乳状液膜法分离富集稻谷壳和甘蔗渣提取液中阿魏酸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻谷壳和甘蔗渣是农产品的废弃物,我国拥有丰富资源。稻谷壳和甘蔗渣中含有多种具有生理功能的活性物质,其中包括经济价值较高的药用有效成分阿魏酸,如将其深度开发,价值大幅提高。但由于缺乏快速检测稻谷壳和甘蔗渣中阿魏酸的手段和提取方法,使稻谷壳和甘蔗渣不能得到充分的开发。为了更好的利用这两种废弃物,研究从中提取分离阿魏酸的有效方法,具有很大的意义。
     本课题研究了以下四个方面内容:
     1.根据阿魏酸的性质,建立了测定甘蔗渣中阿魏酸含量的高效毛细管电泳(HPCE)方法。对缓冲溶液的pH和离子强度等因素进行了研究,得到阿魏酸的HPCE分析条件:毛细管柱为未涂层的石英毛细管柱(长50cm,内径75um,距检测窗:40cm);缓冲溶液为50mmol·L-1的硼砂溶液,pH值8.6;分离电压25kV;柱温25℃。在上述条件下,阿魏酸浓度在0.08g·L-1—2.4g·L-1范围内线性关系良好,R=0.9995,该方法对样品的处理简单。其回收率可达98.6%。
     2.用正交设计试验优化碱法提取稻谷壳中阿魏酸,通过考察确定NaOH浓度、提取温度和提取时间三因素,三水平的试验,方差分析后得到的提取条件是:温度55℃, NaOH浓度2%,提取时间6h,可以从100g稻谷壳中提取150mg左右的阿魏酸。
     建立了检测稻谷壳中阿魏酸含量的高效液相色谱(HPLC)方法,以乙腈—1%乙酸溶液为流动相,采用梯度洗脱的方式,在柱温30℃,流速0.8mL·min-1的条件下,对稻谷壳提取液中阿魏酸进行分离测定,结果如下:阿魏酸浓度在1.760X10-3g·L-1—2.200 X10-2g·L-1的范围内线性关系良好,R=0.9976,回收率93.0%。
     3.借阿魏酸分子结构中的酚羟基和羧基与三正辛胺分子形成氢键的原理,建立了含流动载体的乳状液膜体系,分别用于分离富集甘蔗渣和稻谷壳提取液中阿魏酸。研究了Span-80和三正辛胺的质量浓度、外相HCl和内相磷酸钠的浓度等因素对阿魏酸迁移率的影响,得出最优条件:膜相由5%三辛胺、8%Span-80和膜溶剂煤油组成、内水相含0.16mol·L-1磷酸钠溶液,外水相含0.024 mol·L-1HCl溶液,膜相和内相比为1:1,在2500rpm速度下制乳,乳液与外相比为1.2:2,低速搅拌10min。在此条件下,对水中阿魏酸迁移率最大可达99.0%。采用该乳状液膜体系对甘蔗渣中阿魏酸进行富集,富集倍数2.1,分离系数1.6。该乳状液膜体系对稻谷壳中阿魏酸进行富集,富集倍数2.0,分离系数3.6。以上参数表明,相比富集甘蔗渣中阿魏酸,该体系富集稻谷壳中阿魏酸的效果较好。
     4.阿魏酸在不同酸度条件下,会形成离子和分子两种型体。根据他们在水和有机相中溶解度的大小不同,建立了无载体的乳状液膜体系,以Span-80为表面活性剂,液体石蜡为膜增强剂,磷酸钠为内相组成。考察了Span-80和液体石蜡质量浓度、外相HCl和内相磷酸钠浓度等因素,得出的富集条件为:膜相含5% Span-80、3%液体石蜡和膜溶剂煤油,内相为0.08mol·L-1的磷酸钠溶液,外相为0.1mol·L-1HCl溶液,膜相和内相比1:1.2,在2000rpm的速度下制乳,乳液和外相比1:2,低速搅拌20min。在此条件下,对水中阿魏酸迁移率可达99.0%。用该乳状液膜体系从甘蔗渣中富集阿魏酸,富集倍数2.5,分离系数6.6。该体系对稻谷壳中阿魏酸进行富集,富集倍数3.2,分离系数10.4。以上参数值表明,该体系不仅富集稻谷壳中阿魏酸的能力强于富集甘蔗渣中的阿魏酸,而且消除干扰的能力也较强。
Rice shell and sugar cane bagasse are wastes of agricultural products,which have rich resources in china. They contain some active substances with various physiological function and higher economic value such as ferulic acid. If these wastes could be deeply researched, the value may be increased tens of times. However, due to the lack of rapid measure methods and extraction methods of ferulic acid in rice shell and sugar cane bagasse, it is difficult to make well application of rice shell and sugar cane bagasse. In order to apply these waste well, providing and developing more effective methods of extraction and separation of ferulic acid from these waste become a great significance.
     The mean contents involve four aspects:
     1.According to the property of ferulic acid, a method for the measure of ferulic acid content in sugar cane bagasse is provided with high-performance capillary Electrophoresis. By studying the pH value of buffer solution、the concentration of buffer solution and other factors , provided the HPCE analysis conditions of ferulic acid have been developed; capillary column is the uncoated quartz capillary column (length 50cm, diameter of 75μm, from the detection window: 40cm); the concentration of buffer solution is 50mmol·L-1 Borax buffer solution; the pH value of buffer solution is 8.6; separation voltage : 25kV and column temperature is at 25℃. In the above-mentioned conditions, the concentration of ferulic acid have a good linear relationship between 0.08g·L-1 and 2.4g·L-1. R=0.9995, The method of sample processing is simple. The recovery can be up to 98.6%.
     2.Alkali extraction conditions of ferulic acid in rice shell is optimized by orthogonal design test. Three factors and levels were tested including the NaOH concentration, extraction temperature and extraction time. Finally, the extraction conditions after analysis is received. The conditions are that extraction temperature is at 55℃, the concentration of NaOH is 2% and extraction time is for 6h. Under this condition , 150mg Ferulic acid can be got from 100g rice shell .
     A method for determination of ferulic acid content in rice shell is established with high-performance liquid chromatography. In order to separating and determining the content of ferulic acid in the extraction solution of rice shell,the gradient elution consisting of 1% acetic acid solution and acetonitrile was applied with flow rate at 0.8 mL·min-1、column temperature at 30℃and detection wavelength at 313 nm. The results are as follows: the concentration of ferulic acid in the range from 1.760X10-3g·L-1 to 2.200X10-2g·L-1 have a good linear relationship, R=0.9976, the recovery can be up to 93.0 %.
     3.The phenolic hydroxyl and carboxyl in the molecular structure of ferulic acid can form hydrogen bonds with Tri-n-octylamine molecules. By this principle, the emulsion liquid membrane system with a mobile carrier is developed. The separation and enrichment of ferulic acid in the extraction solution of sugar cane bagasse and rice shell were carried out by using the system. The optimal conditions are as follows: the membrane phase contains 5% trioctylamine, 8% span-80 and 87% kerosene;the internal and external aqueous phase is 0.16mol·L-1 Na3PO4 solution and 0.024 mol·L-1HCl solution; the ratio of membrane phase to internal aqueous phase is 1:1; the speed of making emulsion liquid is 2500rpm; the ratio of emulsion liquid membrane to external aqueous phase is 1.2:2, the stirring time is for 10min. Under above-discussing conditions, the migration rate of ferulic acid in the water can be as high as 99.0% of the maximum. Ferulic acid in the extraction solution of sugar cane bagasse is enriched by the emulsion liquid membrane system. Enrichment multiples is 2.1 and the separation factor is 1.6. The emulsion liquid membrane system enrich ferulic acid in the extraction solution of rice shell. Enrichment multiples reach 2.0 and the separation factor is 3.6. The results showed that ferulic acid in the extraction solution of rice shell can be enriched more effectively than that of sugar cane bagasse with this system.
     4.In the different acidity, Ferulic acid can form ions and molecules type. According to their different solubility in water and organic phase, a carrier-free emulsion liquid membrane system is made up with Span-80 as surfactant, paraffin as the membrane enhancer and Na3PO4 solution as the internal phase. The optimal extraction conditions are as follows: membrane phase containing 5% Span-80, 3% liquid paraffin and kerosene membrane solvent, 0.08mol·L-1 Na3PO4 solution in the internal phase, 0.1 mol·L-1HCl solution in the external phase, 1:1.2 of the ratio of membrane phase to internal phase, 2000rpm making emulsion speed, 1:2 of emulsion liquid membrane to external phase, stirring time for 20min in low-speed. Under the above-mentioned conditions, the migration rate of ferulic acid in the water can be as high as 99.0%. When this emulsion liquid membrane system is used for enriching ferulic acid in the extraction solution of sugar cane bagasse, enrichment multiples is 2.5 , and separation factor is 6.6. when this system is made use of enriching ferulic acid in the extraction solution of rice shell, enrichment multiples are up to 3.2, separation factor is 10.4. The results tell us that the system can not only enrich ferulic acid in the extraction solution of rice shell stronger than that in sugar cane bagasse, but also do better capablity of reducing interference.
引文
[1]Ramanamurthy Devulapalli, Francis Jones. Separation of aniline from aqueous solutions using emulsion liquid membranes. Journal of Hazardous Materials . 1999.B70:157–170.
    [2]Sang Cheol Lee. Effect of volume ratio of internal aqueous phase to organic membrane phase(w/o ratio)of water-in-oil emulsion on penicillin G extraction by emulsion liquid membrane. Journal of Membrane Science Journal of Membrane Science .1999 163:193–201.
    [3]Sang Cheol Lee , Jae Hwa Chang , Byoung Sung Ahn ,et al . Mathematical modeling of penicillin G extraction in an emulsion liquid membrane system containing only a surfactant in the membrane phase . Journal of Membrane Science . 1998.149:39±49.
    [4]Yonggyun Park, A.H.P.Skelland , Larry J.Forney ,et al . Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process. Water research . 2006,40:1763-1772.
    [5]S.H.Lin ,C.L.Pan , H.G.Leu . Equilibrium and mass transfer characteristics of 2-chlorophenolremoval from aqueous solution by liquid membrane. Chemical Engineering Journal. 2002 , 87:163–169.
    [6]Jing-Qing Shen,Wei-Ping Yin,Yong-Xin Zhao,et al. Extraction of alanine using emulsion liquid membranes featuring a cationic carrier . Journal of Membrane Science. 1996. 120:45-53.
    [7]Lee SC.Continuous extraction of PenieillinG by emulsion liquid membrane With optimal surfactant compositions. Chem. Eng J,2000,79:61一67.
    [8]聂菲,李宗孝.液膜技术在医药化工中的应用.精细化工中间体.2004, 34: 6-7.
    [9]车丽萍,余永富,袁继祖等.乳状液膜技术从稀土浸出液中提取钍的试验研究.稀土.2005年12月,第26卷,第6期.
    [10]秦庆,赵恒勤,赖延清,等. Cya nex272作载体的乳状液膜提取稀土的研究.矿工程. 2002年9月,第22卷,第3期.
    [11]Norasikin Othman , Hanapi Mat, Masahiro Goto。Separation of silver from photographic wastes by emulsion liquid membrane system。Journal of Membrane Science . 2006,282:171–177.
    [12] Ali Kargari, Tahereh Kaghazchi, Mansoureh Soleimani. Mathematical modeling of emulsion liquid membrane pertraction of gold (III) from aqueous solutions.Journal of Membrane Science. 2006,279:380–388.
    [13]Recep Ali Kumbasar,Osman Tutkun。Separation of cobalt and nickel from acidic leach solutions by emulsion liquid membranes using Alamine 300(TOA) as a mobile carrier. Desalination . 2008, 224:201–208.
    [14] M.S. Gasser, N.E. El-Hefny, J.A. Daoud. Extraction of Co(II) from aqueous solution using emulsion liquid membrane. Journal of Hazardous Materials . 2008,151: 610–615.
    [15]Hamid R. Mortaheb, Hitoshi Kosugeb, Babak Mokhtarania, et al . Study on removal of cadmium from wastewater by emulsion liquid membrane. Journal of Hazardous Materials . 2009,165:630–636.
    [16] Zhongqi Ren,Weidong Zhang, YiMing Liu,et al. Newliquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater . Chemical Engineering Science . 2007,62: 6090– 6101.
    [17] R.A. Kumbasar. Selective extraction of nickel from ammoniacal solutions containing nickel and cobalt by emulsion liquid membrane using 5,7-dibromo-8-hydroxyquinoline (DBHQ) as extractant . Minerals Engineering . 2009, 22 : 530–536.
    [18]Paulo F.M.M. Correia, Jorge M.R. de Carvalho. Recovery of phenol from phenolic resin plant effluents byemulsion liquid membranes. Journal of Membrane Science. 2003, 225:41–49.
    [19] Yonggyun Park, A.H.P. Skelland, Larry J. Forney, et al. Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process. Water research. 2006,40:1763– 1772.
    [20] S.H. Lin, C.L. Pan, H.G. Leu . Equilibrium and mass transfer characteristics of 2-chlorophenol removal from aqueous solution by liquid membrane. Chemical Engineering Journal. 2002, 87 : 163–169.
    [21] Jinyi Luana, A. Plaisier. Study on treatment of wastewater containing nitrophenol compounds by liquid membrane process. Journal of Membrane Science . 2004 ,229:235–239.
    [22] Ramanamurthy Devulapalli, Francis Jones. Separation of aniline from aqueous solutions using emulsion liquid membranes. Journal of Hazardous Materials . 1999, 70:157–170.
    [23] Ruey-Shin Juang, Yu-Yin Wang. Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes. Journal of Membrane Science. 2002, 207:241–252.
    [24] P.J. Pickering, J.B. Chaudhuri. Enantioselective extraction of (D)-phenylalanine from racemic (D/L)-phenylalanine using chiral emulsion liquid membranes. Journal of Membrane Science . 1997,127 :115-130.
    [25] Sang Cheol Lee. Effect of volume ratio of internal aqueous phase to organic membrane phase (w/o ratio) of water-in-oil emulsion on penicillin G extraction by emulsion liquid membrane. Journal of Membrane Science. 1999, 163 :193–201.
    [26] Sang Cheol Lee. Development of a more efficient emulsion liquid membrane system with a dilute polymer solution for extraction of penicillin G. Journal of Industrial and Engineering Chemistry. 2008, 14: 207–212.
    [27]唐传核.植物功能性食品.北京:化学工业出版社,2004.
    [28]蔡碧琼,余萍,何海斌,等.江西农业大学学报。2007年2月,第29卷第1期.
    [29] G.S. Murthy, S. Sridhar, M. Shyam Sunder, et al. Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol. Separation and Purification Technology. 2005, 44:205–211.
    [30]Luciana A. Oliveira, Ana L.F. Porto, Elias B. Tambourgi . Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes . Bioresource Technology 2006 , 97:862–867.
    [31] You-Jung Lee, Bo-Kyung Kim, Bo-Hwa Lee, et al . PuriWcation and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull . Bioresource Technology. 2008,99:378–386.
    [32] Badal C. Saha , Michael A. Cotta. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme and Microbial Technology . 2007, 41 : 528–532.
    [33] Badal C. Saha, Michael A. Cotta . Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. B iomass and bioenergy . 2008 , 32: 971--977.
    [34] Li-Hua Wang, Chun-I Lin . Equilibrium study on chromium (III) ion removal by adsorption onto rice hull ash . Journal of the Taiwan Institute of Chemical Engineers. 2009,40:110–112.
    [35] U.S. Orlando, A.U. Baes, W. Nishijima,et al. Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere . 2002 , 48: 1041–1046.
    [36] Hdctor D. Mansilla, Jaime Baeza, Sergio Urzfia, et al . Acid-catalysed hydrolysis of rice hull evaluation of furfural production . Bioresource Technology, 1998,66:189-193.
    [37] R.V. Krishnarao, J. Subrahmanyam, T. Jagadish Kumar. Studies on the formation of black particles in rice husk silica ash . Journal of the European Ceramic Society . 2001,21: 99±104.
    [38]孙美琴,彭超英。甘蔗制糖副产品蔗渣的综合利用。中国糖料,2003年第2期:58-60.
    [39]聂艳丽,刘永国,李娅,等.甘蔗渣资源利用现状及开发前景.林业经济。2007年第5期:61-63.
    [40]黄钟,陈中豪,党酉胜.蔗渣喷淋废水处理研究[J].工业用水与废水,2003,34(5):25-28.
    [41] Yu Jiang, Hao Pang, Bing Liao. Removal of copper(II) ions from aqueous solution by modified bagasse . Journal of Hazardous Materials . 2009, 164: 1–9.
    [42] V.I. Keffera, S.Q. Turna, C.M. Kinoshitab,et al . Ethanol technical potential in Hawaii based on sugarcane,banagrass, Eucalyptus, and Leucaena. Biomass and bioenergy . 2009, 33: 247–254.
    [43] M.G. Adsul, J.E. Ghule, R. Singh, et al. Polysaccharides from bagasse: plications in cellulase and xylanase production. Carbohydrate Polymers . 2004,57 : 67–72.
    [44]杨征月.甘蔗札深度脱木素新工艺.广西大学学报,1997,22(3):225.229.
    [45] Samsudin Affandi , Heru Setyawan, Sugeng Winardi, et al . A facile method for production of high-purity silica xerogels from bagasse ash . Advanced Powder Technology . 2009, xxx,xxx-xxx.
    [46]梁坤,谭京梅,孙可伟等.甘蔗渣的综合利用现状及展望[J].中国资源综合利用,2003,5:26一29.
    [47] Hamid M. Shaikh, Kiran V. Pandare, Greeshma Nair, et al. Utilization of sugarcane bagasse cellulose for producing cellulose acetates : Novel use of residual hemicellulose as plasticizer. Carbohydrate Polymers. 2009,76: 23–29.
    [48] S.Y. Ou, Y.L. Luo, C.H. Huang, et al. Production of coumaric acid from sugarcane bagasse. Innovative Food Science and Emerging Technologies . 2009, 10: 253–259.
    [49]Kroon, P. A., Faulds, C. B., Ryden, P., Robertson, J. A., & Williamson,G. Release of covalently bound ferulic acid from fiber in the human colon. Journal of Agricultural and Food Chemistry, 1997,45:661–667.
    [50]Ou, S. Y, Kwok, K. C. Review. Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 2004, 84: 1261–1269.
    [51]Zhao, Z., Egashira, Y., & Sanada, H. Phenolic antioxidants richly contained in corn bran are slightly bioavailable in rats. Journal of Agricultural and Food Chemistry, 2005,53:5030–5035.
    [52]Taniguchi, H., Hosoda, A., Tsuno, T, et al. Preparation of ferulic acid and its application for the synthesis of cancer chemopreventive agents. Anticancer Research, 1999, 19:3757–3761.
    [53]Iiyama, K., Lam, T. B. T., Stone, B. A.. Covalent cross-links in the cell wall. Plant Physiology, 1994, 104: 315–320.
    [54] Devanand L. Luthriaa, Sudarsan Mukhopadhyaya, Donald T. Krizek. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. Journal of Food Composition and Analysis 2006, 19 :771–777.
    [55] Taniguchi, H., Hosoda, A., Tsuno, T., et al. Preparation of ferulic acid and its application for the synthesis of cancer chemopreventive agents. Anticancer Res. 1999,19: 3757–3762.
    [56] T.B.T. Lama, K. Kadoyab, K. Iiyamac,. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the b-position, in grass cell walls. Phytochemistry. 2001,57: 987–992.
    [57] Lai, L. S., Chou, S. T., Chao, W. W.. Studies on the antioxidative activites of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. Journal of Agricultural and Food Chemistry. 2001, 49:963–968.
    [58]Yildirim, A., Mavi, A., Kara, A. A.. Determination of antioxidant and antimicrobial activities of Rumaxs crispus L. extracts. Journal of Agricultural and Food Chemistry. 2001,49: 4083–4089.
    [59]Nair, C.K.K., Parida, D.K., Noumra, T. Radioprotectors in Radiotherapy. J. Radiat. Res. 2001, 42: 21–37.
    [60] Adam, A., Crespy, V. Levrat Verny, M.A., Leenhardt, et al,. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolismin intestine and liver in rats. J. Nutr. 2002 132:1962–1968.
    [61] Kawabata'K,Yamamoto T,Ham A.et al,Modifying efects of femlie acid on azoxymethane—induced colon carcinogenesis in F344 rats.Cancer Lett,2000. 157:15-21.
    [62] Rukkumani, R., Aruna, K., Suresh Varma, P.,et al., Hepatoprotective role of ferulic acid: a dose dependent study. J. Med.Food. 2004,7 :456–461.
    [63] Kim HK, Jeong TS, Lee MK. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clinica Chimica Acta: International Journal of Clinical Chemistry,2003, 327:129-137. [641欧仕益,包惠燕,蓝志东等.阿魏酸及其衍生物的药理学作用研究进展.中药材.2001,3:220一221.
    [65]张明发,沈雅琴.咖啡酸和阿魏酸的抗缺氧作用.西北药学杂志。1994,9:118-120. [66」周慧君,杨积武.氧自由基与冠心病及其中医药研究.辽宁中医学院学报.1999,l : 139一141. [67」刘春宇,唐丽华,顾振纶.中国当归的化学成分和药理作用研究概况.中国野生植物资源. 1997,16(3):12-19.
    [68]张明发.阿魏酸抗动脉粥样硬化研究进展.中草药,1990,21(1):41-43.
    [69]Kamal一Eldin A,Frank J,Razdan A,et al. Effects of dietary phenolic compounds on toeopherol,eholesterol,and fatty acids in rats. LIPids,2000,35(4):427一435
    [70]黄伟毅,陈素云,邱幸生.抗动脉粥硬化的中医药研究进展.中医药研究,1998,14(5):58一61.
    [71] Chatchawan Chotimarkorn1, HidekiUshio. The effectof trans-ferulic acid and gamma-oryzanol on ethanol-induced liver injury in C57Bl mouse. Phytomedicine . 2008, 15 :951–958.
    [72]Kayahara H,Miao Z,Fujiwara G. Synthesis and biological activities of ferulieacid derivatives.Anticancer Research,1999,19:3763一3768.
    [73]章军建,蔡转,刘锡民等.阿魏酸钠对急性期脑梗塞病人血浆血栓素B-2、6-酮-前列腺素F-(la)及血清脂质过氧化物的影响.同济医科大学学报.1994,2:103- 106.
    [74] Ferguson LR, Lim IF, Pearson AE. Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutation Research Genetic Toxicology and Environmental Mutagenesia, 2003,542:49-58.
    [75] Wen A,Delaquis P, Stanich K. Antilisterial activity of selected phenolic acids. Food microbiology. 2003, 20:305-311.
    [76] S.I. Mussatto, G. Dragone, I.C. Roberto. Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Industrial Crops and Products. 2007, 25 :231–237.
    [77] Shiyi Ou, Yanlin Luo, Feng Xue, et al. Seperation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography. Journal of FoodEngineering , 2007,78:1298–1304.
    [78] P. Ferreira, N. Diez, C.B. Faulds, J. Soliveri, J.L. Copa-Patino, Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae. Bioresource Technology . 2007,98 :1522–1528.
    [79] Estelle Bonnin, Luc Saulnier, Magali Brunel,et al. Release of ferulic acid from agroindustrial by-products by the cell wall-degrading enzymes produced by Aspergillus niger I-1472. Enzyme and Microbial Technology. 2002,31:1000–1005.
    [80] S.C. Lao, S.P. Lia, Kelvin K.W. Kan, et al . Identification and quantification of 13 components in Angelica sinensis(Danggui) by gas chromatography–mass spectrometry coupled with pressurized liquid extraction. Analytica Chimica Acta , 2004, 526: 131–137.
    [81]Ivana Citov′a, Radek Sladkovsk′y, Petr Solich ,Analysis of phenolic acids as chloroformate derivatives using solid phase microextraction–gas chromatography,Analytica Chimica Acta. 2006, 573–574, 231–241。
    [82] Zhilan Liu, Juan Wang, Pingniang Shen, et al. Microwave-assisted extraction and high-speed counter-current chromatography purification of ferulic acid from Radix Angelicae sinensis. Separation and Purification Technology. 2006, 52 : 18–21.
    [83] Joseph A. Laszlo, David L. Compton, Xin-Liang Li . Feruloyl esterase hydrolysis and recovery of ferulic acid from jojoba meal. Industrial Crops and Products. 2006,23 : 46–53.
    [84] Long-Ze Lin, Xian-Guo He, Li-Zhi Lian, et al. Liquid chromatographic– electrospray mass spectrometric study of the phthalides of Angelica sinensis and chemical changes of Z-ligustilide. Journal of Chromatography A . 1998, 810 :71–79.
    [85] Xavier Rouaua, Ve′ronique Cheynier, Anne Surget,et al. A dehydrotrimer of ferulic acid from maize bran. Phytochemistry. 2003, 63 :899–903.
    [86] C. Proestos, D. Sereli, M. Komaitis. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chemistry.2006, 95:44–52.
    [87] Rebecca J. Robbins, Scott R. Bean . Development of a quantitative high-performance liquid chromatography–photodiode array detection measurement system for phenolic acids. Journal of Chromatography A, 2004, 1038: 97–105.
    [88] Guang-Hua Lu, Kelvin Chan, Kelvin Leung, Chi-Leung Chan,Zhong-Zhen Zhao, Zhi-Hong Jiang. Assay of free ferulic acid and total ferulic acid for qualityassessment of Angelica sinensis. Journal of Chromatography A, 2005,1068 : 209–219
    [89] Rebecca J. Robbins, Scott R. Bean. Development of a quantitative high-performance liquid chromatography–photodiode array detection measurement system for phenolic acids. Journal of Chromatography A, 2004,1038:97–105.
    [90] Diana L.D. Lima, Armando C. Duarte, Valdemar I. Esteves. Optimization of phenolic compounds analysis by capillary electrophoresis. Talanta. 2007.72:1404-1409.
    [91] Toshiro Watanabe, Akira Yamamoto, Shiro Nagai, Shigeru Terabe.Simultaneous analysis of tyrosol, tryptophol and ferulic acid in commercial sake samples by micellar electrokinetic chromatography. Journal of Chromatography A, 1998,825:102–106.
    [92]孙美琴,彭超英。甘蔗制糖副产品蔗渣的综合利用。中国糖料,2003年第2期:58-60.
    [93]聂艳丽,刘永国,李娅,等.甘蔗渣资源利用现状及开发前景.林业经济。2007年第5期:61-63.
    [94] Shiyi Ou , Yanlin Luo, Feng Xue,et al. Seperation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography. Journal of Food Engineering . 2007,78:1298–1304.
    [95]Revin Panray Beeharry.Strategies for augmenting sugarcane biomass availability for power production in Mauritisu.Biomass and Bioenergy. 2001,(20):421—429.
    [96]Scott Q Turn, Bryan Mjenkins,Lee Ajakeway,et a1.Test results from sugarcane bagasse and high fiber cane co—fired with fossil fuels . Biomass and Bioenergy.2006,(30):565—574.
    [97]N Syna M Valix.Modelling of gold(I) cyanide adsorption based on the properties of activated bagasse.Minerals Engineering.2003,(16):421—427.
    [98]Surinder Katyal, Kelly Thambimuthu,Marjorie Valix.Carohnisation of bagasse in a fixed bed reactor: influnece of process variables on char yield and characteristics.Rneewable Enregy,2003,(28):713—725.
    [99]赵飞,胡燕月,陈益萍等.川芎中阿魏酸的提取分离.中国医院药学杂志,2005年,第25卷第1期.
    [100]Han-Li Ruan,Xue-Feng Zhou,Yong-Hui Zhang, et al. Ferulic acid esters from Euphorbia hylonoma, Fitoterapia ,2007,78:72–73.
    [101]Fabio Virgili, George Pagana, Louise Bourne,et al . Ferulic acid excretion as a marker of consumption of a french marttme pine bark extract . Free Radical Biology & Medicine, 2000,Vol. 28, No. 8:1249–1256.
    [102]Zhilan Liu, Juan Wang, Pingniang Shen,et al . Microwave-assisted extraction and high-speed counter-current chromatography purification of ferulic acid from Radix Angelicae sinensis. Separation and Purification Technology , 2006, 52 :18–21.
    [103]P. Ferreira, N. Diez, C.B. Faulds, et al . Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae . Bioresource Technology , 2007, 98:1522–1528.
    [104]L.Saulnier, C.Marot, M.Elgorriaga, et al .Thermal and enzymatic treatments for the release of free ferulic acid from maize bran . Carbohydrate Polymers , 2001, 45 :269-275.
    [105]Shiyi Ou, Yanlin Luo, Feng Xue, et al . Seperation and purification of ferulic acid in alkaline-hydrolysate from sugarcane bagasse by activated charcoal adsorption/anion macroporous resin exchange chromatography . Journal of Food Engineering , 2007,78:1298–1304.
    [106]J.X. Sun, X.F. Sun, R.C. Sun, et al . Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses . Carbohydrate Polymers, 2004,56:195–204.
    [107]Ting-Ting Jong, Maw-Rong Lee, Yi-Cheng Chiang,et al . Using LC/MS/MS to determine matrine, oxymatrine, ferulic acid, mangiferin, and glycyrrhizin in the Chinese medicinal preparations Shiau-feng-saan and Dang-guei-nian-tong-tang. Journal of Pharmaceutical and Biomedical Analysis , 2006, 40:472–477.
    [108]Toshiro Watanabe, Akira Yamamoto, Shiro Nagai, et al . Simultaneous analysis of tyrosol, tryptophol and ferulic acid in commercial sake samples by micellar electrokinetic chromatography. Journal of Chromatography A, 998,825:102–106.
    [109]杨广德,梁明金,贺浪冲,等.川芎中阿魏酸的提取方法研究.中成药, 2002, 24(6):418.
    [110]黄艳凤,周庆礼,李士炼,戴丙业.从黑麦麦麸中提取的阿魏酸的检测.物生物技术.,2004,11(1):49~51.
    [111]廖律,周明达,肖劲,等.米糠中阿魏酸的提取及荧光分光光度法检测.广州化学,2007, 32(1): 37.
    [112]刘子立,欧仕益,黄雪松,等.离子交换法从酶解液中提取阿魏酸.中药材, ,2004, 27(12): 910.
    [113]陈宝玉,秦晶,陈大为,胡海洋,等.缓冲盐对大孔吸附树脂分离阿魏酸脂质体及游离药物的影响[J].中国中药杂志, 2006, 31(21): 1780.
    [114]李明愉,曾庆轩,冯长根,李凯,孙伟娜.离子交换纤维对阿魏酸的吸附和解吸研究[J]..中国药学杂志,2005, 40(1): 40.
    [115]刘子立,欧仕益,蒋笃孝,等.麦麸发酵产酶制备并提纯阿魏酸.暨南大学学报, 2006, 27(1): 117.
    [116]朱澄云,袁悦,王中彦,等.乳状液膜法分离赖氨酸动力学.沈阳药科大学学报, 2005, 22(5):324.
    [117]吴山,严忠,吴子生.用乳状液膜法分离浓缩L -苯丙氨酸.膜科学与技术, 2000, 20(1): 19.
    [118]朱澄云,莫凤奎,王晶,等.乳状液膜法提取赖氨酸.膜科学与技术, 2002, 22(2): 57.
    [119]吴山,马国芳,杨吉芳,等.密差分相式液膜法提取L -苯丙氨酸.膜科学与技术, 2003, 23(1):31.
    [120]朱澄云,莫凤奎,王晶.乳状液膜法提取青霉素及亮氨酸时溶胀现象的研究.沈阳药科大学学报, 2001, 18(6): 439.
    [121]莫凤奎,朱澄云,韩青.乳状液膜法提取青霉素G的研究.膜科学与技术, 1999, 19(3):51.
    [122]陈炳岩。紫外分光光度法测定阿魏酸钠氯化钠注射液中阿魏酸钠的含量.海峡药学.2004年,第16卷第5期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700