热电厂母管蒸汽压力控制的负荷优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电厂具有供电和供热的双重功能,比普通电厂拥有更高的能源利用率。目前,热电厂在电力、石化、金、造纸和热电联产等企业之中广泛存在。热电厂的运行方式普遍采用母管制。母管蒸汽压力的自动控制对热电厂的安全经济运行至关重要,而负荷的优化分配则是实现母管蒸汽压力控制的基础。因此,研究母管蒸汽压力控制的负荷优化具有重要意义。
     本文针对热电厂采用不同厂家分布式控制系统(Distributed Control System,简称DCS)的情况,就实现母管蒸汽压力自动控制时所遇到的负荷分配方面的问题进行了深入研究。
     首先,针对不同厂家的DCS之间不能联网这一问题,设置了一套母管蒸汽压力控制系统,规划了它与各炉DCS之间的信息交换。在详细地分析了各种通信方式的特点后,提出了信息交换采用硬接线的通信方式进行。
     其次,研究了母管系统的压力负荷特性,建立了压力负荷特性模型,提出了一种基于现场数据的BP神经网络模型参数辨识方法。在此模型的基础上推导出了根据母管蒸汽压力变化求解母管蒸汽总负荷需求的计算公式。实例计算表明参数辨识方法的有效性和模型的正确性。母管蒸汽总负荷需求的求解是设置的母管蒸汽压力控制系统的一项重要功能,是实现母管蒸汽压力控制的先决条件。母管系统压力负荷特性模型的建立有助于推导母管蒸汽总负荷需求的计算公式。
     然后,为了实现母管蒸汽总负荷需求的分配,针对已有控制方案固定调压锅炉、母管蒸汽压力难以长期自动控制的弊端,提出了调压锅炉组在线辨识、调压锅炉数量的实时统计方法及调压锅炉组蒸汽总负荷的计算公式。
     最后,针对调压锅炉组蒸汽总负荷的优化分配,提出了一种负荷优化分配新方法——自适应Hopfield神经网络法。算例证明该方法具有和常规的等微增率法一样良好的优化效果,且没有使用条件的限制。
The thermal power plants supply us with electrical power and heat, and have more efficient in energy usage than common power plants. So the thermal power plants exist in enterprises numerously such as power plants, petrochemical enterprises, metallurgical enterprises, papermaking factories and CHP enterprises. The operation mode of thermal power plants commonly is main-pipe scheme. The automatic control of main-pipe steam pressure is very important to safe and economic operation of thermal power plants, and the optimal assignment of load is the basis of control of main-pipe steam pressure. So the research on load optimization of main-pipe steam pressure control is of great significance.
     This paper conducts in-depth research on the problems of load assignment for main-pipe steam pressure control against the thermal power plants using distributed control system (DCS) of different companies.
     Firstly, against the problem that different kinds of DCS can’t communicate, this paper designs a main-pipe steam pressure control system (MSPCS), plans the message exchange between the MSPCS and every boiler DCS. Besides, after analyzing the features of different communication ways, this paper presents the hard-wiring communication way to exchange the messages.
     Secondly, this paper does research on the pressure-load character of main-pipe system, models the character, and presents a BP neural network method basing on history data to identify the model parameters. Besides, this paper drives the calculation formula which can calculate the total steam load demand according to the variety of main-pipe steam pressure on the basis of model of pressure-load character. The calculation results of an example demonstrate that the identifying method is available and the model proposed is correct. The calculation of main-pipe total steam load demand is an important function of main-pipe steam pressure control system designed and the predetermination of main-pipe steam pressure control. The building of model of pressure-load character of main-pipe system is helpful to derive the calculation formula of main-pipe total steam load demand.
     Thirdly, in order to assign the main-pipe total steam load demand, this paper presents the mind of pressure-adjustment boilers’online identifying, the real-time quantity calculation of pressure-adjustment boilers and the calculation formula of steam total load of pressure-adjustment boilers against the defects that the main-pipe steam pressure control plans existed fix pressure-adjustment boiler which steam pressure can’t be controlled effectively in a long run.
     At last, against the optimal assignment of steam total load of pressure-adjustment boilers, this paper presents a new optimization method which is adaptive Hopfield neural network method. The calculation results of an example demonstrate that the adaptive Hopfield neural network method is as good as common equal micro-increase rate method in optimal results. Besides, the adaptive Hopfield neural network method has no using restrictions.
引文
1张秦瑞,刘伟.关于25MW汽轮机组三炉两机母管制运行方式的探讨.西北电力技术. 2006, 1:57~59
    2 Cai Jun, Lu Dezheng, Wang Pingyang. Load Following Capability of Thermal Power Plant as Contributed by Coal Mill Control. Power System Technology, 1998. Proceedings, PowerCon’98, 1998, 2:1203~1207
    3周佐,许润.热电厂锅炉母管压力协调控制.齐鲁石油化工. 2007, 35(3):228~230
    4孙艳,娄幸.母管制机组的炉机负荷分配运算与协调控制.自动化仪表. 2003, 24(10):53~56
    5徐友海,邢秦安.母管制系统定量分析的研究.汽轮机技术. 2004, 46(3):190~192
    6张伟杰,王明春.母管制供热机组在线运行优化管理系统的开发与应用.机电信息. 2004, 22:33~35
    7张永军,李蔚等.母管制供热机组的在线能损分析系统.浙江大学学报. 2003, 37(4):461~464
    8李志国.母管制供热机组主汽温自调系统不能长期投入的原因分析.河北电力技术. 2003, 22:30~31
    9李慧君,孙定,张斌.机组母管制给水系统分配方案的研究.华北电力大学学报. 2003, 30(3):57~61
    10华志刚,王岩.并列运行锅炉主蒸汽母管压力控制系统的研究.江西电力. 2007, 31(5):20~22
    11王鑫,柳长海.主蒸汽压力波动大的原因分析及解决方法.水利电力劳动保护. 2003, 1:22~23
    12 Yang Yong, Luo An. Coordination Optimization~based Variable Structure Control for Main Steam Pressure of Power Plant. 9th International Conference on Control, Automation, Robotics and Vision.2006, 1~5
    13王志.母管制系统蒸汽压力的调节.吉林电力技术. 1999, 3:49~52
    14吕剑虹,吴科,郭颖等.应用大滞后控制技术的并列锅炉母管蒸汽压力的优化控制.动力工程. 2007, 27(1):67~71
    15王滨,胡林献,徐艳.主蒸汽母管压力受扰后自稳定能力的论证.佳木斯大学学报. 2007, 25(6):793~794
    16张玉铎,王满稼.热工自动控制系统.北京:水利水电出版社, 1985
    17李遵基.热工自动控制系统.北京:中国电力出版社, 1997
    18李阳春等.以炉膛辐射信号为中间被调量的串级模糊调节策略研究.中国电机工程学报. 2001, 21(6):80~83
    19李遵基等.直接能量平衡式主汽压力控制系统.华北电力大学学报. 1994, 21(3):29~33
    20 Yu Daren, Xu Zhiqiang. Nonlinear Coordinated Control of Drum Boiler Power Unit Based on Feedback Linearization. IEEE Transaction on Energy Conversion. 2005, 20:204~210
    21翁一武,于达仁,徐基豫.锅炉跟随控制的构成——兼论直接能量平衡控制的动态特性.动力工程. 2001, 02.21(1):1050~1053
    22吕剑虹,王建武.电厂锅炉燃烧控制系统优化.中国电力. 2001(10):50~54
    23赵东晓.基于直接能量平衡的并列锅炉母管压力控制系统.华东电力. 2002(10):40~42
    24潘维加.并列运行锅炉燃烧自动控制系统的分析和研究.工业仪表与自动化装置. 2000(03):7~9
    25侯逸文,沈炯.基于相似原理的母管制锅炉压力控制系统的分析与仿真研究.电力设备. 2005, 6(3):41~44
    26王东风,翟永杰.浅析两种控制系统在电厂的应用.华东电力. 2000, (10):27~29
    27罗武龙.母管制电厂DCS网络系统的构思与实现.金动力. 2007, (4):42~44
    28王洪元,史国栋.人工神经网络技术及其应用.中国石化出版社. 2002:1~5
    29 Jiangjiang Wang, Chunfa Zhang, Youyin Jing, Dawei An. Study of Neural Network PID Control in Variable-frequency Air-conditioning System. IEEE Transactions on System, Man and Cybernetics. 2007, 37:1414~1421
    30 Kang Tu, Ke Ren, Leiqing Pan, Hongwen Li. A Study of Broccoli Grading System Based on Machine Vision and Neural Networks. Mechatronics and Automation. 2007:2332~2336
    31 Nguyen Lu Dang Khoa, Kazutoshi Sakakibara, Ikuko Nishikawa. Stock Price Forecasting Using Back Propagation Neural Networks with Time and ProfitBased Adjusted Weight Factors. SICE-ICASE 2006. International Joint Conference. 2006:5484~5488
    32 Qi Wang, Bo Yu, Jie Zhu. Extract Rules from Software Quality Prediction Model Based on Neural Network.16th IEEE International Conference on Tools with Artificial Intelligence. 2004:191~195
    33 Cunbin Li, Kecheng Wang. Transmission Theory of the Risk Neural Network. IFIP International Conference on Network and Parallel Computing Workshops. 2007:909~914
    34 Jing Luo, Ping-Chen Zai, Yun-Ni Jian. Fault Diagnosis of Power Transformer Based on Ellipsoidal Basis Functional Neural Network. International Conference on Wavelet Analysis and Pattern Recongition. 2007, 2:695~698
    35 Feng Ye, Gengui Zhou, Jinqiu Lu. The Risk-Evaluation Model in Customs Based on BP Neural Networks. Third International Conference on Natural Computation. 2007, 3:377~380
    36张乃尧,阎平凡.神经网络与模糊控制.清华大学出版社. 1998:5~8
    37刘浩.小型火电厂中DCS控制系统的运用及发展.湖北电力. 2004, 28:36~38
    38 Yao Wanye, Han Pu, Yang Mingyu, Zhou Lihui. The Implementation of Power Plant Simulator Based on Distributed Control System. TENCON’02. Proceedings. 2002, 3:1861~1864
    39李宋民.浅谈呼和浩特热电厂#5机组DCS改造.内蒙古科技与经济. 2006, (7):73~75
    40 Han Zhong-xi, Zhou Chuan-xin. Realize the Feedback Control Based on Incremental Observer in 300MW Unit Adopting EDPF-NT Distributed Control System. 2nd IEEE International Conference on Industrial Electronics and Application. 2007:1009~1012
    41刘东林,火电厂电气信息纳入DCS及其应用研究.哈尔滨工业大学工学硕士学位论文. 2007:2~3
    42 Ping Xiong, Tian-Shu Huang, Kui Yi, Tian-Qing Zhu. Design of Communication Port between DCS and Computers of RTU. 2003 International Conference on Machine Leaning and Cybernetics. 2003, 1:586~590
    43唐守兵. HG410-9.8/540-11型锅炉燃烧自动协调控制.哈尔滨工业大学工程硕士学位论文. 2003:10~21
    44张小桃,倪维斗,李政,郑松.基于现场数据热工对象建模的可辨识性.清华大学学报. 2004, 44(11):1544~1547
    45 Junbin Liang, Jianmin Xu. Improved BP Neural Network Classifier Based on Decision Attribute Support and PSO and its Application on Vehicle Classification. The Sixth World Congress on Intelligence Control and Automation. 2006, 1:2869~2873
    46 Feng Ye, Gengui Zhou, Jinqiu Lu. The Risk-evaluation Model in Customs Based on BP Neural Networks. Third International Conference on Natural Computation. 2007, 3:377~380
    47 Liu Jiangang, Liu Biyu, Zhang Ruifang, Li Meilan. The New Variable-period Sampling Scheme for Networked Control Systems with Random Time Delay Based on BP Neural Network Prediction. Chinese Control Conference. 2007:81~83
    48康小海,汪秉文,李国宽.母管制运行机组负荷经济分配方案.水电能源科学. 1999, 17(3):68~70
    49高岩,梁太龙.并列运行工业锅炉的负荷优化分配.北京理工大学学报. 2002, 22(3):318~320
    50 Yong Li, Zheng Tang, GuangPu Xia, RongLong Wang. A Positively Self-feedbacked Hopfield Neural Network Architecture for Crossbar Switching. IEEE Transactions on Circuits and System. 2005, 52:200~206
    51 M. Karam, M.S. Fadali, K. White. A Fourier/Hopfield Neural Network for Identification of Nonlinear Periodic Systems. Proceedings of the 35th Southeastern Symposium on System Theory. 2003:53~57
    52 Ming-ai Li, Jun-fei Qiao, Xiao-gang Ruan. A Modified Difference Hopfield Neural Network and its Application. The Sixth International Congress on Intelligence Control and Automation. 2006, 1:2695~2699
    53 Chan-Yu Chang, Si-Yan Lin, Mu Der Jeng. Two-layer Competitive Hopfield Neural Network for Wafer Defect Detection. Networking, Sensing and Control. 2005:1058~1063
    54 Tada, Y., Uwate, Y., Nishio, Y.. Effective Search with Hopping Chaos for Hopfield Neural Networks Solving QAP. IEEE International Symposium on Circuits and Systems. 2007:1783~1786
    55 Pajares, G.. A Hopfield Neural Network for Image Change Detection. IEEE Transactions on Neural Networks. 2006, 17:1250~1264
    56阎平凡,黄端旭.人工神经网络:模型、分析与应用.安徽教育出版社. 1993:101~105
    57周明,代诗刚,周国忠.自适应Hopfield神经网络及其在经济负荷分配中的应用.热力发电. 2007, (8):35~39
    58郭鹏,韩璞. Hopfield网络在优化计算中的应用.计算机仿真. 2002, 19(3):37~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700