碱性谷氨酸钠体系处理低品位氧化铜矿的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国氧化铜矿资源的现状,提出了碱性谷氨酸钠体系浸出的新方法,为金工作者提供了新思路。
     以谷氨酸钠作为浸出剂浸出碱式碳酸铜,根据配位化学理论,研究了体系中Cu(Ⅱ)的配合平衡热力学,并绘制了谷氨酸钠浓度0-3mol/L和pH 5-14内的热力学平衡图,研究了谷氨酸钠浓度、pH和游离碳酸根离子浓度对浸出碱式碳酸铜的影响,并对热力学计算结果进行了实验验证。结果表明,铜离子浓度理论计算值与实验值之间相对误差的绝对平均值为5.32%,从理论上用谷氨酸钠浸出低品位氧化铜矿是可行的。
     对汤丹低品位氧化铜矿进行实验,证明了碱性谷氨酸钠体系处理低品位高碱性脉石型氧化铜矿完全可行。确定实验最佳条件:浸出剂谷氨酸钠浓度2mol/L、浸出液pH为9、温度为80℃、反应时间6 h、液固比6:1,最佳浸出率为58.33%。浸出后液铜离子浓度为0.955g/L。用循环浸出的方法提高浸出后液中铜离子的浓度,循环浸出10次之后浸出后液的浓度也只能达到5.63 g/L。
     为了提高浸出后液中铜离子的浓度,考察了D850螯合树脂对Cu2+的吸附性能,进行了吸附动力学和热力学研究。由不同温度时D850吸附交换铜离子的热力学函数△G、△H和△S计算结果可知,铜离子在D850树脂上的吸附过程是自发过程(△G<0),伴随吸热(△H>0),熵变为正值(△S>0)。由此从理论上证明了该过程是吸热过程,以化学吸附为主,并且较好的符合Langmnir等温吸附方程,表明自由能的减小和熵值的增大是D850树脂吸附铜离子的推动力。
     对动力学数据进行拟合,表明吸附交换过程为液膜扩散和颗粒扩散共同控制。随着溶液pH的升高,螯合树脂的Cu2+吸附量呈下降趋势。在pH为9的溶液中,当吸附剂浓度为14.45 mmol/L时,树脂的静态吸附量为0.35 mmol/g。动态解析实验研究表明,2 mol/L的稀硫酸是螯合树脂D850良好的解析剂,铜解析高峰液浓度达25 g/L左右。
A new process of leaching copper oxide ore in the alkaline solution of sodium hydroxide containing monosodium glutamate has been investigated in view of the present situation of copper oxide ore in our country, which may supply a new method for metallurgist
     Leaching behaviors of basic cupric carbonate with monosodium glutamate were studied, and thermodynamics of Cu(Ⅱ) complex equilibrium in this system was studied by coordination chemistry fundamental. Varying the concentration of monosodium glutamate and pH value in the ranges of 0-3 mol/L and 5-14 respectively, the equilibrium thermodynamic diagrams were drawn, and the effects of monosodium glutamate concentration, pH value and free carbonate ion concentration on leaching of basic cupric carbonate were also studied. The comparison of theoretical calculation with experimental result shows that the absolute average value of relative error between them is 5.32%. From the results it is indicated that it is feasible to leach low grade cupric oxide ore with monosodium glutamate.
     The results of experiments about leaching the low grade cupric oxide ore from TangDan indicate that monosodium glutamate is a kind of feasible leaching reagents. The optimum conditions are as follows: concentration of monosodium glutamate 2mol/L, pH 9, temperature 80℃, reacting time 6 hours, ratio of liquid to solid 6:1. In the condition, the leaching rate of copper is 58.33%, while [Cu2+]T is 0.955g/L. Recycle leaching was carried out to increase the concentration of copper ion, which can only reach to 5.63 g/L after 10 times of being cycled.
     Adsorption thermodynamics and kinetics of copper(Ⅱ) on chelating resin D850 were studied to increase the concentration of copper ion in the leach liquor. The thermodynamic equilibrium functions of copper(Ⅱ) on chelating resin D850 in different temperatures determine AG<0, AH>0,△S>0, so the adsorption is spontaneous, endothermic and entropy increasing, which also indicates that chemisorption is the main process. Experimental data fitted well to the Langmuir model at all temperatures studied. And the decrease of free-energy and the increase of entropy are the driving force of copper(Ⅱ) on chelating resin D850.
     The kinetics results showed the process of ion adsorption is controlled by liquid film diffusion and particle diffusion. With the rising of concentration of OH-, adsorptive capacity of copper(II) on chelating resin D850 fell. When pH was 9 and concentration of copper(II) in solution was 14.45mmol/L, static adsorptive capacity of copper(II) on resin was 0.35mmol/g. Dynamic desorption results shows that 2 mol/L dilute sulphuric acid is a kind of good stripping agent of the loaded resin D850, and concentration of copper(II) in stripping solution can reach to 25g/L.
引文
[1]大连理工大学无机化学教研室编.无机化学[M].北京:高等教育出版社,2001:292,574-584
    [2]彭容秋.铜金[M].长沙:中南大学出版社,2004:1,2,8,113
    [3]朱祖泽,贺家齐.现代铜金学[M].北京:科学出版社,2003:31,337,338
    [4]E. G. West.陈北盈,涂远军,孙孝华等译.铜和铜合金[M].长沙:中南工业大学出版社,1987:261-278
    [5]有色金属提取金手册(铜镍卷)[M].北京:金工业出版社,2000:212-220
    [6]周晶云.世界铜矿产资源[J].中国金属通报,2004,(20):24,25
    [7]U. S. Geological Survey, Mineral Commodity Summaries, January 2009,50-51
    [8]刘国平.中国企业国外开发铜资源[J].中国金属通报,2009,2:34-37
    [9]刘洋.掘金再生铜[J].中国金属通报,2008,29:12-15
    [10]蒋开喜主编.有色金属进展第四卷:重有色金属[M].长沙:中南大学出版社,2007,9,10
    [11]彭容秋主编.重金属金学[M].长沙:中南大学出版社,2003.141-145
    [12]John Floyd.李皓月译.奥斯麦特技术[J].有色金属(炼部分),2000,(2):16,17
    [13]兰兴华编译.Isasmelt和Ausmelt熔炼法获得广泛应用[J].世界有色金属,2003,(3):60,61
    [14]李卫民.铜吹炼技术的进展[J].云南金,2008,37(5):24-28
    [15]李晋生.顶吹炼铜双炉系统在侯马炼厂的应用[J].山西金,2008,(3):47,48
    [16]吕高平,贺晓红.金昌炼厂奥斯麦特工艺的改进与完善[J].有色金属(炼部分),2007,(1):5-8
    [17]赵世全,韩明东.葫芦岛有色集团铜系统改造全面启动[J].中国金属通报,2006,23:33
    [18]余旦新,王临江.提升白银炉技术水平的探讨[J].中国有色金,2004,(4):31-33
    [19]田占欣.瓦纽科夫炼铜法的特点和新进展[J].有色矿,1992,(4):43-47
    [20]朱卫平摘译.俄罗斯及独联体国家铜自然熔炼工艺的发展[J].中国有色金,2007,(2):1-6
    [21]宾万达.瓦纽科夫过程及其在我国的应用前景.中国首届熔池熔炼技术及装备专题研讨会,2007:
    [22]吕文东,郝志峰,王继民.湿法炼铜中的萃取剂[J].广东有色金属学报,2004,14(2):114-118
    [23]马倩玲.从环保角度看BK-992铜萃取剂的应用前景[J].矿,2003,12(3):83-85
    [24]Swanson R R. Compositions containing phenolic oxirnesand certain alpha-hydroxy aliphatic 6oximes [P].US Pat:3592775,1971-07-31.
    [25]Mackay K D, Sierakoski. Solvent extraction [P].EP:0085522,1983-10.
    [26]Kordosky G A, Vimig M J. Improved beta-diketones for the extraction of copper from aqueous arnmoniacal solutions[P].EP:1170389,2001-09.
    [27]朱屯.现代铜湿法金[M].北京:金工业出版社,2008.15-37,69-79
    [28]刘大星,蒋开喜,王成彦.湿法金技术的现状及发展趋势[J].有色炼,2000(4):1-5
    [29]刘大星.湿法炼铜的发展与前景[J].有色金属再生与利用,2005(7):37-39
    [30]李继璧.国内铜湿法金工艺应用现状[J].湿法金,2007,26(1):13-16
    [31]钮因健.大力发展铜湿法金技术是”十五”我国铜工业技术进步的重要任务[J].世界有色金属,2002(1):4-8
    [32]Alguacil F J,Alcnso M.The effect of ammonium sulphate and ammonia on the liquid liquid extraction of zinc using LIX54[J].Hydrometallurgy,1999,52:223-230
    [33]钱兆鹏,林蔚伯,等.光度法测定萃取镓有机相中Kelex-100[J].金分析,2002,22(4): 61-62
    [34]Li De-qian,Luo Ai-qing,et al.Solvent extraction of trivalent lanthanides with Cyanex 302 from a acidic aqueous chloride solutions [J]. Value Adding through Solvent Extraction,1996,1:165
    [35]刘大星,赵炳智,王春云.采用氨浸-萃取-电积工艺处理汤丹高碱性脉石难选氧化铜矿的试验研究和工业实践.2002年全国铜炼生产技术及产品应用学术交流会,2002,:57-65
    [36]兰兴华编译.铜电解沉积技术的发展趋势[J].世界有色金属,2008,(9):28,29
    [37]张文彬.氧化铜矿浮选研究与实践[M].长沙:中南工业大学出版社,1992.1-3
    [38]胡为柏.浮选[M].长沙:中南工业大学出版社,1992.325-329
    [39]毛素荣,杨晓军等.难选氧化铜矿的处理工艺与前景[J].国外金属选矿,2008,(8):5-8
    [40]程琼,库建刚,等.氧化铜浮选方法研究[J].矿产综合利用,2005,(5):32-35
    [41]魏党生,韦华祖,叶从新,等.国外某氧化铜矿选矿工艺研究[J].湖南有色金属, 2008,24(5):8-12
    [42]杜淑华,潘邦龙.云南某难选氧化铜矿选矿试验研究[J].矿产综合利用,2008,(6):15-18
    [43]樊建云.低品位氧化铜矿石浮选工艺试验研究.有色矿,2009,25(2):17-19
    [44]胡友善.新疆某氧化铜矿的酸浸提铜试验研究[J].有色金属(选矿部分),2004,(4):18-19
    [45]段志毅,孙胜奇.低品位氧化铜矿酸浸制取海绵铜[J].中国资源综合利用,2009,27(5):20-22
    [46]张大维.氧化铜矿粉的制粒及柱浸试验探索[J].矿产综合利用,1994,3:33-35
    [47]Ju S H, Tang M T, Yang S H, et al. Thermodynamics of Cu(Ⅱ)-NH3-NH4Cl-H2O System [J]. Transactions of Nonferrous Metals Society of China,2005,15(6): 1415-1419
    [48]程琼,章晓林,刘殿文,等.某高碱性氧化铜矿常温常压氨浸试验研究[J].湿法金,2006,25(2):74-77
    [49]方建军,李艺芬,鲁相林,等.低品位氧化铜矿石常温常压氨浸工艺影响因素研究与工业应用结果[J].矿业工程,2008,28(3):27-29
    [50]宋志鹏,胡国荣,彭忠东.碳酸铵溶液浸出非洲氧化铜矿的研究[J].矿工程,2008,28(3):84-87
    [51]方建军,李艺芬,张文彬.高钙镁难选氧化铜矿处理技术的进展[J].矿,2008,17(4):55-57
    [52]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1992.4-5,63
    [53]马荣骏.离子交换在湿法金中的应用[M].北京:金工业出版社,1992.56-75
    [54]M Streat, D Naden Ion Exchange and Sorption Proeessin Hydrometallurgy [M]. New York.1987.124-135
    [55]王德义,堪竟清,赵淑良,等.铀的提取与精制工艺学[M].北京:原子能出版社,1982.167-185
    [56]黎鼎鑫.贵金属提取与精炼[M].长沙:中南工业大学出版社,1991.184-186
    [57]郭炳昆,蔡艳荣.离子交换树脂在提金中的应用[J].湖南有色金属.1997,(2):30
    [58]王雪琴,汤福隆.D290大孔阴离子交换树脂吸附金的机理和应用[J].黄金.1992,13(2):45-50
    [59]Carmen P Gromes, Manuel F Almeida. Gold Recovery with ion exchange used resin Separation and Purification Technology[J].2000,24:35-37
    [60]肖连生,龚柏凡,黄芍英,等.离子交换一步法制高纯仲钨酸钱的扩大试验[J].中 国有色金属学报,1996,(3):53-56
    [61]王瑞样,刘建华,曾青云,等.从铜矿山地下溶浸渗漏液中回收铜的研究[J].中国有色金,2007,8(4):33-36
    [62]蒋万银.谷氨酸一钠的化学特性和食用安全性[J].中国烹饪研究,2000,(1):13-15
    [63]于信令.味精生产手册[M].中国轻工业出版社,1995.14-16
    [64]张莓.1995-2010年世界和中国铜的供需概略分析(续)[J].中国金属通报,2007,(50):32-34
    [65]吴荣庆.我国铜矿的资源特点与综合开发利用的成绩和不足[J].中国金属通报,2008,(6):33-64
    [66]傅崇说,郑蒂基.关于Cu-NH3-H2O系的热力学研究[J].中南矿学院学报,1979,20(1):37-42
    [67]张祥麟,康衡.配位化学[M].长沙:中南工业大学出版社,1986.108-119,209-215
    [68]Smith R M, Matell E. Critical Stability Constants:Inorganic Complex, Vol.4 [M]. New York: Plenum Press,1976.6,37-38
    [69]Smith R M, Matell E. Critical Stability Constants:Inorganic Complex, Vol.1 [M]. New York: Plenum Press,1974.27-28
    [70]杨天足,任晋,刘伟锋,等.Zn(II)-Glu2--CO32--H2O体系热力学平衡分析[J].中国有色金属学报,2009,19(6):1155-1161
    [71]李慧君.NH3-(NH4)2SO4-H2O体系浸出异极矿的研究:[硕士学位论文].长沙:中南大学,2009
    [72]莫鼎成.金动力学[M].长沙,中南工业大学出版社,1987.22-25
    [73]雷吟春,刘云派,朱传华.工业用铜萃取剂研制的新进展[J].湖南有色金属,2008,24(2):41-45
    [74]冯容保,林瑾琳,邱志成,等.发酵液中酮酸对锌盐法提取谷氨酸的影响.发酵科技通讯,1981,2:17-22
    [75]窦后松,徐小平,钟志成,等.谷氨酸甘氨酸合铜(Ⅱ)混配型配合物的制备[J].华西医大学报,1995,26(4):439-442
    [76]Payne G F, Malty N. Solute adsorption from water onto a"modified" sorbent in which the hydrogen binding site is protected from water[J]. Thermodynamics and separation, Ind Eng Chem Res,1992:31,20-24
    [77]Traci P, Gail M B, Marit J, et al. Investigating the Effect of Carbon Shape on Virus Adsorption [J]. Environ. Sci. Technol.2000,34(13):2779-2783
    [78]王宜辰,吸附等温式的理论推导[J].烟台师范学院学报(自然科学版),1993,9(4):77
    [79]Sadhana Sharmal, GoPal P Agarwal. Interactions of Proteins with Immobilized Metal Ions:A Comparative Analysis Using Various Isotherm Models[J]. Analytical Biochemistry,2001,288:126-140
    [80]姜志新.离子交换动力学及其应用(上)[J].离子交换与吸附,1989,5(1):54-73
    [81]陶祖贻.四种常用的离子交换动力学模型及速度方程[J].离子交换与吸附,1990,6(3):3-12
    [82]陈一良,潘丙才,梦凡伟,等.苯酚及对硝基酚在大孔树脂上吸附等温线的研究[J].离子交换与吸附,2004,20(3):205-213
    [83]Salem Ibrahim A, El-Maazawi Mohamed S. Kinetics and Mechanism of Color Removal of Methylene Blue with Hydrogen Peroxide Catalyzed by Some Supported Alumina Surfaces[J]. Chemosphere,2000,41(8):1173-1180
    [84]Canmo A M, Hundal L S, Thompson M L. Sorption of Hydrophobic Organic Compounds by Soil Materials:Application of Unit Equivalent Freundlich Coefficients[J]. Environ. Sci. Technol.2000,34(20):4363-4369
    [85]Garcla-Deigado R A, Cotouelo-Minguez L M, Rodfiguez J J. Equilibrium Study of Single-solute Adsorption of Anlonic Surfactants with Polymeric XAD Resins[J]. Sep. Sci.Technol·, 1992,27(7):975-987
    [86]John P Bell, Marios Tsezos J. Removal of hazardous organic Pollutants by biomass adsorption[J]. Water Pollut Control Fed,1987,59:191-198
    [87]Kennedy L J, Vijaya J J, Sekaran G, et al. Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of Cresol onto Micro and Mesoporous Carbon [J]. J. Hazard. Mater.,2007,149(1):134-143
    [88]Chabani M, Amrane A, Bensmaili A. Kinetics of nitrates adsorption on Amberlite IRA 400 resin[J]. Desalination,2007,206:560-567
    [89]Febrianto J, Kosasih A N, Sunarso J, et al. Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent:A Summary of Recent Studies [J]. J. Hazard. Water.,2009,162(2/3):616-645
    [90]张镛,许根福,等.离子交换与铀的提取[M].北京:原子能出版社,1991.35-51
    [91]Ngah W S W, Hanafiah M A K M. Adsorption of Copper on Rubber (Hevea brasiliensis) Leaf Powder: Kinetic, Equilibrium and Thermodynamic Studies [J]. Biochem. Eng. J.,2008,39(3):521-530

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700