线粒体转录因子A在重组人肝再生增强因子对梗阻性黄疸大鼠肝功能保护中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、目的
     首先构建好4组针对目的基因序列的RNA干扰慢病毒载体;在体外目的细胞上筛选出有明显干扰效果的靶点并进行慢病毒大量包装。然后建立大鼠梗阻性黄疸动物模型,并进行活体RNA干扰实验,检测目的基因的干扰效果及大鼠线粒体功能和肝功能的变化情况;探讨目的基因在rhALR对大鼠梗阻性黄疸肝功能保护中的作用,为rhALR的临床应用提供理论基础。
     二、方法
     1、设计4个针对目的基因TFAM的RNA干扰序列,制备双链DNAoligo,然后通过双酶切慢病毒载体,连接及转化反应制备克隆;最后挑取克隆进行PCR鉴定并挑选阳性克隆测序以确认慢病毒载体构建成功。
     2、进行RNA干扰慢病毒包装,对其进行浓缩、纯化并测定病毒滴度。
     3、利用包装好的RNA干扰慢病毒,采用Real time PCR的方法在体外目的细胞中筛选出有明显干扰效果的慢病毒载体,并利用Western blot的方法在蛋白水平上验证干扰靶点的有效性;最后将有效的干扰靶点进行病毒大量包装以用于下一步的动物实验。
     4、建立梗阻性黄疸大鼠动物模型。将健康Wistar大鼠随机分为5组。第1组为假手术组,第2组为梗阻性黄疸、胆道再通及rhALR治疗组,第3组为梗阻性黄疸、胆道再通、rhALR治疗,同时进行活体RNA干扰组,第4组为梗阻性黄疸、胆道再通、rhALR治疗及阴性对照病毒组,第5组为梗阻性黄疸、胆道再通、rhALR治疗及生理盐水对照组。分别于第一次术后4、7、14、18、21、28天采集标本,保证每时相点存活大鼠6只。
     5、利用Real time PCR和Western blot的方法,检测大鼠活体RNA干扰的效果。
     6、观察各组大鼠肝脏大体和病理改变,检测其肝功能和线粒体功能的变化情况。
     三、结果
     1、将制备好的RNA干扰慢病毒载体进行测序,结果证实4个靶点均成功连接入载体中,可以用于后续的筛选实验。
     2、进行RNA干扰慢病毒包装后,测定4组靶点的病毒滴度依次为8E+7、7E+7、9E+7和1E+8 TU/ml
     3、体外筛选结果显示3号靶点在目的细胞中对目的基因TFAM的干扰效率达到了55%左右,在所有的干扰靶点中效率最高;Western blot实验也证实了其干扰的有效性。
     4、胆道梗阻后,除第1组外的其余各组大鼠肝脏均出现了不同程度的病理改变,其中第3组大鼠病理改变最明显;胆道再通后,上述各组大鼠肝脏病理改变逐步减轻,组间比较发现第3组大鼠恢复速度最慢。
     5、胆道梗阻后第2~5组大鼠肝功能和线粒体功能均出现了不同程度的损害(与第1组比较,P<0.05),其中第3组大鼠的损害程度明显重于第2、4、5组大鼠(P<0.05);胆道再通后,上述各组大鼠肝功能和线粒体功能逐步恢复,其中第3组大鼠的恢复速度明显慢于第2、4、5组大鼠(P<0.05)。
     6、活体RNA干扰实验结果显示,第3组大鼠肝脏中目的基因TFAM mRNA的含量出现了明显下降,而阴性病毒对照组(第4组)、生理盐水对照组(第5组)及未进行RNA干扰的第2组中目的基因TFAM mRNA的含量相比无明显差异。Western blot实验结果显示第3组大鼠目的基因TFAM的蛋白表达也明显降低。
     四、结论
     1、本研究成功构建了针对目的基因TFAM的RNA干扰慢病毒载体,在体外实验中具有良好的干扰效率,能有效降低目的基因TFAM mRNA的表达;在体内实验中同样具有良好的干扰效果,且无明显的“脱靶效应”和毒性反应。
     2、在rhALR保护及改善梗阻性黄疸大鼠的肝功能,促进胆道再通后肝功能的恢复过程中,TFAM可能发挥了重要的作用;其机制可能通过诱导肝细胞TFAM的表达,提高线粒体DNA(mitochondrial DNA,mtDNA)的拷贝数,修复损伤的mtDNA,最终保护和改善梗阻性黄疸肝细胞线粒体功能和肝功能,促进胆道再通后肝功能的恢复。
Objectives: To study the change of mitochondrial and hepatic function in rats with obstructive jaundice after RNA interference of target gene and to explore the role of gene TFAM in the process of protecting mitochondrial and hepatic function by rhALR,and finally,to provide assistance for the clinic application of rhALR.
     Methods:
     1、We designed 4 siRNAs targeting gene TFAM and constructed the lentivirus-siRNA vector system.
     2、Lentiviral vector was generated by co-transfecting 293T cell with pGC-LV recombinant plasmid, pHelper1.0 and pHelper2.0 plasmids,and then the titer of LV was determined on 293T cell.
     3、To test the efficacy of designed siRNAs in knocking down TFAM expression,we transfected HSC-T6 cell(a rat liver stellate cell line)with lentivirus carrying siRNA or control vectors.According to the results of RT-PCR and Western blot analysis, we picked out the most effective siRNA and it was going to be used to downregulate the expression of target gene in vivo.
     4、One hundred and eighty Wistar rats were randomized into five groups,namely groupⅠ(sham operation),groupⅡ(OJ+RBF+rhALR),groupⅢ(OJ+RBF+rhALR+LV),groupⅣ(OJ+RBF+rhALR+control vector) and groupⅤ(OJ+RBF+rhALR+NaCl).Samples were collected on the 4th,7th,14th,18th,21st and 28th day after the first operation.
     5、The efficacy of RNAi in vivo was determined by Real time PCR and Western blot analysis.
     6、We observed the pathological change of liver from each group and detected the changes of hepatic function and mitochondrial function.
     Results:
     1、The results of sequencing showed that designed siRNAs were successfully integrated into the lentivirus-siRNA vector system.
     2、Titers of lenti-target1#, lenti-target2#, lenti-target3# and lenti-target4# were 8E+7 TU/ml, 7E+7 TU/ml, 9E+7 TU/ml, and 1E+8 TU/ml respectively.
     3、The result of RNAi of target gene in vitro showed that lenti-target3# was the most effective one,and the result of Western blot analysis also proved its potency.
     4、After bile duct ligation,the livers in all groups except groupⅠexhibited various degrees of pathological changes,and groupⅢshowed the most obvious pathological change among all groups.With the restoration of bile flow,the pathological changes abated gradually,and the restoration in groupⅢwas slowest among all groups.
     5、After bile duct ligation,there were various degrees of damage to hepatic function and mitochondrial function in groupⅡ, groupⅢ, groupⅣand groupⅤ(P<0.05,compared with groupⅠ),and the damage to groupⅢwas more severe than those to other groups(P<0.05,compared with groupⅡ, groupⅣand groupⅤ). After the restoration of bile flow,mitochondrial function and hepatic function of all groups recovered gradually,but the recovery speed in groupⅢwas slower than those of other groups(P<0.05,compared with groupⅡ, groupⅣand groupⅤ).
     6、The result of RNAi in vivo showed that target gene expression in gourpⅢdecreased obviously in mRNA and protein levels and the difference among groupⅡ, groupⅣand groupⅤwas not statistically significant.
     Conclusion:
     1、In this study,we successfully construced a lentiviral-siRNA vector system. The results of RNAi in vitro and in vivo proved its efficacy in knocking down target gene expression without obvious“off-target”effect and toxic reaction.
     2、Target gene TFAM may played a crucial role in the process of protecting mitochondrial and hepatic function by rhALR. We hypothesized that rhALR could induce the expression of TFAM, protect and repair damaged mtDNA, increase its replication number in hepatocyte, and as a result, improve mitochondrial and hepatic function,and finally promote the recovery of hepatic function after restoration of bile flow in rats with obstructive jaundice.
引文
1. Reynolds JV, Murchan P, Leonard N, Clarke P, Keane FB, Tanner WA: Gut barrier failure in experimental obstructive jaundice. J Surg Res 1996, 62(1):11-16.
    2. Scott-Conner CE, Grogan JB: The pathophysiology of biliary obstruction and its effect on phagocytic and immune function. J Surg Res 1994, 57(2):316-336.
    3. Spivey JR, Bronk SF, Gores GJ: Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J Clin Invest 1993, 92(1):17-24.
    4. Liu TZ, Lee KT, Chern CL, Cheng JT, Stern A, Tsai LY: Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB. Ann Clin Lab Sci 2001, 31(4):383-390.
    5. Yuceyar S, Gumustas K, Erturk S, Hamzaoglu IH, Uygun N, Ayaz M, Cengiz A, Kafadar Y: The role of oxygen free radicals in acute renal failure complicating obstructive jaundice: an experimental study. HPB Surg 1998, 10(6):387-393.
    6. Li D, Sun J, Sun H, Li F, Liu F, Liu S: [Bile salt induces apoptosis of hepatocytes: the mechanism of hepatic function injury during obstructive jaundice]. Zhonghua Wai Ke Za Zhi 1998, 36(10):624-626, 117.
    7. Moazzam FN, Brems JJ, Yong SL, Filkins JP, Fisher SG, Holt DR, Gamelli RL, Ding JW: Endotoxin potentiates hepatocyte apoptosis in cholestasis. J Am Coll Surg 2002, 194(6):731-739.
    8. Tanigawa K, Sakaida I, Masuhara M, Hagiya M, Okita K: Augmenter of liver regeneration (ALR) may promote liver regeneration by reducing natural killer (NK) cell activity in human liver diseases. J Gastroenterol 2000, 35(2):112-119.
    9.唐春,别平,张玉君,李晓武:梗阻性黄疸大鼠肝细胞线粒体DNA片段缺失的定位研究.中华肝胆外科杂志2007, 13(4):250-253.
    10.唐春,别平,李昆,张玉君,马正伟:重组人肝再生增强因子对梗阻性黄疸大鼠肝细胞线粒体功能的保护作用.中华消化外科杂志2006, 5(5):345-349.
    11. Elbashir SM, Harborth J, Weber K, Tuschl T: Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002, 26(2):199-213.
    12. Kubo T, Zhelev Z, Bakalova R, Ohba H: Enhancement of gene silencing potency and nuclease stability by chemically modified duplex RNA. Nucleic Acids Symp Ser (Oxf) 2007(51):407-408.
    13. Yang S, Tutton S, Pierce E, Yoon K: Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol 2001, 21(22):7807-7816.
    14. Winston WM, Molodowitch C, Hunter CP: Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 2002, 295(5564):2456-2459.
    15. Chang HS, Lin CH, Chen YC, Yu WC: Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdown. Am J Pathol 2004, 165(5):1535-1541.
    16. Celotto AM, Graveley BR: Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 2002, 8(6):718-724.
    17. Kamath RS, Ahringer J: Genome-wide RNAi screening in Caenorhabditis elegans. Methods 2003, 30(4):313-321.
    18. Vastenhouw NL, Fischer SE, Robert VJ, Thijssen KL, Fraser AG, Kamath RS, Ahringer J, Plasterk RH: A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr Biol 2003, 13(15):1311-1316.
    19. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391(6669):806-811.
    20. Knight SW, Bass BL: A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001, 293(5538):2269-2271.
    21. Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409(6818):363-366.
    22. Elbashir SM, Lendeckel W, Tuschl T: RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001, 15(2):188-200.
    23. Micura R: Small interfering RNAs and their chemical synthesis. Angew Chem Int Ed Engl 2002, 41(13):2265-2269.
    24. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC: A DNA vector-based RNAitechnology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 2002, 99(8):5515-5520.
    25. Shen C, Buck AK, Liu X, Winkler M, Reske SN: Gene silencing by adenovirus-delivered siRNA. FEBS Lett 2003, 539(1-3):111-114.
    26. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA et al: Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003, 9(4):493-501.
    27. Ren B, O'Brien BA, Swan MA, Koina ME, Nassif N, Wei MQ, Simpson AM: Long-term correction of diabetes in rats after lentiviral hepatic insulin gene therapy. Diabetologia 2007, 50(9):1910-1920.
    28. Hagiya M, Francavilla A, Polimeno L, Ihara I, Sakai H, Seki T, Shimonishi M, Porter KA, Starzl TE: Cloning and sequence analysis of the rat augmenter of liver regeneration (ALR) gene: expression of biologically active recombinant ALR and demonstration of tissue distribution. Proc Natl Acad Sci U S A 1994, 91(17):8142-8146.
    29. Francavilla A, Hagiya M, Porter KA, Polimeno L, Ihara I, Starzl TE: Augmenter of liver regeneration: its place in the universe of hepatic growth factors. Hepatology 1994, 20(3):747-757.
    30. Wang G, Yang X, Zhang Y, Wang Q, Chen H, Wei H, Xing G, Xie L, Hu Z, Zhang C et al: Identification and characterization of receptor for mammalian hepatopoietin that is homologous to yeast ERV1. J Biol Chem 1999, 274(17):11469-11472.
    31. Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R: Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem 1992, 267(34):24161-24164.
    32. Francavilla A, Vujanovic NL, Polimeno L, Azzarone A, Iacobellis A, Deleo A, Hagiya M, Whiteside TL, Starzl TE: The in vivo effect of hepatotrophic factors augmenter of liver regeneration, hepatocyte growth factor, and insulin-like growth factor-II on liver natural killer cell functions. Hepatology 1997, 25(2):411-415.
    33. Polimeno L, Margiotta M, Marangi L, Lisowsky T, Azzarone A, Ierardi E, Frassanito MA, Francavilla R, Francavilla A: Molecular mechanisms of augmenter of liver regeneration as immunoregulator: its effect on interferon-gamma expression in ratliver. Dig Liver Dis 2000, 32(3):217-225.
    34. Hernandez-Munoz R, Sanchez-Sevilla L, Martinez-Gomez A, Dent MA: Changes in mitochondrial adenine nucleotides and in permeability transition in two models of rat liver regeneration. Hepatology 2003, 37(4):842-851.
    35. Polimeno L, Capuano F, Marangi LC, Margiotta M, Lisowsky T, Ierardi E, Francavilla R, Francavilla A: The augmenter of liver regeneration induces mitochondrial gene expression in rat liver and enhances oxidative phosphorylation capacity of liver mitochondria. Dig Liver Dis 2000, 32(6):510-517.
    36. Lisowsky T, Lee JE, Polimeno L, Francavilla A, Hofhaus G: Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase. Dig Liver Dis 2001, 33(2):173-180.
    37. Wu CK, Dailey TA, Dailey HA, Wang BC, Rose JP: The crystal structure of augmenter of liver regeneration: A mammalian FAD-dependent sulfhydryl oxidase. Protein Sci 2003, 12(5):1109-1118.
    38.de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J: Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007, 6(6):443-453.
    39. Bitko V, Musiyenko A, Shulyayeva O, Barik S: Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005, 11(1):50-55.
    40. Thakker DR, Natt F, Husken D, van der Putten H, Maier R, Hoyer D, Cryan JF: siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 2005, 10(8):782-789, 714.
    41. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I: Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005, 23(4):457-462.
    42. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M et al: RNAi-mediated gene silencing in non-human primates. Nature 2006, 441(7089):111-114.
    43. Meade BR, Dowdy SF: Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev 2007, 59(2-3):134-140.
    44. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P,Manjunath N: Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448(7149):39-43.
    45. Schambach A, Baum C: Clinical application of lentiviral vectors - concepts and practice. Curr Gene Ther 2008, 8(6):474-482.
    46. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R: Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 2003, 34(3):263-264.
    47. Cao W, Hunter R, Strnatka D, McQueen CA, Erickson RP: DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response. J Appl Genet 2005, 46(2):217-225.
    48. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441(7092):537-541.
    49. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS: Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003, 21(6):635-637.
    50. Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D, Karpilow J, Marshall WS, Khvorova A: Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 2006, 12(6):988-993.
    51. Persengiev SP, Zhu X, Green MR: Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004, 10(1):12-18.
    52. Sioud M, Sorensen DR: Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 2003, 312(4):1220-1225.
    53. Heidel JD, Hu S, Liu XF, Triche TJ, Davis ME: Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 2004, 22(12):1579-1582.
    54. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998, 18(3):231-236.
    55. Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K: P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 2003, 63(13):3729-3734.
    56. Sheehan TE, Kumar PA, Hood DA: Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab 2004, 286(6):E968-974.
    57. Garstka HL, Schmitt WE, Schultz J, Sogl B, Silakowski B, Perez-Martos A, Montoya J, Wiesner RJ: Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucleic Acids Res 2003, 31(17):5039-5047.
    58. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson NG: Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 2004, 13(9):935-944.
    59. Suliman HB, Carraway MS, Piantadosi CA: Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am J Respir Crit Care Med 2003, 167(4):570-579.
    1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411(6836):494-498.
    2. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441(7092):537-541.
    3. John M, Constien R, Akinc A, Goldberg M, Moon YA, Spranger M, Hadwiger P, Soutschek J, Vornlocher HP, Manoharan M et al: Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 2007, 449(7163):745-747.
    4. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J: Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007, 6(6):443-453.
    5. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003, 9:210-216.
    6. Bitko V, Musiyenko A, Shulyayeva O, Barik S: Inhibition of respiratory viruses bynasally administered siRNA. Nat Med 2005, 11(1):50-55.
    7. Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ, Woodle MC et al: Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005, 11(9):944-951.
    8. Zhang X, Shan P, Jiang D, Noble PW, Abraham NG, Kappas A, Lee PJ: Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion- induced lung apoptosis. J Biol Chem 2004, 279(11):10677-10684.
    9. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, Zhang X, Matthay MA, Ware LB, Homer RJ et al: Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 2006, 12(11):1286-1293.
    10. Makimura H, Mizuno TM, Mastaitis JW, Agami R, Mobbs CV: Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci 2002, 3:18.
    11. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P et al: siRNA relieves chronic neuropathic pain. Nucleic Acids Res 2004, 32(5):e49.
    12. Thakker DR, Natt F, Husken D, Maier R, Muller M, van der Putten H, Hoyer D, Cryan JF: Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc Natl Acad Sci U S A 2004, 101(49):17270-17275.
    13. Thakker DR, Natt F, Husken D, van der Putten H, Maier R, Hoyer D, Cryan JF: siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 2005, 10(8):782-789, 714.
    14. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I: Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005, 23(4):457-462.
    15. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M et al: RNAi-mediated gene silencing in non-human primates. Nature 2006, 441(7089):111-114.
    16. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V et al: Potent and persistent in vivo anti-HBVactivity of chemically modified siRNAs. Nat Biotechnol 2005, 23(8):1002-1007.
    17. Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR et al: Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 2006, 193(12):1650-1657.
    18. Yokota T, Iijima S, Kubodera T, Ishii K, Katakai Y, Ageyama N, Chen Y, Lee YJ, Unno T, Nishina K et al: Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun 2007, 361(2):294-300.
    19. Landen CN, Jr., Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK: Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005, 65(15):6910-6918.
    20. Halder J, Kamat AA, Landen CN, Jr., Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL et al: Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006, 12(16):4916-4924.
    21. Gray MJ, Van Buren G, Dallas NA, Xia L, Wang X, Yang AD, Somcio RJ, Lin YG, Lim S, Fan F et al: Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 2008, 100(2):109-120.
    22. Kumar P, Lee SK, Shankar P, Manjunath N: A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 2006, 3(4):e96.
    23. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM, Lieberman J: An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006, 439(7072):89-94.
    24. Zhang Y, Cristofaro P, Silbermann R, Pusch O, Boden D, Konkin T, Hovanesian V, Monfils PR, Resnick M, Moss SF et al: Engineering mucosal RNA interference in vivo. Mol Ther 2006, 14(3):336-342.
    25. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV et al: Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 2007, 104(32):12982-12987.
    26. Heidel JD, Yu Z, Liu JY, Rele SM, Liang Y, Zeidan RK, Kornbrust DJ, Davis ME: Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A 2007, 104(14):5715-5721.
    27. Takeshita F, Ochiya T: Therapeutic potential of RNA interference against cancer. Cancer Sci 2006, 97(8):689-696.
    28. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F et al: RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 2006, 14(4):476-484.
    29. Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J et al: Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 2006, 17(10):1019-1026.
    30. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J et al: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432(7014):173-178.
    31. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM et al: Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 2007, 25(10):1149-1157.
    32. McNamara JO, 2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006, 24(8):1005-1015.
    33. Chu TC, Twu KY, Ellington AD, Levy M: Aptamer mediated siRNA delivery. Nucleic Acids Res 2006, 34(10):e73.
    34. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 1995, 92(16):7297-7301.
    35. Meade BR, Dowdy SF: Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev 2007, 59(2-3):134-140.
    36. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244(4905):707-712.
    37. McKeage K, Perry CM: Trastuzumab: a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs 2002, 62(1):209-243.
    38. Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR: Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol 2003, 21(2):283-290.
    39. Choudhury A, Charo J, Parapuram SK, Hunt RC, Hunt DM, Seliger B, Kiessling R: Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 2004, 108(1):71-77.
    40. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N: Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448(7149):39-43.
    41. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P et al: Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005, 23(6):709-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700