二氢叶酸还原酶与卵巢上皮癌多药耐药关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章卵巢癌多药耐药的研究进展(文献综述)
     卵巢恶性肿瘤是女性生殖器三大恶性肿瘤之一。卵巢隐匿于盆腔的深部,早期病变时不易被发现,一旦出现症状时大多属于晚期,治疗后容易复发,死亡率亦一直位居妇科恶性肿瘤之首。目前卵巢癌的治疗目的是早期争取治愈、晚期控制复发、延长生存期及提高患者生活质量。治疗原则是以手术为主,联合化疗及放疗的综合治疗。大多数的情况下,手术是很难将卵巢癌的转移灶彻底的切除干净。对于那些残留的细小的转移和种植结节.都需要化学药物来进行治疗。因此,化疗在卵巢癌治疗的过程中具有极其重大的意义。晚期卵巢癌的治疗方法主要以肿瘤细胞减灭术及术后辅助化疗为主。但化疗失败常会导致卵巢癌的复发,其主要原因在于肿瘤细胞产生的多药耐药(multidrug resistance,MDR)。以顺铂为主的联合化疗对卵巢癌的有效率达40%-60%,由于疾病进展和机体对化疗产生耐药,晚期卵巢癌患者的5年生存率低于20%。所以,多药耐药是肿瘤化疗失败的主要因素之一。因此,肿瘤产生耐药机制的研究以及在临床上预防耐药、对抗耐药并尝试逆转耐药就成为了当前卵巢癌治疗中的热点和难点,成为提高卵巢癌的治疗效果及改善卵巢癌患者生存的重要目标之一。
     第二章卵巢癌组织中二氢叶酸还原酶基因的表达及临床意义
     目的探讨卵巢癌组织中二氢叶酸还原酶基因(DHFR)(?)的表达及其临床意义。方法采用实时荧光定量PCR法测定80例卵巢癌组织、50例良性卵巢组织及30例正常卵巢组织中的DHFR mRNA表达情况,分析其与卵巢癌临床病理及多药耐药的相关性。结果(1)DHFR mRNA表达量在止常卵巢,良性卵巢肿瘤和卵巢癌组织中分别为0.584±0.234,0.895±0.783和0.197±0.412,相比较差异有统计学意义(P<0.001,P=0.027,PO.05),但在上皮性癌中浆液性癌组织中DHFR mRNA表达量则明显高于粘液性和内膜样癌,相比较差异有统计学意义(P<0.001)。(3)卵巢癌组织中DHFR mRNA表达量与患者的腹水量,淋巴结转移和远处器官转移无明显相关(P>O.05),但大网膜转移者肿瘤组织中DHFR mRNA表达量则低于无转移者(P=0.044)。(4)在卵巢癌患者中治疗后缓解者组织中DHFR mRNA表达量低于肿瘤进展者(P     第三章二氢叶酸还原酶基因表达上调对卵巢上皮癌细胞系生物学特性影响的体外实验研究
     目的构建携带人二氢叶酸还原酶(DHFR)基因的慢病毒表达载体pWPI。方法采用PCR方法扩增二氢叶酸还原酶cDNA全长,与EZ-T克隆载体连接,HindⅢ及BamHI-HF限制性内切酶双酶切回收的PCR片段并补平其缺口。慢病毒系统载体使用pWPI系统,采用PmeI酶切载体后回收片段,将其磷酸化,T4酶连接载体与目的基因。表达载体鉴定均采用核苷酸序列测定,重组质粒采用脂质体转染293T包装细胞后获得包装的病毒颗粒。通过流式细胞仪检测成功构建好的DHFR-pWPI-SKOV3细胞、空载pWPI-SKOV3细胞以及亲本SKOV3细胞在不同的顺铂浓度下(2.5ug/ml,5.0ug/ml,10.0ug/ml,20.0ug/m1)不同时间段(24h、48h及72h)的三种细胞的凋亡情况以及IC50顺铂浓度(6.0ug/m1)下三种细胞的周期变化,高效液相法(HPLC法)检测不同顺铂浓度(4.0ug/ml,6.0ug/ml,8.0ug/ml)不同时间段(24h、48h及72h)药物作用后三种细胞内的顺铂浓度,以及透射电镜观察IC50顺铂浓度(6.0ug/m1)下三种细胞的超微结构变化,以探讨DHFR基因的过表达对卵巢癌细胞的体外生物学行为影响。结果(1)成功扩增二氢叶酸还原酶全长并连接入pWPI载体构建成重组表达载体DHFR-pWPI,重组质粒测序结果显与DHFR基因的同源性达100%,按标准生产程序转染293T后有DHFR基因的表达,将其病毒液感染SKOV3细胞。(2)通过流式细胞仪检测转染DHFR基因的细胞的凋亡变化,发现DHFR-pWPI-SKOV3细胞在顺铂浓度(2.5ug/ml、5.0ug/m1)刺激下,其24h、48h及72h的凋亡率均低于pWPI-SKOV3及SKOV3细胞;DHFR-pWPI-SKOV3细胞在顺铂浓度(10.0ug/ml、20.0ug/ml)刺激下,其24h及48h的凋亡率均低于pWPI-SKOV3及SKOV3细胞,但在72h时,凋亡率却高于SKOV3细胞株。表明DHFR-pWPI-SKOV3细胞在浓度小于5.0ug/ml时,不管时间的改变(72小时内),其对顺铂的抵抗力高于其他两种细胞。(3)通过流式细胞仪检测不同时间段IC50顺铂浓度(6.0ug/m1)对三种不同处理卵巢癌细胞的周期变化,结果提示1C50(6.0ug/m1)顺铂浓度给药时,DHFR-pWPI-SKOV3、pWPI-SKOV3及SKOV3三种细胞在24h、48h时其G1期含量明显低于G2+S细胞:而在72h时,DHFR-pWPI-SKOV3细胞的G2+S期明显低于pWPI-SKOV3及SKOV3细胞。(4)采用HPLC法检测细胞内顺铂浓度,结果显示细胞培养液中顺铂浓度(4.0ug/m1)给药24h、48h后及顺铂浓度(6.0ug/m1)给药24h后,DHFR-pWPI-SKOV3细胞内的顺铂含量均明显低于pWPI-SKOV3及SKOV3细胞;顺铂浓度(6.0ug/m1)给药48h及顺铂浓度(8.0ug/ml)给药24h、48h后,DHFR-pWPI-SKOV3细胞内的顺铂含量明显高于pWPI-SKOV3及SKOV3细胞。(5)通过电镜观察1C50顺铂浓度在不同时间段刺激三种不同处理的细胞的超微结构改变,发现DHFR-pWPI-SKOV3细胞在给药24h及48h其微丝聚集,线粒体从数量上及结构上改变明显,而pWPI-SKOV3细胞微丝少见,线粒体数目减少,但结构改变不明显,SKOV3细胞亦很少见到微丝,但其线粒体的结构改变亦明显,扩张与固缩同时存在;三者均出现扩张的内质网;三者均少见正常的细胞器;在给药72h后,pWPI-SKOV3及SKOV3细胞可见微丝排列紊乱,核膜部分消失,核糖体大量的聚集,进入了明显的坏死阶段,而DHFR-pWPI-SKOV3细胞未见微丝,核膜几乎完全消失,胞质内有白色囊状物质,线粒体结构基本消失,大部分细胞濒临死亡。结论成功采用慢病毒载体系统构建了二氢叶酸还原酶重组慢病毒转基因,耐药性功能实验表明DHFR表达量增高时卵巢癌细胞系耐药性增加,可以认为DHFR与卵巢癌顺铂的耐药性相关,为探讨DHFR在肿瘤多药耐药过程中的分子机理奠定基础。
     第一节RNA干扰质粒载体的构建及鉴定
     目的构建二氢叶酸还原酶(DHFR, dyhidrofolate reductase)基因RNAi慢病毒载体,为探讨抑伟DHFR基因表达在卵巢癌铂类耐药治疗中的意义奠定基础。方法设计DHFR基因靶向的发夹状siRNA,筛选出最佳siRNA沉默片段,退火后连接入p GSCIL载体,转化后进行序列鉴定,脂质体转染SKOV3细胞株,并进行荧光摄像。结果将退火后的双链寡核苷酸片段连接至pGPU6/GFP/Neo载体,测序结果正确。转染SKOV3细胞后,PCR鉴定干扰效果。G418筛选稳定细胞株。结论成功构建针对DHFR基因的siRNA载体,找到了有效的干扰靶序列,转染SKOV3细胞后,DHFR基因的表达明显减弱。
     第二节DHFR慢病毒干扰载体的构建及其在卵巢上皮癌细胞中生物学特性影响
     目的构建二氢叶酸还原酶(DHFR, dyhidrofolate reductase)基因RNA干扰慢病毒载体,研究其耐药性功能影响,为探讨抑制DHFR基因表达在卵巢癌铂类耐药治疗中的意义奠定基础。方法设计DHFR基因靶向的发夹状siRNA,筛选出最佳siRNA沉默片段,退火后连接入pGSCIL/GFP载体,转化后进行序列鉴定,脂质体转染SKOV3细胞株,并进行荧光摄像。Western blot验证构建成功通过流式细胞仪检测成功构建好的DHFR-pGSCIL-SKOV3细胞、空载pGSCIL-SKOV3细胞以及亲本SKOV3细胞在不同的顺铂浓度下(2.5ug/m1,5.0ug/ml,10.0ug/ml,20.0ug/m1)不同时间段(24h、48h及72h)的三种细胞的凋亡情况以及IC50顺铂浓度(4.4ug/ml)下三种细胞的周期变化,高效液相法(HPLC法)检测不同顺铂浓度(2.5ug/ml,5.0ug/ml,7.5ug/ml)不同时间段(24h、48h及72h)药物作用后三种细胞内的顺铂浓度,以及透射电镜观察IC50顺铂浓度(4.4ug/m1)下三种细胞的超微结构变化,以探讨DHFR基因的沉默对卵巢癌细胞的体外生物学行为影响。结果(1)将退火后的双链寡核苷酸片段连接至pGSCIL/GFP载体,测序结果正确。转染SKOV3细胞后,Western blot鉴定十扰效果。(2)在给药24h、48h及72h,DHFR-pGCSIL-SKOV3、pGCSIL-SKOV3及SKOV3细胞的凋亡率随着顺铂浓度(2.5ug/ml、5.0ug/ml、10.0ug/ml、20.0ug/m1)的增大而升高,且DHFR-pGCSIL-SKOV3细胞给药48h及72h后的凋亡率明显高于pGCSIL-SKOV3及SKOV3细胞。(3)在IC50(4.4ug/ml)顺铂浓度给药24h、48h后,DHFR-pGCSIL-SKOV3、pGCSIL-SKOV3及SKOV3细胞均以G1期为主。DHFR-pGCSIL-SKOV3在48h时G1期的细胞比例明显减少,S期和G2/M期比例增多,72h后三种细胞G1期的含量均明显降低,S期和G2/M期的含量均增高。(4)采用高效液相检测细胞内顺铂浓度时,当2.5ug/m1、5.0ug/ml顺铂浓度作用三种不同处理的卵巢癌细胞时,DHFR-pGCSIL-SKOV3细胞在给药后24h、48h其细胞内顺铂浓度均明显高于pGCSIL-SKOV3及SKOV3细胞。而DHFR-pGCSIL-SKOV3细胞在7.5ug/ml顺铂浓度给药后24h其细胞内顺铂浓度均明显低于PGCSIL-SKOV3及SKOV3细胞,而在48h却又高于pGCSIL-SKOV3及SKOV3细胞。(5)在IC50(4.4ug/m1)给药24h、48h三种不同处理细胞的微丝均少见,DHFR-pGCSIL-SKOV3细胞在24h时可见线粒体肿胀、脊消失、空泡化、萎缩,内质网扩张明显,有聚集的核糖体,末见高尔基体,48h时其有些线粒体溶解消失,且出现大量的白色囊泡;而pGCSIL-SKOV3及SKOV3细胞24h、48h内质网扩张少见,线粒体结构改变不明显,甚至有2-3个高尔基体存在;DHFR-pGCSIL-SKOV3细胞至72h时,微丝明显的聚集、增多,线粒体结构亦消失。余两种细胞微丝排列紊乱,线粒体形态多样化。结论成功构建针对DHFR基因的siRNA慢病毒载体,找到了有效的干扰靶序列,转染SKOV3细胞后,DHFR基因的表达明显减弱。通过对DHFR下调后耐药性功能研究证实DHFR基因的下调与经过铂类药物作用的体外卵巢癌细胞的药物敏感性有一定的联系,抑制DHFR基因表达能增加顺铂药物敏感性,因此,抑制卵巢癌细胞DHFR基因的表达可以考虑作为顺铂多药耐药的逆转机制。
CHAPTER I RESEARCH PROGRESS FOR OVARIAN CANCER MULTIDRUG-RESISTANT
     Ovarian cancer is female genitals one of three major malignant tumor. Ovarian hidden in the deep of the pelvic cavity, early lesions will not be discovered, once appear when symptoms are belong to late, after treatment, the easy relapse, mortality also is always in the lethal gynecological malignancy. At present the aim of treatment for ovarian cancer early, late recurrence control for cure, prolonging the survival time and improve the quality of life of the patients. Treatment is mainly surgery, chemotherapy and radiation treatment. Most of the cases, surgery is difficult to ovarian cancer metastases thoroughly clean the resection. For those who remain the tiny transfer and planting nodules. All need chemical drugs to treat them. Therefore, the chemotherapy treatment in the process of oarian cancer have extremely great significance. Adanced oarian cancer treatments mainly by tumor cells was reduced and postoperative adjuvant chemotherapy out to give priority to. But often cause ovarian cancer chemotherapy failed the relapse, the main reason is that the tumor cells to produce more of drug-resistant (multidrug resistance, MDR). With the combination chemotherapy cisplatin primarily for ovarian cancer rate was40%-60%, because disease progression and the body's resistance to chemotherapy produce, patients with adanced oarian cancer of the5year's survival rates below20%. So. many drug-resistant tumor chemotherapy is one of the main factors of failure. Therefore, tumours produce mechanisms of resistance in clinical research and prevent resistance against drug resistance, resistance to try and reverse became the current ovarian cancer treatment of hot and difficult, which become improve ovarian cancer cure effect and improve ovarian cancer survival one of the important targets.
     CHAPTER II THE EXPRESSION OF DIHYDROFOLATE REDUCTASE GENE AND ITS CLINICAL SIGNIFICANCE IN OVARIAN CANCER
     Objective To investigate the expression of dihydrofolate reductase (DHFR) mRNA in ovarian cancer and to elucidate the relationship between the clinical pathologic parameters and the expression of DHFR mRNA in ovarian cancer. Method The expression of DHFR in80cases of ovarian carcinoma and50cases of benign ovarian and30cases of normal control were detected by real-time fluorescent quantitative polymerase chain reaction-and the relationship between them was further demonstrated. Results (1)The content of DHFR mRNA expressed in ovarian carcinoma, benign ovarian tumor and normal ovarian tissues was0.584±0.234,0.895±0.783and0.197±0.412. There were significant differences between them (P<0.001,P=0.027, P<0.001).(2)There was not relationship between the content of DHFR mRNA expressed and the stage and pathological grade in ovarian cancer, but DHFR mRNA expression in serous carcinoma was significantly higher than that in mucinous and endometrioid carcinoma (P<0.001).(3)The expression of DHFR mRNA in ovarian cancer was not related significantly and the amount of ascites-lymph node metastasis and distant metastasis in the patients with ovarian cancer(P>0.05), but the expression of DHFR mRNA in patients with the omentum metastasis was down-regulated compared with that without the omentum metastasis, there was difference statistics significantly (P=0.044).(4)The expression content of DHFR mRNA in patients with CR for treatment was lower than that with SD or PD or PR (P<0.001), and also the expression of DHFR mRNA in patients with cisplatinum-sensitive was down-regulated compared with those of cisplatinum multidrug-resistant (0.130±0.103vs0.341±0.701P=0.011).(5)Youden index of the ROC curve for DHFR mRNA expression was0.331, which would be used to determine the nature of the ovarian tumors. The median survival time of patients with DHFR mRNA expression up-regulated (less than0.331) was16.4months, but the median survival time of patients with DHFR mRNA expression down-regulated (higher than0.331) was44.5months, there was difference statistical significantly (P<0.001), and COX multivariate analysis also showed DHFR mRNA expression was an independent prognostic factor in ovarian cancer(P=0.018). Conclusions It was suggested that DHFR would be to play in physiology metabolism in normal cells. There was a relationship between DHFR mRNA up-regulated expression and cisplatinum multidrug-resistant in ovarian cancer, and the expression of DHFR mRNA could be used to determine whether there was cisplatinum multidrug-resistant in ovarian cancer as a potential marker.
     CHAPTER III THE BIOLOGICAL ACTIONS EFFECT OF DIHYDROFOLATE REDUCTASE GENE EXPREESION UPREGULATION IN EPITHELIAL OVARIAN CANCER IN VITRO EXPERIMENTS
     Objective To construct a lentiviral expressing vector harboring human dihydrofolate reductase (DHFR) gene. Methods The cDNA length of DHFR gene was amplified by PCR and was connected to cloned vector EZ-T. The recovered PCR fragment was obtained by digesting with restriction enzymes named HindⅢ and BamHI-HF, then blunted at the gap. Lentiviral vector system adopted pWPI system.The vector pWPI was digested with PmeI enzyme, and then was recovered fragment and phosphorylated. The phosphorylated vector was connected with DHFR gene by T4enzyme. Recombinant plasmid was confirmed by PCR and sequencing nucleotide. The recombinant retroviral vector pWPI was selected to transfect packaging cell293T to gain virus particles with infection ability,which were infected SKOV3cell. Adopting the flow cytometric to detect the cell apoptosis of DHFR-pWPI-SKOV3cells, pWPI-SKOV3cells and SKOV3cells in different cisplatin concentrations (2.5ug/ml,5.0ug/ml,10.0ug/ml.20.0ug/ml) and different time period (24h,48h and72h),and the of cell periodic changes of theres cells under IC50cisplatin concentration (6.0ug/ml), we also used highly effective liquid phase method (HPLC) to test intracellular cisplatin concentration in different induction of cisplatin concentration (2.5ug/ml,5.0ug/ml,10.0ug/ml,20.0ug/ml) and different time period (24h.48h and72h),what's more.we further adopted transmission electron microscope to observe ultrastructural changes of these kinds of cells under induction of IC50cisplatin concentration (6.0ug/ml).The aim of this study is investigate how the upregulated DHFR gene expression affects biological actions of ovarian cancer cell in vitro.Results (1)The recombinant plasmid, named DHFR-pWPI, which was constructed and identified Packaged by packaging cell293T. The homology between sequencing results and DHFR gene sequence was up to100%, and the expression of DHFR in293T cells was determined by RT-PCR.(2)Through the flow cytometric to detect apoptosis changes cells carried DHFR gene,we found that DHFR-pWPI-SKOV3cell in the stimulation of cisplatin concentration (2.5ug/ml,5.0ug/ml), its apoptosis rate at24h.48h and72h was lower than pWPI-SKOV3and SKOV3cells; DHFR-pWPI-SKOV3cells in the induction of cisplatin concentration (10.0ug/ml,20.0ug/ml), whose apoptosis rate at24h and48h was lower than pWPI-SKOV3and SKOV3cells, but at72h, its apoptosis rate was higher than SKOV3cell line.The results showed that DHFR-pWPI-SKOV3cells in the concentration less than5.0ug/ml, regardless of the time change (≥72hours).whose cisplatin drug resistance is higher than the other two kinds of cells.(3) We adopted the flow cytometric to test different time period under IC50cisplatin concentration (6.0ug/ml) for three kinds of ovarian cancer cells cycle, and the results indicated that G1stage rate of DHFR-pWPI-SKOV3, pWPI-SKOV3and SKOV3cells at24h and48h were obviously lower than those of G2and S stage rates:However, at72h, DHFR-pWPI-SKOV3cells G2+S phase rates were significantly lower than the pWPI-SKOV3and SKOV3cells.(4) This experiment used HPLC method to detect intracellular cisplatin concentration, and the results showed that the cells in the cisplatin concentration (4.0ug/ml) at24h,48h and cisplatin concentration (6.0ug/ml) at24h after the medicine induction, the intracellular cisplatin content of DHFR-pWPI-SKOV3cell were significantly lower than pWPI-SKOV3and SKOV3cells; cisplatin concentration (6.0ug/ml) at48h and cisplatin concentration (8.0ug/ml) at24h and48h. the intracellular cisplatin content of DHFR-pWPI-SKOV3cell were obviously higher than pWPI-SKOV3and SKOV3cells.(5)The experiment obeserved ultrastructural changes of three different cells induced by IC50cisplatin concentration in different time period through the electron microscope.which found that for DHFR-pWPI-SKOV3cells, the microwire gathered together at24h and48h, and the number and structure of mitochondria had obvious change, for pWPI-SKOV3cells,which had rare microfilament, the number of mitochondria decreased but structure change is not apparent, we also saw seldom microfilament and obvious mitochondrial structure changes in SKOV3cells, expand and pyknotic mitochondrial structure existed at the same time; all of hese cells appeared expansion of endoplasmic reticulum and had rare normal organelles; at72h,there are inordinate microfilament, a part of nuclear membrane disappeared, a lot of ribosomes gathered together in pWPI-SKOV3and SKOV3cells, and there were rare microfilament in DHFR-pWPI-SKOV3cells,nuclear membrane completely disappeared, many white cystic matter were seen in cytoplasm, mitochondrial structure disappeared completely, which seems most cells is on the verge of death.Conclusion The lentiviral expressing vector harboring human DHFR had been constructed successfully, DHFR expression increased when the cell was drug-resistant in ovarian cancer cell, which suggested DHFR gene expression is related to cisplatin drug resistance in ovarian cancer,The results made the foundation to investigate the molecular mechanism of multidrug-resistance in tumor.
     CHAPTER Ⅳ THE BIOLOGICAL IMPACT OF DIHYDROFOLATE REDUCTASE GENE EXPRESSION DOWNREGULATION IN EPITHELIAL OVARIAN CANCER CELLS IN VITRO EXPERIMENTS
     THE FIRST QUARTER:CONSTRUCTION AND IDENTIFICATION OF DIHYDRIFOLATE REDUCTASE GENE siRNA-EXPRESSION PLASMID
     Objective To construct dyhidrofolate reductase gene(DHFR) small interfering RNA(siRNA)and its expression vector,and explore the significance of DHFR inhibition in the treatment of platinum multidrug-resistance in ovarian cancer. Methods We designed DHFR gene-targeted hairpin siRNA and then screened the best siRNA silence fragment, and inserted into pGPU6/GFP/Neo plasmid,which was identified by sequencing. Human malignant ovarian cancer SKOV3cells were transfected with the constructed vector using lipofectin transfection method. Fluorescence photographs were taken. Then adopting G418method to screen the stable cell line. Results Three groups of DHFR gene-targeted hairpin siRNA were designed,and inserted into pGPU6/GFP/Neo vector after annealing. Vectors containing siRNA were right by sequencing. Fluorescence photographs showed that SKOV3cells were transfected successfully by lipofectin transfection method,and PCR method identified its interference effect. Conclusion DHFR gene-targeted siRNA and its vector was successfully constructed. And one sequence with the highest inhibition efficiency was screened out. DHFR gene expression declined obviously after the constructed plasmid was transfected into SKOV3cell.
     THE SECOND QUARTER:THE CONSTRUCTION OF siRNA DHFR LENTIVIRUS INTERFERENCE CARRIER AND ITS BIOLOGICAL FUNNCTION AND INFLUENCE IN OVARIAN CANCER
     Objective To construct dyhidrofolate reductase (DHFR) gene RNAi interference lentivirus carrier, to explore the relationship between the inhibition of DHFR gene and platinum drug resistance in ovarian cancer,which made the foundation for Resistance mechanisms in the therapy of ovarian cancer. Methods To design targeting hairpin siRNA of DHFR gene, select the best siRNA silent sequence, join to pGSCIL/GFP vector after anneal, adopt PCR to identify recombination sequence, transfect into SKOV3cell lines through liposomes, finally use fluorescence camera. Western blotting identify the interferential DHFR gene of ovarian cancer SKOV3cell was constructed successfully,named DHFR-pGSCIL-SKOV3cell. Adopting the flow cytometric to detect the cell apoptosis of DHFR-pGSCIL-SKOV3cells, pGSCIL-SKOV3cells and SKOV3cells in different cisplatin concentrations (2.5ug/ml,5.0ug/ml,10.0ug/ml,20.0ug/ml) and different time period (24h,48h and72h),and the of cell periodic changes of theres cells under IC50cisplatin concentration (4.4ug/ml), we also used highly effective liquid phase method (HPLC) to test intracellular cisplatin concentration in different induction of cisplatin concentration (2.5ug/ml,5.0ug/ml,10.0ug/ml,20.0ug/ml) and different time period (24h.48h and72h),what's more.we further adopted transmission electron microscope to observe ultrastructural changes of these kinds of cells under induction of IC50cisplatin concentration (4.4ug/ml).The aim of this study is investigate how the downregulated DHFR gene expression affects biological actions of ovarian cancer cell in vitro.Results (1)Let double-strand nucleotide after annealing connect to pGSCIL/GFP vector, sequence result is correct. Transfect Virus particles into SKOV3cell, using western blotting identifed interference effect.(2)Through the flow cytometric to detect apoptosis changes of cells knocked DHFR gene,we found that DHFR-pGCSIL-SKOV3, pGCSIL-SKOV3and SKOV3cell apoptosis rate increased with the raised cisplatin concentration (2.5ug/ml.5.0ug/ml,10.0ug/ml,20.0ug/ml) at24h、48h and72h,and the apoptosis rate of DHFR-pGCSIL-SKOV3was obvious higher than pGCSIL-SKOV3and SKOV3cells at24h and48h.(3)We adopted the flow cytometric to test different time period under IC50cisplatin concentration (4.4ug/ml) for three kinds of ovarian cancer cells cycle, and the results indicated that G1stage rate of DHFR-pGCSIL-SKOV3, pGCSIL-SKOV3and SKOV3cells at24h、48h and72h were obviously higher than those of G2and S stage rates; However, at24h and48h, DHFR-pGCSIL-SKOV3cells G2/M and S phase rates were significantly increased while G1phase rates decreased,at72h, G2/M and S phase rates were significantly increased while G1phase rates decreased for all of three kinds of cells.(4)This experiment used HPLC method to detect intracellular cisplatin concentration, and the results showed that the cells in the cisplatin concentration (2.5ug/ml、5.0ug/ml) at24h and48h,the intracellular cisplatin content of DHFR-pGCSIL-SKOV3cell were significantly higher than pGCSIL-SKOV3and SKOV3cells; but cisplatin concentration (7.5ug/ml) at24h, the intracellular cisplatin content of DHFR-pGCSIL-SKOV3cell were obviously lower than pGCSIL-SKOV3and SKOV3cells.while higher than pGCSIL-SKOV3and SKOV3cells at48h.(5)The experiment obeserved ultrastructural changes of three different cells induced by IC50cisplatin concentration(4.4ug/ml) in different time period through the electron microscope,which found that for DHFR-pGCSIL-SKOV3at24h, visible when mitochondria swelling, its ridge disappear, the empty bubble and atrophy, obvious endoplasmic reticulum expansion.ribosomes gathered together, rare golgiapparatus.At48h,some mitochondria were dissolve and disappeared, and a large number of white vesicles were appeared; at72h, the micro filament obvious increased and gathered together, mitochondrial structure also disappear.But the microfilament of the other two cells arranged disorderly, mitochondrial form diversification.However,for pGCSIL-SKOV3and SKOV3cells at24h and48h rare endoplasmic reticulum expansion, mitochondrial structure change is not obvious, and even existed2-3golgi apparatus; the microwire gathered together at24h and48h, and the number and structure of mitochondria had obvious change, for pWPI-SKOV3cells,which had rare microfilament, the number of mitochondria decreased but structure change is not apparent, we also saw seldom microfilament and obvious mitochondrial structure changes in SKOV3cells, expand and pyknotic mitochondrial structure existed at the same time; all of hese cells appeared expansion of endoplasmic reticulum and had rare normal organelles; at72h,there are inordinate microfilament, a part of nuclear membrane disappeared, a lot of ribosomes gathered together in pWPI-SKOV3and SKOV3cells, and there were rare microfilament in DHFR-pWPI-SKOV3cells,nuclear membrane completely disappeared, many white cystic matter were seen in cytoplasm, mitochondrial structure disappeared completely, which seems most cells is on the verge of death.Conclusions We are succeed in constructing DHFR gene siRNA carrier, screen the effective target sequence, and then transfect into SKOV3cell.DHFR gene expression were significantly weakened. The research indicated thatknock out DHFR gene is related to cisplatin drug resistance in ovarian cancer,The results made the foundation to investigate the molecular mechanism of multidrug-resistance in tumor.
引文
1.赵营,黄守松,杜佩妍.紫杉醇作为一线药物在卵巢癌化疗中的应用[J].国际医药卫生导报,2007,13(15):101-104.
    2. Piccart M J, de Valeriola D, Dal Lago L, et al. Adjuvant chemotherapy in 2005: standards and beyond[J]. Breast,2005,14(6):439-445.
    3.路虹,王建东,孔为民.多西他赛作为一线用药治疗卵巢癌研究进展[J].肿瘤防治杂志,2005,12(15):1194-1196.
    4. Ledermann F. [Pharmaceutical journeys:travel sketches by Swiss pharmacists][J]. Veroff Schweiz Ges Gesch Pharm,2003,24:1-191.
    5. Hochster H S, Plimack E R, Mandeli J, et al. Prolonged topotecan infusion with cisplatin in the first-line treatment of ovarian cancer:an NYGOG and ECOG study[J]. Gynecol Oncol,2006,100(2):324-329.
    6.孟丽华,孔北华,张友忠,等.拓扑替康联合顺铂治疗卵巢上皮性癌的临床研究[J].中华妇产科杂志,2007,42(10):683-687.
    7.沈铿.泰素周疗和三周疗法作为卵巢癌一线化疗的多中心对照研究[J].中华医学杂志,2005,85(30):2099-2103.
    8. Beller U. Preconception counseling for the couple at risk preventing the hereditary breast and ovarian cancer syndrome[J]. Int J Gynecol Cancer,2010,20(11 Suppl 2):S29-S30.
    9. Markman M. Involvement of bone in epithelial ovarian cancer:case report of an uncommon late metastatic event[J]. Case Rep Oncol,2011,4(3):490-491.
    10. Harries M, Kaye S B. Recent advances in the treatment of epithelial ovarian cancer[J]. Expert Opin Investig Drugs,2001.10(9):1715-1724.
    11.张树荣,李荷莲,乐杰.卵巢癌耐药机制研究进展[J].实用妇产科杂志,2006,22(3):148-150.
    12.沈铿,郎景和.卵巢上皮性癌诊断和治疗中应注意的问题[J].中华妇产科杂志,2003,38(2):65-68.
    13.陈沂,吴绪峰,陈惠祯.复发性卵巢癌的研究进展[J].国外医学(肿瘤学分册),2004,31(12):946-949.
    14. Crombach G, Zippel H H, Wurz H. Clinical significance of cancer antigen 125 (CA 125) in ovarian cancer[J]. Cancer Detect Prev,1985,8(1-2):135-139.
    15. Varughese E, Kondalsamy-Chennakesavan S, Obermair A. The value of serum CA125 for the development of virtual follow-up strategies for patients with epithelial ovarian cancer:a retrospective study[J].J Ovarian Res.2012.5:11.
    16. [16] Gupta D, Lammersfeld C A, Vashi P G. et al. Longitudinal monitoring of CA125 levels provides additional information about survival in ovarian cancer[J]. J Ovarian Res,2010,3:22.
    17. Wilder J L, Pavlik E, Straughn J M, et al. Clinical implications of a rising serum CA-125 within the normal range in patients with epithelial ovarian cancer:a preliminary investigation[J]. Gynecol Oncol,2003,89(2):233-235.
    18.张淑兰,王丹波,任凤岩.肿瘤标志物检测在复发性卵巢癌诊治中的意义[J].中国实用妇科与产科杂志.2005,21(7):389-391.
    19. Topuz E, Aydiner A, Saip P, et al. Correlations of serum CA125 level and computerized tomography (CT) imaging with laparotomic findings following intraperitoneal chemotherapy in patients with ovarian cancer[J]. Eur J Gynaecol Oncol,2000,21(6):599-602.
    20. Modugno F. Ovarian cancer and high-risk women-implications for prevention, screening, and early detection[J]. Gynecol Oncol,2003,91(1):15-31.
    21. Schummer B, Siegsmund M, Steidler A, et al. Expression of the gene for the multidrug resistance-associated protein in human prostate tissue[J]. Urol Res,1999,27(3):164-168.
    22. Hough C D, Sherman-Baust C A, Pizer E S, et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer[J]. Cancer Res,2000,60(22):6281-6287.
    23. Bingle L, Cross S S, High A S, et al. WFDC2 (HE4):a potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung[J]. Respir Res,2006,7:61.
    24. Hallamaa M, Suvitie P, Huhtinen K, et al. Serum HE4 concentration is not dependent on menstrual cycle or hormonal treatment among endometriosis patients and healthy premenopausal women[J]. Gynecol Oncol,2012.
    25. Moore R G, Miller M C, Steinhoff M M, et al. Serum HE4 levels are less frequently elevated than CA125 in women with benign gynecologic disorders[J]. Am J Obstet Gynecol,2012,206(4):351.
    26.王术艺,董立新,李洪臣,等.血清HE4浓度在妇科盆腔恶性肿瘤诊断中的应用[J].中国肿瘤临床,2009,36(4):181-183.
    27.孙春意,张媛,刘洋,等.HE4:一种新的卵巢癌肿瘤标志物[J].医学综述,2010,16(15):2278-2280.
    28.赵群,段微,吴玉梅,等.CA125阴性卵巢癌血清标志物差异蛋白质组学的研究[J].现代妇产科进展,2008,17(5):337-341.
    29. Ahmed N, Majeed A A, Ahmed I, et al. genoBASE pylori:a genotype search tool and database of the human gastric pathogen Helicobacter pylori[J]. Infect Genet Evol,2007,7(4):463-468.
    30. Ye B, Cramer D W, Skates S J, et al. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer:identification and characterization using proteomic profiling and mass spectrometry[J]. Clin Cancer Res,2003,9(8):2904-2911.
    31. Yeh L S, Hung Y C, Kao A. et al. Tissue polypeptide specific antigen (TPS) and carbohydrate antigen 125 (CA-125) in the early prediction of recurrent ovarian cancer[J]. Anticancer Res.2002,22(6B):3669-3671.
    32.李玉华,杨留才,孙炯,等.卵巢癌组织的差异蛋白质研究[J].苏州大学学报(医学版),2009,29(3):483-486,529.
    33. Bandera C A. Advances in the understanding of risk factors for ovarian cancer[J]. J Reprod Med,2005,50(6):399-406.
    34.仲召阳,王东,李增鹏,等.多肿瘤标志物蛋白质芯片检测对肿瘤诊断的临床意义[J].第三军医大学学报,2008,30(17):1658-1660.
    35.陈瑶,卓静,黄明通,等.卵巢癌术后复发的特征及相关影响因素分析[J].中国妇产科临床杂志,2006,7(3):177-180.
    36.燕鑫,陈春玲,张岩,等.61例复发性上皮性卵巢癌相关临床因素分析[J].中国妇产科临床杂志,2004,5(3):180-184.
    37.成夜霞,冯捷,刘晨,等.Ⅲ期浆液性卵巢癌存活及复发相关因素分析[J].中国妇产科临床杂志,2004,5(4):281-285.
    38.[38]莫秀瑛,李力,肖晓兰,等.影响卵巢上皮性癌化疗疗效的临床病理因素分析[J].实用妇产科杂志,2008,24(10):605-609.
    39.魏风华等,铂类联合紫杉醇对晚期卵巢癌一线化疗疗效预测因素的研究.中华医学杂志,2007.87(17):第1187-1189页.
    40. Kataoka F, Tsuda H, Nomura H, et al. The chemosensitivity of nodal metastases in recurrent epithelial ovarian cancer[J]. Eur J Gynaecol Oncol,2011,32(2):160-163.
    41.莫秀瑛,李力,黄志碧.卵巢上皮癌一线化疗疗效的Meta分析[J].广西医科大学学报,2008,25(6):888-892.
    42.范伟,张莹,郭江富,等.mdr-1基因骨髓造血干细胞移植诱导大鼠肝移植免疫耐受[J].重庆医学,2011,40(11):1046-1048,封2.
    43. Zhou J, Liu M, Luthra R, et al. EM012, a microtubule-interfering agent, inhibits the progression of multidrug-resistant human ovarian cancer both in cultured cells and in athymic nude mice[J]. Cancer Chemother Pharmacol,2005,55(5):461-465.
    44. Todo Y. [Analysis of p53, MDR-1, and GST-pi expression in endometrial carcinoma][J]. Hokkaido Igaku Zasshi,2003,78(2):117-127.
    45. Wang J, Xiao Z. [RQ-PCR detection of GST-pi and LRP genes in adult acute leukemia and its clinical significance][J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2012,20(1):78-82.
    46. Hedau S, Jain N, Husain S A, et al. Novel germline mutations in breast cancer susceptibility genes BRCA1, BRCA2 and p53 gene in breast cancer patients from India[J]. Breast Cancer Res Treat,2004,88(2):177-186.
    47.孙莉,何晓阳,江伟,等.06-烷基鸟嘌呤-DNA烷基转移酶基因多态性与肿瘤易感性的关系[J].中山大学学报(医学科学版),2004,25(4):330-333,346.
    48.贾平,卢运萍,马丁.DNA拓扑异构酶在卵巢癌细胞拓扑替康耐药中的作用[J].华中科技大学学报(医学版).2008,37(1):69-72.
    49.李国利,刘佳佳.蛋白激酶C在中性粒细胞凋亡信号转导中的作用[J].国际免疫学杂志,2008,31(3):179-182.
    50.金晶,吴绪峰,陈惠祯P-gp、PKC-α和MRP在上皮性卵巢癌中的表达及其临床意义[J].现代肿瘤医学.2006,14(3):325-329.
    51.王翠,唐建武PKCα、PKCβⅡ、PKCδ在甲状腺病变中的表达[J].现代肿瘤医学,2006,14(6):665-666.
    52.于利利,王泽华.bcl-2基因表达在人卵巢癌多药耐药现象中的作用[J].华中科技大学学报(医学版),2002,31(5):576-578.
    53.闫雪冬,潘凌亚.p53与卵巢癌的基因治疗[J].中国肿癌生物治疗杂志,2005,12(2):155-157.
    54.关婷,崔满华,李守柔.外源性p53基因增加卵巢癌细胞对顺铂的敏感性[J].肿瘤防治研究,2002,29(1):35-36.
    55.芦颖,李庆华,庞天翔.肿瘤细胞内pH值改变与肿瘤多药耐药的关系[J].中国药理学通报,2007,23(9):1128-1130.
    56. Chapman J V, Gouaze-Andersson V, Karimi R, et al. P-glycoprotein antagonists confer synergistic sensitivity to short-chain ceramide in human multidrug-resistant cancer cells[J]. Exp Cell Res,2011,317(12):1736-1745.
    57.张凤梅,刘秉慈,刘海峰,等.p53表达在石英诱导的细胞周期改变及DNA损伤修复中的作用[J].中华劳动卫生职业病杂志.2010,28(4):246-249.
    58.王辉,崔泽实.肿瘤耐药基因的研究进展[J].国际病理科学与临床杂志,2007,27(3):239-244.
    59. Morgan R J. Ovarian cancer guidelines:treatment progress and controversies[J]. J Natl Compr Canc Netw,2011,9(1):4-5.
    60.殷娟,郭俊,权瑞泉,等.伊立替康联合顺铂治疗复发转移性卵巢癌[J].现代肿瘤医学,2011,19(1):136-137.
    61. Berek J S, Taylor P T, Gordon A, et al. Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer[J]. J Clin Oncol,2004,22(17):3507-3516.
    62. Vasey P A, Roche H, Bisset D, et al. Phase I study of docetaxel in combination with cyclophosphamide as first-line chemotherapy for metastatic breast cancer[J]. Br J Cancer,2002,87(10):1072-1078.
    63. Kristensen E. Sexual side effects induced by psychotropic drugs[J]. Dan Med Bull,2002,49(4):349-352.
    64. Bookman M A. First-line chemotherapy in epithelial ovarian cancer[J]. Clin Obstet Gynecol,2012,55(1):96-113.
    65.蔡云朗,任慕兰,鲁荣绥,等.不同治疗方法对晚期上皮性卵巢癌的疗效及毒性反应比较[J].江苏医药,2003,29(11):847-848.
    66. Hakes A S, Cronin J T. Resistance and tolerance to herbivory in Solidago altissima (Asteraceae):Genetic variability, costs, and selection for multiple traits[J]. Am J Bot,2011,98(9):1446-1455.
    67. Bertelsen M, Sanfridson A. Inflammatory pathway analysis using a high content screening platform[J]. Assay Drug Dev Technol.2005,3(3):261-271.
    68. Loubiere L S. Lambert N C, Flinn L J. et al. Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells[J]. Lab Invest,2006,86(11):1185-1192.
    69. Thomas H, Rosenberg P. Role of weekly paclitaxel in the treatment of advanced ovarian cancer[J]. Crit Rev Oncol Hematol,2002.44 Suppl:S43-S51.
    70. Garcia A A, O'Meara A, Bahador A, et al. Phase II study of gemcitabine and weekly paclitaxel in recurrent platinum-resistant ovarian cancer[J]. Gynecol Oncol,2004,93(2):493-498.
    71. Uwe S. Anti-inflammatory interventions of NF-kappaB signaling:potential applications and risks[J]. Biochem Pharmacol,2008,75(8):1567-1579.
    72. Mei L, Chen H, Wei D M, et al. Maintenance chemotherapy for ovarian cancer[J]. Cochrane Database Syst Rev,2010(9):D7414.
    73. Pecorelli S, Favalli G, Gadducci A, et al. Phase III trial of observation versus six courses of paclitaxel in patients with advanced epithelial ovarian cancer in complete response after six courses of paclitaxel/platinum-based chemotherapy:final results of the After-6 protocol 1[J]. J Clin Oncol,2009,27(28):4642-4648.
    74. Hess L M, Rong N, Monahan P O, et al. Continued chemotherapy after complete response to primary therapy among women with advanced ovarian cancer:a meta-analysis[J]. Cancer,2010,116(22):5251-5260.
    75.成宁海,黄惠芳,潘凌亚,等.晚期卵巢上皮癌的巩固化疗——一项前瞻性随机对照试验[J].解放军医学杂志,2006,31(7):654-656.
    76.陈建亮.羟基喜树碱术前辅助化疗晚期卵巢癌临床疗效观察[J].海峡药学,2010,22(7):125-127.
    77. Vergote I, Amant F, Leunen K. Neoadjuvant chemotherapy in advanced ovarian cancer:what kind of evidence is needed to convince US gynaecological oncologists?[J]. Gynecol Oncol,2010,119(1):1-2.
    78. Cornelis S, Van Calster B, Amant F, et al. Role of neoadjuvant chemotherapy in the management of stage ⅢC-Ⅳ ovarian cancer:survey results from the members of the European Society of Gynecological Oncology [J]. Int J Gynecol Cancer,2012,22(3):407-416.
    79. Armstrong D K. Relapsed ovarian cancer:challenges and management strategies for a chronic disease[J]. Oncologist,2002,7 Suppl 5:20-28.
    80. Cormio G, Maneo A, Colamaria A, et al. Surgical resection of solitary brain metastasis from ovarian carcinoma:an analysis of 22 cases[J]. Gynecol Oncol,2003,89(1):116-119.
    81.沈铿.卵巢上皮性癌淋巴转移的诊治[J].实用妇产科杂志,2010,26(10):732-733.
    82. Berman M L. Future directions in the surgical management of ovarian cancer[J]. Gynecol Oncol,2003,90(2 Pt 2):S33-S39.
    83.彭芝兰.复发性卵巢癌的手术治疗[J].中国实用妇科与产科杂志.2005,21(7):393-395.
    84. Mutch D G. Surgical management of ovarian cancer[J]. Semin Oncol,2002,29(1 Suppl 1):3-8.
    85. Uddin S. Ahmed M, Hussain A, et al. Cyclooxygenase-2 inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian cancer[J]. Int J Cancer.2010,126(2):382-394.
    86. Balestreri L, Bison L. Sorio R, et al. Abdominal recurrence of ovarian cancer: value of abdominal MR in patients with positive CA125 and negative CT[J]. Radiol Med,2002,104(5-6):426-436.
    87.莫秀瑛,李力,肖晓兰,等.影响卵巢上皮性癌化疗疗效的临床病理因素分析[J].实用妇产科杂志,2008,24(10):605-609.
    88.曹泽毅,于莎莎.妇科恶性肿瘤治疗后一年内未控与复发原因的研究——附全国61所医院1753例分析[J].中华妇产科杂志,(3).
    89. Nakayama N, Nakayama K, Yeasmin S, et al. KRAS or BRAF mutation status is a useful predictor of sensitivity to MEK inhibition in ovarian cancer[J]. Br J Cancer,2008,99(12):2020-2028.
    90.李静孟,高峰,方华,等.重症肌无力增生型胸腺组织11KD差异蛋白带双 向电泳图谱的建立[J].中国实用神经疾病杂志,2008,11(5):30-31.
    91. Bartholomeusz C, Oishi T, Saso H, et al. MEK1/2 inhibitor selumetinib (AZD6244) inhibits growth of ovarian clear cell carcinoma in a PEA-15-dependent manner in a mouse xenograft model[J]. Mol Cancer Ther,2012,11(2):360-369.
    92.罗茜,吴永忠,林远洪,等.RNA干扰EGFR基因对卵巢癌细胞放疗敏感性影响的实验研究[J].重庆医科大学学报,(0).
    93. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2007[J]. CA Cancer J Clin,2007,57(1):43-66.
    94. Monk B J, Han E, Josephs-Cowan C A, et al. Salvage bevacizumab (rhuMAB VEGF)-based therapy after multiple prior cytotoxic regimens in advanced refractory epithelial ovarian cancer[J]. Gynecol Oncol,2006,102(2):140-144.
    95. Simpkins F, Belinson J L, Rose P G. Avoiding bevacizumab related gastrointestinal toxicity for recurrent ovarian cancer by careful patient screening[J]. Gynecol Oncol,2007,107(1):118-123.
    96. Burger R A, Sill M W, Monk B J, et al. Phase Ⅱ trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer:a Gynecologic Oncology Group Study[J]. J Clin Oncol,2007,25(33):5165-5171.
    97.高建苑.贝伐单抗联合卡铂治疗复发性卵巢癌1例[J].山西医科大学学报,(5).
    98.李淑敏,张蓉,李洪君,等.贝伐单抗与化疗联合治疗复发性卵巢癌18例临床观察[J].中华临床医师杂志(电子版),(1).
    99.周亚,徐静,邹检平.血管内皮生长因子和抗肿瘤血管新生药物研究进展[J].生物技术通讯,(1).
    100.Fecher L A, Amaravadi R K, Flaherty K T. The MAPK pathway in melanoma[J]. Curr Opin Oncol,2008,20(2):183-189.
    101.Nakae M, Iwamoto I, Fujino T, et al. Preoperative plasma osteopontin level as a biomarker complementary to carbohydrate antigen 125 in predicting ovarian cancer[J]. J Obstet Gynaecol Res,2006,32(3):309-314.
    102.Li S, Miner K, Fannin R, et al. Cyclooxygenase-1 and 2 in normal and malignant human ovarian epithelium[J]. Gynecol Oncol,2004.92(2):622-627.
    103.Thompson N. Lyons J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery[J]. Curr Opin Pharmacol,2005,5(4):350-356.
    104.Wei S Q. Sui L H. Zheng J H. et al. Role of ERK1/2 kinase in cisplatin-induced apoptosis in human ovarian carcinoma cells[J]. Chin Med Sci J,2004,19(2):125-129.
    105.Rui H L, Wang Y Y, Cheng H, et al. JNK-dependent AP-1 activation is required for aristolochic acid-induced TGF-betal synthesis in human renal proximal epithelial cells[J]. Am J Physiol Renal Physiol,2012.
    106.Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis[J]. Eur J Cancer,2005,41(16):2449-2461.
    107.宋玉华,宋三泰,江泽飞,等.原癌基因Fra-1高表达与乳腺癌细胞转移表型的关系[J].西安交通大学学报(医学版),(2).
    108.Perl A E, Kasner M T, Tsai D E, et al. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia[J]. Clin Cancer Res,2009,15(21):6732-6739.
    109.Rizell M, Andersson M, Cahlin C, et al. Effects of the mTOR inhibitor sirolimus in patients with hepatocellular and cholangiocellular cancer[J]. Int J Clin Oncol.2008,13(1):66-70.
    110.Motzer R J, Escudier B, Oudard S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma:final results and analysis of prognostic factors[J]. Cancer,2010,116(18):4256-4265.
    111.Fujisaka Y, Yamada Y, Yamamoto N, et al. A Phase 1 clinical study of temsirolimus (CCI-779) in Japanese patients with advanced solid tumors[J]. Jpn J Clin Oncol,2010,40(8):732-738.
    112.Sessa C, Tosi D, Vigano L, et al. Phase Ib study of weekly mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) with weekly paclitaxel[J]. Ann Oncol,2010,21 (6):1315-1322.
    113.李凡,廖志钢.PARP的结构、功能及其与DNA损伤的关系[J].河南科技大学学报(医学版),(2).
    114.Delaney C A, Wang L Z, Kyle S, et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines[J]. Clin Cancer Res,2000,6(7):2860-2867.
    115.Calabrese C R, Almassy R, Barton S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361[J]. J Natl Cancer Inst,2004,96(1):56-67.
    116.Brock W A, Milas L, Bergh S, et al. Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase[J]. Cancer Lett,2004,205(2):155-160.
    117.Hird K, Kirsner K. The effect of right cerebral hemisphere damage on collaborative planning in conversation:an analysis of intentional structure[J]. Clin Linguist Phon,2003,17(4-5):309-315.
    118.Azhikina T L. Sverdlov E D. Study of tissue-specific CpG methylation of DNA in extended genomic loci[J]. Biochemistry (Mosc).2005.70(5):596-603.
    119.Koul S. Mckiernan J M, Marayan G. et al. Role of promoter hypermethylation in Cisplatin treatment response of male germ cell tumors[J]. Mol Cancer.2004.3:16.
    120.刘迎,曾甫清.膀胱肿瘤治疗中的多药耐药现象及逆转[J].临床泌尿外科杂志,2001,16(6):279-281.
    121.Dabholkar M, Thornton K, Vionnet J, et al. Increased mRNA levels of xeroderma pigmentosum complementation group B (XPB) and Cockayne's syndrome complementation group B (CSB) without increased mRNA levels of multidrug-resistance gene (MDR1) or metallothionein-Ⅱ(MT-Ⅱ) in platinum-resistant human ovarian cancer tissues[J]. Biochem Pharmacol,2000.60(11):1611-1619.
    122.王会妍,瞿全新.卵巢上皮性癌ERCCl表达与顺铂化疗耐药关系的研究[J].现代妇产科进展,2006,15(7):512-514,插1.
    123.Altaha R, Liang X, Yu J J, et al. Excision repair cross complementing-group 1: gene expression and platinum resistance[J]. Int J Mol Med,2004,14(6):959-970.
    124.Buller R E, Runnebaum I B, Karlan B Y, et al. A phase Ⅰ/Ⅱ trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer[J]. Cancer Gene Ther,2002,9(7):553-566.
    125.Beck J F, Brugger D, Brischwein K, et al. Anticancer drug-mediated induction of multidrug resistance-associated genes and protein kinase C isozymes in the T-lymphoblastoid cell line CCRF-CEM and in blasts from patients with acute lymphoblastic leukemias[J]. Jpn J Cancer Res,2001,92(8):896-903.
    126.Hao W B, Xu W W, Chen B H, et al. [Preparation and identification of phage-displayed ICAM-1-mimic peptide][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2003,19(1):77-79.
    127.罗华友,杨家印,刘自明,等.多药耐药基因反义寡核苷酸逆转肝癌细胞耐药的研究[J].中华肝脏病杂志,2004,12(2):8587.
    128.Yague E, Higgins C F, Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1[J]. Gene Ther,2004,11(14):1170-1174.
    129.Lin H L, Lui W Y, Liu T Y, et al. Reversal of Taxol resistance in hepatoma by cyclosporin A:involvement of the PI-3 kinase-AKT 1 pathway[J]. Br J Cancer.2003,88(6):973-980.
    130.潘光栋,严律南.Mdrl基因所致肿瘤多药耐药逆转的基因治疗进展[J].华西医学,2007,22(1):205-207.
    131.Kuo M T, Liu Z, Wei Y, et al. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-kappaB signaling[J]. Oncogene,2002,21(13):1945-1954.
    132.Pineda P, Kanter A, Mcivor R S, et al. Dihydrofolate reductase mutant with exceptional resistance to methotrexate but not to trimetrexate[J]. J Med Chem,2003,46(14):2816-2818.
    133.Imwong M, Russell B, Suwanarusk R, et al. Methotrexate is highly potent against pyrimethamine-resistant Plasmodium vivax[J]. J Infect Dis,2011.203(2):207-210.
    134.de Nonancourt-Didion M, Gueant J L, Adjalla C, et al. Overexpression of folate binding protein alpha is one of the mechanism explaining the adaptation of HT29 cells to high concentration of methotrexate[J]. Cancer Lett,2001,71 (2):139-145.
    135.黄瀚,李兵,欧阳林旗,等.叶酸受体及二氢叶酸还原酶与人乳腺癌细胞MCF-7/ADR多药耐药的关系[J].中国药理学通报,(5).
    136.于明东,李书忠.实时荧光定量PCR法检测人骨肉瘤耐MTX细胞系中RFC、DHFR、GST-π的mRNA表达[J].中国矫形外科杂志,(3).
    137.Scionti I, Michelacci F, Pasello M, et al. Clinical impact of the methotrexate resistance-associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma[J]. Ann Oncol,2008,19(8):1500-1508.
    138.Mauldin R V, Carroll M J, Lee A L. Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding:modulation of dynamics within a structural state[J]. Structure,2009,17(3):386-394.
    139.Gangjee A, Zeng Y, Mcguire J J, et al. Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates[J]. J Med Chem,2004,47(27):6893-6901.
    140.Gangjee A, Yang J, Queener S F. Novel non-classical C9-methyl-5-substituted-2,4-diaminopyrrolo[2,3-d]pyrimidines as potential inhibitors of dihydrofolate reductase and as anti-opportunistic agents[J]. Bioorg Med Chem,2006,14(24):8341-8351.
    1、Askari BS, Krajinovic M. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes.Curr Genomics [J].2010,11(8):578-583.
    2、Levy AS, Sather HN, Steinherz PG, et al.Reduced folate carrier and dihydrofolate reductase expression in acute lymphocytic leukemia may predict outcome:a Children's Cancer Group Study.J Pediatr Hematol Oncol [J].2003,25(9):688-695.
    3、Li L, Luan Y, Li X,et.al. Demonstration of differential gene expression between sensitive and resistant ovarian tumor cells by fluorescence differential display-PCR analysis [J].Oncol Rep. 2005,13(5):793-799.
    4、Al-Shakfa F, Dulucq S, Brukner I, et al.DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia [J]. Clin Cancer Res.2009,15(22):6931-6938.
    5、Matsuo K. Lin YG, Roman LD, Overcoming platinum resistance in ovarian carcinoma [J] Expert Opin Investig Drugs.2010,19(11):1339-1354.
    6、Webber S, Bartlett CA, Boritzki TJ,, et al.AG337, a novel lipophilic thymidylate synthase inhibitor:in vitro and in vivo preclinical studies [J]. Cancer Chemother Pharmacol.1996, 37(6):509-517.
    7、Matakidou A, El Galta R, Rudd MF, et al. Prognostic significance of folate metabolism polymorphisms for lung cancer [J], Br J Cancer.2007,97(2):247-252.
    8、Serra M. Reverter Branchat G. Maurici D, et al. Analysis of dihydrofolate reductase and reduced folate carrier genstatusin relation to methotrexate resistance in osteosarcoma cells[J]. Ann Oncol,2004,15 (1):151-160.
    9、Banerjee D, Mayer Kuckuk P, Capiaux G, et al. Noveaspects of resistance to drug stargeted t o dihydrofolate reductase and thymidylate synthase [J]. Biochim Biophys Acta.2002.1587 (2-3):164-173.
    10、王镜岩、朱圣庚、徐长法,主编.生物膜的组成与结构,生物化学(上册)[M].3版.北京:高等教育出版社,2006:613-614
    11、Wu MF, Hsiao YM, Huang CF, et al.Genetic determinants of pemetrexed responsiveness and nonresponsiveness in non-small cell lung cancer cells [J]. J Thorac Oncol.2010, 5(8):1143-1151.
    12、Liu X, Yu X, Guo Z, et al. Cotransduction of Human mdr-1 and Dihydrofolate Reductase Genes into Murine Hematopoietic Cells [J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2000,8(2):110-113.
    13、于明东,李书忠.实时荧光定量PCR法检测人骨肉瘤耐MTX细胞系中RFC、DHFR、GST-π的mRNA表达[J].中国矫形外科杂志,2009,17(11):858-861.
    14、黄瀚,李兵,欧阳林旗,等.叶酸受体及二氢叶酸还原酶与人乳腺癌细胞MCF-7/ADR多要耐药关系[J].中国药理学通报,2011,27(1):99-103
    15、Scionti I, Michelacci F, Pasello M, et al. Clinical impact to the methotrexate resistance associated genes CMYC and dihydrofolate reductase(DHFR) in high grade osteosarcoma[J]. Ann Onco,2008,19 (8):1500-1508
    16、张文卿,许佐良,于杰,等.人突变DHFR基因高效逆转录病毒载体及其在小鼠造血细胞的表达[J].中国肿瘤生物治疗杂志,1997,4(12):85-89.
    17. Hagner N, Joerger M. Cancer chemotherapy:targeting folic acid synthesis[J].Cancer Manag Res.2010; 2:293-301.
    18、Schmeler KM, Gershenson DM.Low-grade serous ovarian cancer:a unique disease[J]. Curr Oncol Rep.2008,10(6):519-23.
    1. Cario H, Smith D E, Blom H, et al. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease[J]. Am J Hum Genet,2011,88(2):226-231.
    2. 陈宏,谢兆霞,肖希斌Survivin反义寡核苷酸诱导K562/A02细胞凋亡的实验研究[J].中国癌症杂志,2006,16(3):202-204.
    3. Levy A S, Sather H N, Steinherz P G, et al. Reduced folate carrier and dihydrofolate reductase expression in acute lymphocytic leukemia may predict outcome:a Children's Cancer Group Study[J]. J Pediatr Hematol Oncol,2003,25(9):688-695.
    4. Hattinger C M, Stoico G, Michelacci F, et al. Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines[J]. Genes Chromosomes Cancer,2009,48(4):289-309.
    5. Song B, Wang Y, Kudo K, et al. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit[J]. Clin Cancer Res,2008,14(24):8080-8086.
    6. Scionti I, Michelacci F, Pasello M, et al. Clinical impact of the methotrexate resistance-associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma[J]. Ann Oncol,2008,19(8):1500-1508.
    7. Morganti M, Coronnello M, Caciagli B, et al. Modulation of dihydrofolate reductase gene expression in methotrexate-resistant human leukemia CCRF-CEM/E cells by antisense oligonucleotides[J]. Anticancer Drugs,2000,11(4):285-294.
    8. Hagner N, Joerger M. Cancer chemotherapy:targeting folic acid synthesis[J]. Cancer Manag Res,2010,2:293-301.
    9. Li L, Luan Y, Li X, et al. Demonstration of differential gene expression between sensitive and resistant ovarian tumor cells by fluorescence differential display-PCR analysis[J]. Oncol Rep,2005,13(5):793-799.
    10.黄宁,王琪,张玮,等.卵巢肿瘤组织CXCL1基因表达与临床病理的相关性探讨[J].中华肿瘤防治杂志,2011,18(2):85-88.
    11. Lu X, Humeau L, Slepushkin V, et al. Safe two-plasmid production for the first clinical lentivirus vector that achieves>99% transduction in primary cells using a one-step protocol[J]. J Gene Med,2004,6(9):963-973.
    12. Bartosch B, Cosset F L. Strategies for retargeted gene delivery using vectors derived from lentiviruses[J]. Curr Gene Ther,2004,4(4):427-443.
    13.常晓慧,工芝琪.细胞凋亡与白血病多药耐药的关系[J].哈尔滨队科大学学报,2002,36(1):82-84.
    14.许文林,江云伟,王法春,等.白血病细胞多药耐药与细胞凋亡的关系[J].白血病·淋巴瘤,2003,12(6):351-353.
    15.江宏兵,廖小宜,李芃.顺铂诱导颊癌细胞凋亡及凋亡分子(Apo-1)表达的实验研究[J].华西口腔医学杂志,1999,17(4):300.
    16.王雪卿,尹婕,毛宁,等.细胞周期同步化逆转卵巢癌对紫杉醇耐药的研究[J].现代妇产科进展,2009,18(2):109-112.
    1. Zhu Y, Wu X, Xu K. Application of RNAi Technology in Cancer Therapy[J]. Zhongguo Fei Ai Za Zhi,2009,12(7):811-815.
    2. Li L, Luan Y, Li X,et.al. Demonstration of differential gene expression between sensitive and resistant ovarian tumor cells by fluorescence differential display-PCR analysis [J].Oncol Rep. 2005,13(5):793-799.
    3. 于明东,李书忠.实时荧光定量PCR法检测人骨肉瘤耐MTX细胞系中RFC、DHFR、GST-π的mRNA表达[J].中国矫形外科杂志,2009,17(11):858-861.
    4. 赖东梅,刘特,张健,等.叶酸对卵巢癌细胞的增殖抑制作用.上海交通大学学报(医学版),2010,30(4)386-388.
    5. 韩冬,孟祥宁,傅松滨.肿瘤细胞对MTX产生耐药机制的研究进展[J].国际遗传学杂志.2010,33(6):349-353.
    6. Zhang ZH, Chen Y, Zhao HJ,et al. Silencing of heparanase by siRNA inhibits tumor metastasis and angiogenesis of human breast cance in vitro and in vivo.Cancer Biol Ther.2007,6:587-595.
    7. 高军,苏琳,秦仁义,等.乙酰肝素酶反义寡核苷酸对人胰腺癌细胞侵袭力的抑制作用[J].中华实验外科杂志.2006,23:570-572.
    8. 许德晖,黄辰,刘利英,宋土生.高效siRNA设计的研究进展[J].遗传.2006,28(11):1457-1461.
    9. 郝荣增,刘慧姝,马保华.化学合成siRNA转染人羊膜的WISH细胞的效率检测[J].中国组织工程研究和临床康复.2008,12:31 15-3118.
    1. Malisa A, Pearce R, Abdullah S, et al. Molecular monitoring of resistant dhfr and dhps allelic haplotypes in Morogoro and Mvomero districts in south eastern Tanzania[J]. Afr Health Sci,2011,11 (2):142-150.
    2. Cario H, Smith D E, Blom H, et al. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease[J]. Am J Hum Genet,2011,88(2):226-231.
    3. Zhu W Y, Bunni M, Priest D G, et al. Severe folate restriction results in depletion of and alteration in the composition of the intracellular folate pool, moderate sensitization to methotrexate and trimetrexate, upregulation of endogenous DHFR activity, and overexpression of metallothionein Ⅱ and folate receptor alpha that, upon folate repletion, confer drug resistance to CHL cells[J]. J Exp Ther Oncol,2002,2(5):264-277.
    4. Banka S, Blom H J, Walter J, et al. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency [J]. Am J Hum Genet,2011,88(2):216-225.
    5. Sun S, Gui Y, Jiang Q, et al. Dihydrofolate reductase is required for the development of heart and outflow tract in zebrafish[J]. Acta Biochim Biophys Sin (Shanghai),2011,43(12):957-969.
    6. Klinghoffer R A, Frazier J, Annis J, et al. A lentivirus-mediated genetic screen identifies dihydrofolate reductase (DHFR) as a modulator of beta-catenin/GSK3 signaling[J]. PLoS One,2009,4(9):e6892.
    7. 李培,陈彻,席亚明,等.艰难梭菌毒素A诱导K562细胞凋亡及其机制研究[J].中国实验血液学杂志.2011,19(3):638-642.
    8.马艳云,陈静,易娟,等.三氧化二砷经内质网应激反应诱导K562/ADM耐药细胞凋亡[J].基础医学与临床,2009,29(2):161-165.
    9. 李云春,钟利,唐秀英,等.顺铂诱导直肠癌HCT116细胞凋亡及其作用机制的研究[J].中国综合临床,2009,25(10):1076-1079.
    ]0.柳友清,邢辉,韩晓兵,等.顺铂诱导宫颈癌Hela细胞凋亡及其作用机制的研究[J].中国肿瘤临床,2006.33(1):1-4.
    1、Askari BS, Krajinovic M Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes.Curr Genomics [J].2010,11(8):578-583.
    2、Levy AS, Sather HN, Steinherz PG, et al.Reduced folate carrier and dihydrofolate reductase expression in acute lymphocytic leukemia may predict outcome:a Children's Cancer Group Study.J Pediatr Hematol Oncol [J].2003,25(9):688-695.
    3、Li L, Luan Y, Li X,et.al. Demonstration of differential gene expression between sensitive and resistant ovarian tumor cells by fluorescence differential display-PCR analysis [J].Oncol Rep. 2005,13(5):793-799.
    4、Al-Shakfa F, Dulucq S, Brukner I, et al.DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia [J]. Clin Cancer Res.2009,15(22):6931-6938.
    5、Matsuo K, Lin YG, Roman LD, Overcoming platinum resistance in ovarian carcinoma [J]. Expert Opin Investig Drugs.2010,19(11):1339-1354.
    6、于明东,李书忠.实时荧光定量PCR法检测人骨肉瘤耐MTX细胞系中RFC、DHFR、GST-π的mRNA表达[J].中国矫形外科杂志,2009,17(11):8.58-861.
    7、黄瀚,李兵,欧阳林旗,等.叶酸受体及二氢叶酸还原酶与人乳腺癌细胞MCF-7/ADR多要耐药关系[J].中国药理学通报,2011,27(1):99-103
    8、Scionti I, Michelacci F, Pasello M, et al. Clinical impact to the methotrexate resistance associated genes CMYC and dihydrofolate reductase(DHFR) in high grade osteosarcoma[J]. Ann Onco,2008,19 (8):1500-1508
    9、张文卿,许佐良,于杰,等.人突变DHFR基因高效逆转录病毒载体及其在小鼠造血细胞的表达[J].中国肿瘤生物治疗杂志,1997,4(12):85-89.
    10、Hagner N, Joerger M. Cancer chemotherapy:targeting folic acid synthesis[J].Cancer Manag Res.2010; 2:293-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700