M, Ali S Z, Bhattacharya S. Twin-screw extrusion of rice flour without die: effect of barrel temperature and screw speed on extrusion and extrudate characteristics [J]. Journal of Food Engineering, 1997, 32: 251-267.
    38.李翠莲,方北曙,黄小玲.大米抗性淀粉压热处理制备工艺的研究[J].中国粮油学报, 2010, 25(5): 30-33.
    39.王锋,鲁战会,薛文通,等.自然发酵对大米淀粉颗粒特性的影响[J].中国粮油学报, 2003, 6(18): 25-28.
    40.丁文平,王月慧.浸泡发酵对米粉体系理化特性的影响[J].食品工业, 2005(3): 5-7.
    41.木易.淀粉回生影响因素及其利用[J].农产品加工, 2009, 2: 21-21.
    42.姚远,丁霄霖,吴加根.淀粉回生研究进展(Ⅰ)回生机理、回生测定方法及淀粉种类对回生的影响[J].中国粮油学报, 1999, 14 (2): 24-31.
    43.丁文平,丁霄霖.温度对大米淀粉胶凝和回生影响的研究[J].粮食与饲料工业, 2002, 12: 32-34.
    44.Mark R, Jacobson J N, BeMiller. Method for determining therate and extent of accelerated starch retrogradation [J]. Cereal Chemistry, 1998, 75 (1): 22-29.
    45.徐丹鸿,徐红华.抗性淀粉的制备及其形成影响因素的研究[J].粮食科技与经济, 2006, 1: 50-51.
    46.安红周,吕建华,赵琳.淀粉回生研究进展—水分子再分布对淀粉回生的影响[J].食品科技, 2006 (10): 38-42.
    47.Guraya H S, James C, Champagne E T. Effect of cooling and freezing on the digestibility of debranched rice starch and physical properties of the resulting material [J]. Starch/St?rke, 2001, 53: 64-74.
    48.Hamaker B R, Han X Z. Slowly digestible starch [P]. Purdue Research Foundation, 2004, WO 2004/066955A2.
    49.Jenkins D J, Wolever T M. Glycemic Index of foods: a physiological basis for carbohydrate exchange [J]. American Journal of Clinical Nutrition, 1981, 34: 362-366.
    50.Lumdubwong N, Seib P A. Rice starch isolation by alkaline protease digestion of wet-milled rice Flour [J]. Journal of Cereal Science, 2000, 31: 63-74.
    51.赵凯,许鹏举,谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学, 2008, 9: 534-536.
    52.丁文平,檀亦兵,丁霄霖.水分含量对大米淀粉糊化和回生的影响[J].粮食与饲料工业, 2003, 8: 44-47.
    53.Baik M Y, Kim K J. Recrystallization kinetics and glass transition of rice starch gel system [J]. Journal of Agricultural Food Chemistry, 1997, 45: 4242-4248.
    54.赵思明,熊善柏,张声华.淀粉糊物系及其老化特性研究[J].中国粮油学报, 2001, 16: 19-21.
    55.姚远,丁霄霖.米饭回生研究(Ⅱ)米饭回生动力学[J].中国粮油学报, 1999, 14: 19-22.
    56.Capron I, Robert P, Colonna P, et al. Starch in rubbery and glassy states by FT-IR spectroscopy [J]. Carbohydrate Polymers, 2007, 68: 249-259.
    57.van Soest J J G, Tournois H, de Wit D, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy [J]. Carbohydrate Research, 1995, 279: 201-214.
    58.U Lehmann, F Robin. Slowly digestible starch its structure and health implications a review [J]. Trends in Food Science and Technology, 2007, 18: 346-355.
    59.D J A Jenkins, T M SWolever, R H Taylor, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange [J]. American Journal of Clinical Nutrition, 1981, 34: 362-366.
    60.Hoover R, Manuel H. The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches [J]. Journal of Cereal Science, 1996, 23: 153-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700