卷柏总黄酮及穗花杉双黄酮对认知障碍模型的治疗及可能作用途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知是指人的大脑接受外界信息,经过加工处理后,转换成内在的心理活动,从而获取知识或应用知识的过程。认知功能障碍泛指由各种原因导致的不同程度的认知功能损害,从轻度认知功能损害到痴呆。所有直接或间接导致大脑皮层结构和功能慢性损伤的因素均可通过不同机制引起认知功能障碍。乙酰胆碱、多巴胺和去甲肾上腺素等神经递质及其受体异常,脑组织蛋白质异常修饰、异常聚集等脑神经细胞退行性变性疾病,自由基损伤、能量供应障碍、酸中毒、兴奋性毒性等引起的慢性脑缺血性损伤,以及一些会造成脑部血液供应不足的疾病等都会引起认知功能障碍。认知功能障碍多见于60岁以上老年人,属于老年痴呆的初级阶段,如果不能很好的控制,将很快发展成为老年痴呆。因此轻度认知功能障碍阶段是预防、控制和治疗老年痴呆的最佳时期。近年来,随着国际上对认知功能障碍研究的进展,其危害和重要性逐渐被认识。
     目前治疗认知功能障碍的药物,基本上与抗阿尔茨海默病或老年痴呆的药物一致,主要针对相应的发病原因如胆碱能神经异常、β-淀粉样蛋白堆积、炎症、铝中毒、钙平衡失调、代谢紊乱、自由基损伤以及线粒体损伤等加以治疗,可以控制患者的病情或一定程度上缓解认知功能障碍的快速发展。其中有一种药物疗效显著且被广泛接受,即以银杏叶提取物为原料的金纳多。银杏叶提取物中主要为黄酮类成分,且大部分为双黄酮。研究表明银杏叶提取物能增加脑血管流量,降低脑血管阻力,改善脑部血液循环,保护脑细胞免受缺血损害,清除有害的氧化自由基,并具有提高免疫能力和抗衰老作用。由于银杏树分布范围很小,且银杏叶产量有限,由此我们想到,其他植物中含有的双黄酮如具有与银杏双黄酮类似的功效,则可以弥补银杏叶资源不足的问题。
     对多种中药黄酮及双黄酮类成分活性筛选的结果表明,垫状卷柏总黄酮(total flavonids of Selaginella pulvinata,TFSP)具有较好的抗氧化和改善模型动物认知功能障碍的作用。文献资料表明,卷柏总黄酮具有抗氧化、抗糖尿病、促进人脐静脉内皮细胞增殖及血管内皮细胞生长因子表达等活性。垫状卷柏双黄酮能清除二苯代苦味肼基自由基,显著抑制溶血性磷脂酰胆碱所致内皮细胞乳酸脱氢酶的泄漏,并能减轻溶血性磷脂酰胆碱所致人脐静脉内皮细胞ECV304的损伤,且对黄嘌呤氧化酶体外抑制作用较强。目前尚未见有关TFSP对认知功能障碍影响的报道。为此,本文首先从整体水平观察了TFSP对不同阶段学习记忆功能障碍模型小鼠的治疗作用,进而在细胞水平探讨TFSP和穗花杉双黄酮(amentoflavone,AF)对正常神经细胞的促增殖作用以及对多种损伤因子致神经细胞损伤的保护和修复作用。在此基础上,本文从内质网应激、线粒体功能障碍及氧化应激等方面初步探讨了TFSP的活性成分——穗花杉双黄酮(AF)改善小鼠学习记忆功能障碍可能的作用途径。
     整体试验结果表明,TFSP对东莨菪碱、亚硝酸钠及乙醇造成的小鼠记忆获得、记忆巩固及记忆再现等不同阶段、不同层面的记忆功能障碍具有较明显的治疗作用。TFSP能够抑制东莨菪碱所致小鼠大脑乙酰胆碱含量降低,调节乙酰胆碱酯酶和胆碱乙酰转移酶活性,通过对胆碱能系统酶活性的影响,拮抗东莨菪碱对M-胆碱能受体的阻断作用,对抗东莨菪碱所致小鼠记忆获得障碍。对亚硝酸钠诱导的记忆巩固障碍小鼠大脑组织的过氧化损伤,TFSP不但能激活脑组织抗氧化酶活性而且能有效遏阻过氧化产物在脑内堆积,通过抗氧化途径治疗记忆巩固障碍。D-半乳糖能够导致小鼠全身性衰老,包括免疫器官萎缩、体内过氧化物和自由基堆积及抗氧化酶活性下降,TFSP通过增强免疫和抗氧化遏制小鼠全身性衰老的进程。
     上述整体试验结果为TFSP在细胞水平的深入研究奠定了基础。离体试验以人神经母细胞瘤细胞SH-SY5Y为对象,首先观察了TFSP及AF对正常状态下SH-SY5Y细胞生长的影响,发现在一定浓度范围内TFSP和AF对SH-SY5Y细胞具有促增殖作用。当SH-SY5Y细胞与过氧化氢、冈田酸、Aβ25-35三种细胞毒性因子共孵育时,光镜下看到大量细胞死亡,细胞存活率明显下降。提示,过氧化氢、冈田酸、Aβ25-35造成神经细胞不同程度的损伤,可以作为神经细胞损伤研究的离体模型。从计算的IC50值分析,冈田酸的细胞毒性最强。我们的研究发现,AF对三种毒性因子造成的细胞损伤呈现出不同程度的保护和修复作用,其中对过氧化氢造成的细胞损伤保护作用最明显。推测, AF对细胞的保护和修复作用可能主要是通过抗氧化应激损伤(抗过氧化氢损伤)实现。
     鉴于内质网应激、线粒体功能障碍及氧化应激是三个引发认知功能障碍的可能作用途径,并结合细胞水平的研究结果,本研究首先选择了与内质网应激密切相关的3种蛋白caspase-12、葡萄糖调节蛋白、增强子结合蛋白同源蛋白,观察AF对冈田酸诱导的SH-SY5Y细胞中3种蛋白表达的影响。发现,AF对caspase-12具有一定的调节作用,而对葡萄糖调节蛋白、增强子结合蛋白同源蛋白的表达没有产生明显的影响,提示AF对神经细胞的保护作用可能主要不是通过内质网应激途径介导。与此同时在冈田酸诱导的SH-SY5Y细胞中,我们发现AF可以使已经降低的线粒体膜电位得到部分恢复,并能抑制SH-SY5Y细胞凋亡。提示我们,AF对SH-SY5Y细胞的保护作用可能与线粒体功能障碍途径有关。已知线粒体功能障碍导致的必然结果是氧化应激加剧,自由基和过氧化物在细胞内大量堆积,多种抗氧化酶活性降低。AF对处于氧化应激状态的SH-SY5Y细胞表现出较强的抗氧化水平。提示,抗氧化应激可能是AF保护SH-SY5Y细胞免受冈田酸损伤最重要的作用途径之一。
     本项研究首次将垫状卷柏总黄酮(TFSP)用于学习记忆功能障碍模型小鼠的治疗研究,并初步探讨了TFSP和穗花杉双黄酮(AF)抗认知功能障碍可能的作用途径。为TFSP和AF作用机制的深入研究提供了有价值的细胞生物学和分子生物学线索,为TFSP的开发利用奠定实验医学基础。
Cognition is the process of human brain for acquiring and processing ofinformation, translating into psychological action, and finally gaining and applyingknowledge. Cognition is a group of mental processes that includes attention, memory,producing and understanding language, learning, reasoning, problem solving, anddecision making. Cognitive impairment (CI) refers to the dysfunction of the cognitioninduced by any reasons. It includes several steps, from mild cognitive impairment todementia. All factors that can directly or indirectly lead to chronic damnification tothe cortical structure and function of the brain will cause CI, for example, abnormitiesof neurotransmitters like dopamine, acetylcholine, noradrenaline and their receptors,abnormal aggregation and modification of protein in the brain, neural degenerativedisease, chronic ischemia injury to the cerebrum induced by disorder of energy supply,oxidosis, free radical injury, excitatory toxicity, and some diseases that will causeinsufficiency of cerebral blood supply. CI is in fact the primary stage of seniledementia, it is common in the people over60years old. CI will soon develop intodementia (or Alzheimer’s disease) if it is not treated properly. Therefore, CI is the beststage for preventing, intervening and curing senile dementia. In recent years, the harmand importance of CI have been recognized, attributed to the research development ofcognitive impairment.
     At present, CI is mostly treated in the same way as Alzheimer’s disease or seniledementia in clinic. The possible reseasons are considered, such as cholinergic nerve,β-amyloid protein, inflammation, aluminium poisoning, calcium imbalance, metabolicdisturbance, free radical insult and mitochondrial dysfunction, and the related drugsare prescribed. The CI condition of the patients can be controlled or relieved to someexetent after the drugs being administered. There is a medicine that is effective andwidely accepted, named Ginaton. It is made of leaf extract of Ginkgo Biloba. Themain constituents in leaf extract of Ginkgo Biloba are flavonoids, and mostly are bioflavonoids. It is proved that leaf extract of Ginkgo Biloba has many good effects,such as improving blood volume of cerebral vascular, reducing the resistance ofcerebral vascular, ameliorating blood circulation, protecting the brain cells fromischemia, clearing oxyradical, improving immunity and against aging. The efficacy ofleaf extract of Ginkgo Biloba enlightened us that the bioflavonoids in other plants mayhave analogous effects.
     We screened flavonoids extracted from different plants. Total flavonoids ofSelaginella Pulvinata (TFSP) showed good effects on anti-oxidant and improving CIin animal model. The results in the literaures showed that total flavonoids ofSelaginella tamariscina had the ability of anti oxidation, anti diabetes, improvinghuman umbilical vein endothelia cells proliferation and VEGF expression. Flavonoidsof Selaginella moellendorfii Hieron inhibit the expression of COX-2and proliferationof HT-29. Biflavones of Selaginella Pulvinata have the effects of clearing diphenylpicryl hydrazinyl radical, inhibiting lactate dehydrogenase release and damages ofendothelial cells induced by lysophosphatidylcholine, and decreasing the activity ofxanthinoxidase in vitro. There is not a report about the effect of TFSP on CI so far. Wedetected the effects of TFSP on different step of learning and memory in mice model.TFSP and AF promote the proliferation of SH-SY5Y, protect the cell insulted byhydrogen peroxide, okadaic acid and Aβ25-35, and they repair the damaged cell tosome extent. On the basis of the above research, the possible mechanism of AF onameliorating CI was explored from endoplasmic reticulum stress (ERS),mitochondrial dysfunction and oxidative stress.
     The animal experiment results showed, TFSP had significant therapeutic actionon the impairment of memory acquisition, memory consolidation and memoryevocation induced by scopolamine hydrobromide, sodium nitrite and45%alcoholrespectively. TFSP inhibited the acetylcholine reduction in the brain induced byscopolamine hydrobromide, increased the activity of acetylcholinesterase and cholineacetyltransterase. It suggested that TFSP resisted the memory acquisition impairmentinduced by scopolamine hydrobromide through its influence on enzyme activities of cholinergic system and antagonizing scopolamine’s blockage on M-cholinergicreceptor. Sodium nitrite caused peroxidation injury to the mice cerebral tissue andbrought about the memory consolidation impairment. TFSP activated theantioxidative enzyme and suppressed the accumulation of hyperoxide in the brain.TFSP might improve the memory consolidation through anti-oxidation. D-galactosecaused the systemic aging of the mice, including the withering of the immune organs,the accumulation of hyperoxide and free radical in the body and the activitydepression of antioxidative enzyme. TFSP suppressed the systemic aging of the micethrough antioxidation and improving the immunity.
     On the basis of animal experiments, we studied the efficacy of TFSP and AF oncell model in vitro. Within the concentration range, TFSP and AF moderatelypromoted the proliferation of SH-SY5Y. Hydrogen peroxide, okadaic acid and Aβ25-35brought the cell to death when they were incubated with SH-SY5Y cell together. Thatmeans hydrogen peroxide, okadaic acid and Aβ25-35could be the damage factors in thestudy. We learned from the IC50of the three factors that okadaic acid was the mostpoisonous factor to the cell. Our results indicating, AF showed protection andrepairment to the cell damage caused by hydrogen peroxide, okadaic acid and Aβ25-35,especially to the insult induced by hydrogen peroxide. It is inferred that AF mightexert the action of improving memory consolidation through resistance to oxidativestress injury (resisting hydrogen peroxide injury).
     Since ERS, mitochondrial dysfunction and oxidative stress were three mainpossible paths that could cause CI, we determined the expression of three proteinclosely related with ERS (cysteinylaspartate specific proteinase-12, glucose regulatedprotein78and CCAAT/enhancer binding protein homologous protein; caspase-12,Grp78and Chop) induced by okadaic acid in SH-SY5Y treated with AF. AF regulatedcaspase-12to some extent that increased by okadaic acid in SH-SY5Y. Grp78andChop had no significant change in SH-SY5Y after treated with okadaic acid and AF,suggesting that the protective effect of AF on the cell may not attribute to ERS. Wefound that AF partially recovered the mitochondrial transmembrance potential and inhibited the cell apoptosis induced by okadaic acid. That indicated AF might exertprotective effect by regulating the mitochondrial dysfunction. Hyperphosphorylationof tau was detected induced by okadaic acid, while AF had the effect ofdephosphorylation on phosphorelated tau, suggesting that AF might protect the nervecell through resisting phosphorylation of protein and maintaining the structure andfunction of the microtube. The inevitable result of mitochondrial dysfunction is theincrease of oxidative stress, the accumulation of free radical and hyperoxide in celland the activity depression of antioxidative enzyme. AF displayed strong antioxidativeactivity on SH-SY5Y in oxidative stress. It suggested that anti oxidative stress mightbe the main important mechanism for AF protecting SH-SY5Y cell insulted byokadaic acid.
     We studied the effect of TFSP on the memory impairment mice model for thefirst time, and investigated the possible mechanism of TFSP and AF on improving CI.That supplied a valuable clue for further research of TFSP and AF in cell biology andmolecular biology, and provided experimental medicine foundation for theexploitation and utilization of TFSP.
引文
[1]中国防治认知功能障碍专家共识专家组.中国防治认知功能障碍专家共识[J].中华内科杂志,2006,45(2):171-173.
    [2] Dunbar GL, Rylett RJ, Schnidt BM, et al. Hippocampal choline acetyltransferase activiey correlates with spatial learning in aged rats[J]. BrainResearch,1993,604(1-2):267-272.
    [3] Melis F, Stancampiano R, Imperato A, et al. Chronic ethanol consumption in rats:correlation betweed memory performance and hippocampal acetylcholine releasein vivo[J]. Neuroscience,1996,74(1):155-159.
    [4] Miranda ML, Lopez-Colome AM, Bermadez RF. Recovery of taste aversionlearning induced by fetal neocortex grafts: correlation with in vivo extracellularacetylcholine[J]. Brain Research,1997,759(1):141-148.
    [5] Perry E, Walker M, Grace J, et al. Acetylcholine in mind: a neurotransmittercorrelate of consciousness?[J]. Trends in neurosciences,1999,22(6):273-280.
    [6] Hardy JA, Higgins, G A. Alzheimer’s disease: the amyloid cascade hypothesis[J].Science,1992,256(5054):184-185.
    [7] Lührs T, Ritter C, Adrian M, et al.3D structure of Alzheimer’s amyloid-β (1-42)fibrils[J]. Proceedings of the National Academy of Sciences USA,2005,102(48):17342-17347.
    [8]谭涛,张保良,田心,等.寡聚体Aβ1-42对大鼠海马突触可塑性的慢性影响[J].生理学报,2011,63(3):225-232.
    [9] Quintanilla RA, Dolan PJ, Jin YN, et al. Truncated tau and Aβ cooperativelyimpairmitochondria in primary neurons[J]. Neurobiology of aging,2012,33(3):619.e25-35.
    [10] Meleleo D, Notarachille G, Micelli S, et al. Choline modulation of the Aβ p1-40channel reconstituted into a model lipid membrane[J]. International Journal ofAlzheimer’s Disease,2011, Jan3;2010:752804.
    [11] Jo J, Whitcomb DJ, Olsen KM, et al. Aβ (1-42) inhibition of LTP is mediated bya signaling pathway involving caspase-3, Akt1and GSK-3[J]. Natureneuroscience,2011,14(5):545-547.
    [12] Li S, Jin M, Koeglsperger T, et al. Soluble A oligomers inhibit long-termpotentiation through a mechanism involving excessive activation ofextrasynaptic NR2B-containing NMDA receptors[J]. Journal of Neuroscience,2011,31(18):6627-6638.
    [13] Ronicke R, Mikhaylova M, R nicke S, et al. Early neuronal dysfunction byamyloid oligomers depends on activation of NR2B-containing NMDAreceptors[J]. Neurobiology Aging,2011,32(12):2219-2228.
    [14] Kawahara M. Neurotoxicity of β-amyloid protein: oligomerization, channelformation, and calcium dyshomeostasis[J]. Current pharmaceutical design,2010,16(25):2779-2789.
    [15]刘玲玲,盛柏杨,龚锴,等.淀粉样肽Aβ导致线粒体功能紊乱的体内和体外研究[J].生物化学和生物物理进展,2010,37(2):154-160.
    [16] Sheng ZH, Cai Q, et al. Mitochondrial transport in neurons: impact on synaptichomeostasis and neurodegeneration[J]. Nature reviews. Neuroscience,2012,13(2):77-93.
    [17] Hyman BT. Caspase activation without apoptosis: insight into Aβ initiation ofneurodegeneration[J]. Nature neuroscience,2011,14(1):5-6.
    [18] Ma QL, Fusheng FS, Rosario1ER, et al. β-amyloid oligomers inducephosphorylation of tau and inactivation of insulin receptor substrate via c-JunN-terminal kinase signaling: suppression by omega-3fatty acids and curcumin[J].Journal of Neuroscience,2009,29(28):9078-9089.
    [19] Lee HK, Kumar P, Fu QH, et al. The insulin/Akt signaling pathway is targeted byintracellular β-amyloid[J]. Molecular biology of the cell,2009,20(5):1533-1544.
    [20] Alberdi E, M Victoria Sánchez-Gómez, Fabio Cavaliere, et al. Amyloid βoligomers induce Ca2+dysregulation and neuronal death through activation ofionotropic glutamate receptors[J]. Cell Calcium,2010,47(3):264-272.
    [21]岳静,王钰,张广军,等. β-淀粉样肽1-40致阿尔茨海默病大鼠模型N-甲基-D-天冬氨酸受体及亚型表达分析[J].中国康复医学杂志,2010,25(6):531-535.
    [22] Swerdlow RH, Khan SM. A “mitochondrial cascade hypothesis” for sporadicAlzheimer's disease[J]. Medical hypotheses,2004,63(1):8-20.
    [23] Swerdlow RH, Khan SM. The Alzheimer's disease mitochondrial cascadehypothesis: an update[J]. Experimental neurology,2009,218(2):308-315.
    [24] Cao X, Guo Q, Zhao Q, et al. The neu ropsye hologieal charact eristics andregional cerebral blood flow of vascular cognit ive impairment no dementia[J].International journal of geriatric psychiatry,2010,5(5):1168-1176.
    [25]许百华.轻度认知障碍(MCI)的诊断标准和神经心理学检测方法[C].2011年浙江省心理卫生协会第九届学术年会论文汇编,2011,369-370.
    [26] Hommel M, Carey L, Jaillard A. Depression: Cognition relations after stroke[J].International journal of stroke: official journal of the International StrokeSociety,2013Oct27. doi:10.1111/ijs.12057.
    [27] Tu Q, Ding B, Yang X, et al. The current situation on vascular cognitiveimpairment after ischemic stroke in Changsha[J]. Archives of gerontology andgeriatrics,2013Oct6. pii: S0167-4943(13)00151-9. doi:10.1016/j.archger.2013.09.006.
    [28]赵晓晖,杨娟,许佩佩,等.脑卒中后不同时段抑郁与认知功能相关性研究[J].脑与神经疾病杂志,2013,21(4):241-244.
    [29]凌小林.脑卒中后认知功能障碍的研究进展[J].中国现代医生,2013,51(17):22-25.
    [30]刘国斌.缺血性脑卒中后认知功能障碍患者脑血管血流动力学变化[J].长春中医药大学学报,2013,29(4):708-709.
    [31] Csiszar A, Tucsek Z, Toth P, e Archives of Gerontology and Geriatrics t al.Synergistic effects of hypertension and aging on cognitive function andhippocampal expression of genes involved in β-amyloid generation andAlzheimer's disease[J]. American journal of physiology. Heart and circulatoryphysiology,2013,305(8):H1120-1130.
    [32]杨薪,钟向红,李斌,等.高龄原发性高血压患者微血管病变对认知功能的影响[J].中华老年心脑血管病杂志,2013,15(7):678-680.
    [33]傅卫红,范亮,刘崇霞,等.老年高血压病患者治疗后血压水平与认知功能的相关性[J].心脏杂志,2013,5(3):345-348.
    [34] Whitmer RA. Type2diabetes and risk of cognitive impairment and dementia[J].Current Neurology and Neuroscience Reports,2007,7(15):373-380.
    [35] Ebady SA, Arami MA, Shafigh MH. Investigation on the relationship betweendiabetes mellitus type2and cognitive impairment[J]. Diabetes research andclinical practice,2008,82(3):305-309.
    [36] Takeuchi M, Yamagishi S. Possible involvement of advanced glycation endproducts (AGEs) in the pathogenesis of Alzheimer's disease[J]. Currentpharmaceutical design,2008,14(10):973-978.
    [37] Messier C, Award N, Gagnon M. The relationship between atherosclerosis,heartdisease,type2diabetes and dementia[J]. Neurological research,2004,26(5):567-572.
    [38] Guidi I,Galimberti D,Lonati S,et al. Oxidative imbalance in patients with mildcognitive impairment and Alzheimer’s disease[J]. Neurobiology of aging,2006,27(2):262-269.
    [39] Kruamn II, Kumarave1TS, Lohani A, et al. Folic acid deficiency andhomocysteine impair DNA repair in hippocampal neurons and sensitize them toamyloid toxicity in experimental models of Aizheimer ' s disease[J]. The Journalof Neuroscience,2002,22(5):1752-1762.
    [40]张松筠,易莲,张庆九,等.维生素C对老年2型糖尿病患者轻度认知功能障碍的影响及机制研究[J].中国全科医学,2010,13(9):2903-2905.
    [41]何晓燕,王成凤.探讨老年人群轻度认知功能障碍的患病情况及其相关危险因素[J].当代医学,2013,19(4):47-48.
    [42] Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinicalcharacterization and outcome[J]. Archives of neurology,1999,56(3):303-308.
    [43]马静遥,刘新民,金哲雄,等.改善认知功能障碍中药研究进展[J].中国中医药信息杂志,2013,20(9):104-107.
    [44] Li ZQ, Zhao GP. Effects of Kaixin Powder on learning and memory performanceand acetylcholine esterase mRNA expressions in vascular dementia rats[J].Chinese Traditional Patent Medicine,2009,31(8):1180-1185.
    [45] Xu F, Peng DY, Tao CL, et al. Anti-depression effects of Danggui-Shaoyao-San,a fixed combination of traditional Chinesemedicine, on depression model in miceand rats[J]. Phytomedicine,2011,18(13):1130-1136.
    [46] Lu MC. Danggui Shaoyao San improve colchicine-induced learning acquisitionimpairment in rats[J]. Acta pharmacologica Sinica,2001,22(12):1149-1153.
    [47]朱未名,胡海燕.清心开窍方对老年痴呆小鼠脑自由基代谢及海马CA1区神经细胞形态的影响[J].中国实验方剂学杂志,2007,13(10):57-60.
    [48]周敏,白兰,周丽娜,等.生慧汤对学习记忆障碍模型小鼠的影响[J].中医药信息,2009,(6):54.
    [49]于庆海,吴春福.归脾汤实验药理研究[J].沈阳药学院学报,1992,9(1):41-45.
    [50]刘艳茹.天麻钩藤饮对脑灌注不足大鼠VEGF的表达和神经发生的影响[D].郑州:郑州大学,2007.
    [51]唐彦.中药复方治疗儿童多动症(ADHD)的系统评价、证治规律及作用机制研究[D].广州:广州中医药大学,2007.
    [52]瞿融,孟海彬,褚蔚,等.柴胡加龙骨牡蛎汤对抑郁模型大鼠脑内单胺递质的影响[J].中药药理与临床,2003,19(6):1-3.
    [53]杨雁.调督安神胶囊对癫痫大鼠学习、记忆与脑内NMDAR1表达的影响及中医理论探讨[D].石家庄:河北医科大学,2007.
    [54]肖岚,黎杏群,刘柏炎,等.脑溢安对新生大鼠海马神经干细胞缺氧损伤及p38MAPK活性的影响[J].中国现代医学杂志,2004,14(16):67-74.
    [55]蔡光先,刘柏炎.补阳还五汤对体外低糖低氧损伤海马神经干细胞增殖的影响[J].湖南中医学院学报,2005,25(2):1-3.
    [56]黄玉芳,卞慧敏,刘涛,等.开心散对记忆障碍小鼠脑组织一氧化氮、胆碱酯酶含量的影响[J].北京中药大学学报,2001,24(4):40-41.
    [57]张启春,王秋娟,寇俊萍,等.当归芍药散防治老年期痴呆的物质基础与作用机理研究Ⅵ-当归芍药散精简方含药脑脊液对PC12细胞的保护作用[J].中国实验方剂学杂志,2005,11(54):55-58.
    [58]牛侨,牛丕业,何淑嫦.天麻对铝致大鼠学习记忆障碍的影响[J].卫生研究,2004,33(1):45-48.
    [59]崔瑛,颜正华,侯士良,等.熟地黄对动物学习记忆障碍及中枢氨基酸递质、受体的影响[J].中国中药杂志,2003,28(9):862-866.
    [60]姚娴,王丽娟,刘干中.党参对苯异丙基腺苷所致小鼠学习记忆障碍的影响[J].中药药理与临床,2001,17(1):16-17.
    [61]周琳,杨期东,袁梦石,等.何首乌对淀粉样蛋白致海马神经元的凋亡和学习记忆障碍的作用[J].中药临床康复,2005,9(9):131-134.
    [62]王玉梅,刘永平,曹凯,等.黄芩茎叶黄酮对大鼠缺血性记忆障碍和神经炎症的作用[J].中国药理学与毒理学杂志,2011,25(2):135-140.
    [63]王文娜,杨发明.红景天对血管性痴呆大鼠学习记忆障碍及NMDA机制研究[J].山西中医,2008,24(12):42-44.
    [64]王文胜.葛根素对Aβ诱导的大鼠学习记忆障碍的改善作用及其机制[D].石家庄:河北医科大学,2009.
    [65]廖涛,王飞,张占军,等.姜黄素对痴呆模型小鼠学习记忆能力的改善作用及对细胞凋亡的影响[J].中国药理学通报,2009,25(10):1359-1363.
    [66]唐晖,汪保和,贺洪.人参皂甙Rg1促进小鼠力竭游泳后体能恢复的作用[J].中国运动医学杂志,2002,21(4):375-377.
    [67] Liu L, Hoang GT, Wu H, et al. Ginsenoside Rb1improves spatial learning andmemory by regulation of cell genesis in the hippocampal subregions of rats[J].Brain Research,2011, Mar25;1382:147-154.
    [68] Liu M, Zhang JT. Effects of ginsenoside Rg1on c-fos gene expression andcAMP levels in rat hippocampus[J]. Acta pharmacologica Sinica,1996,17(2):171-174.
    [69]陈红辉,刘安求,王小川,等.银杏叶提取物改善学习记忆障碍老龄大鼠痴呆模型的作用途径[J].中国临床康复,2005,9(44):176-178.
    [70] Calapai G, Crupi A, Firenzuoli F, et al. Neuroprotective effects of Ginkgo bilobaextract in brain ischemia are mediated by inhibition of nitric oxide synthesis[J].Life sciences,2000,67(22):2673-2683.
    [71] Xin W, Wei T, Chen C, et al. Mechanisms of apoptosis in rat cerebellar granularcells induced by hydroxyl radicals and the effects of EGb761and itsconstituents[J]. Toxicology,2000,148(2/3):103-110.
    [72]王云,袁宝强.银杏叶提取物对发育期戊四氮点燃癫痫大鼠认知功能及海马神经细胞凋亡的影响[J].实用儿科临床杂志,2011,26(17):1351-1354.
    [73] Chandrasekarna K, Mehrabian Z, Spinnewyn B, et al. Neuroprotective effets ofbilobalide, a component of the Ginkgobiloba extract(EGb761), in gerbil globalbrain ischemia[J]. Brain Research,2001,922(2):282-292.
    [74]周伟勤.淫羊藿苷对快速老化小鼠SAMP8学习记忆的影响及作用机理研究[D].北京:中国协和医科大学,2009.
    [75]蒋淑君,杨丽娟,许勇,等.淫羊藿总黄酮对痴呆模型大鼠学习记忆功能及Bcl-2、Bax蛋白表达的影响[J].中国现代医学杂志,2008,18(23):3429-3432.
    [76]徐瑞霞,吴芹,龚其海,等.淫羊藿苷防治血管性痴呆的实验研究[J].四川生理科学杂志,2004,(4):174-175.
    [77]国家药典委员会.中华人民共和国药典2010年版(一部)[S].北京:中国医药科技出版社,2010.
    [78]毕跃峰,郑晓珂,冯卫生,等.卷柏属植物化学成分与药理活性[J].国外医药-植物药分册,2002,17(3):97-100.
    [79]郑晓珂,史社坡,毕跃峰,等.卷柏中黄酮类成分研究[J].中草药,2004,35(7):742-743.
    [80] Yang JW, Pokharel YR, Kim MR, et al. Inhibition of inducible nitric oxidesynthase by sumaflavone isolated from Selaginella tamariscina[J]. Journal ofEthnopharmacology,2006,105(1-2):107-113.
    [81] Jian-Feng LIU, Kang-Ping XU, Fu-Shuang LI, et al. A New Flavonoid fromSelaginella tamariscina (Beauv.) Spring[J]. Chemical&pharmaceutical bulletin,2010,58(4):549-551.
    [82]郑晓珂,赵献敏,冯卫生,等.卷柏调血脂活性部位化学成分研究[J].中草药,2009,40(11):1712-1715.
    [83]张红梅,景颖,张国刚,等.卷柏中双黄酮类化学成分及卷柏属该类化合物的核磁共振特征[J].中南药学,2011,9(6):419-423.
    [84]晏英,朱海燕,马琳,等.贵州产五种卷柏总黄酮含量测定[J].云南大学学报(自然科学版),2010,32(S2):227-231.
    [85]冯志毅,赵献敏,王彦志,等.卷柏总黄酮纯化工艺研究[J].中成药,2009,31(4):544-546.
    [86]郑晓珂,侯庆伟,李民等.卷柏总黄酮提取工艺研究[J].中国新药杂志,2011,20(16):1509-1513.
    [87]李庆杰,王怀生,王莲萍,等.卷柏总黄酮提取工艺研究[J].长春中医药大学学报,2012,28(2):355-356.
    [88] Zheng XK, Wang WW, Zhang L, et al. Antihyperlipidaemic and antioxidanteffect of the total flavonoids in Selaginella tamariscina (Beauv.) Spring indiabetic mice[J]. The Journal of pharmacy and pharmacology,2013,65(5):757-766.
    [89]赵文杰,何丽,张茜,等.卷柏总黄酮对H2O2所致PC12细胞损伤的保护作用[J].中国医药指南,2012,10(3):224-225.
    [90]徐智,贾素洁,谭桂山,等.垫状卷柏中双黄酮药理活性的研究[J].中国现代医学杂志,2004,14(14):88-89.
    [91]朱田密,陈科力,黎莉,等.垫状卷柏中双黄酮抑制黄嘌吟氧化酶的活性研究[J].中药药理与临床,2007,23(4):33-34.
    [92]黎莉,陈科力,朱田密,等.卷柏属7种药用植物的提取物抑制黄嘌呤氧化酶的活性研究[J].中药材,2007,30(4):445-447.
    [93] Zheng XK, Li YJ, Zhang L, et al. Antihyperglycemic activity of Selaginellatamariscina (Beauv.) Spring[J]. Journal of Ethnopharmacology,2011,133(2):531-537.
    [94] Zheng XK, Zhang L, Wang WW, et al. Anti-diabetic activity and potentialmechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in ratsinduced by high fat diet and low dose STZ[J]. Journal of Ethnopharmacology,2011,137(1):662-668.
    [95] Hsin CH, Wu BC, Chuang CY, et al. Selaginella tamariscina extract suppressesTPA-induced invasion and metastasis through inhibition of MMP-9in humannasopharyngeal carcinoma HONE-1cells[J]. BMC complementary andalternative medicine,2013,13(1):234.
    [96] Yang JS, Lin CW, Hsieh YS, et al. Selaginella tamariscina (Beauv.) possessesantimetastatic effects on human osteosarcoma cells by decreasing MMP-2andMMP-9secretions via p38and Akt signaling pathways[J]. Food and chemicaltoxicology: an international journal published for the British IndustrialBiological Research Association,2013, Sep;59:801-807.
    [97] Le MH, Do TT, Hoang TH, et al. Toxicity and anticancer effects of an extractfrom Selaginella tamariscina on a mice model[J]. Natural product research,2012,26(12):1130-1134.
    [98]郑晓珂,宁桃丽,王小兰,等.卷柏总黄酮及穗花杉双黄酮对人脐静脉内皮细胞增殖及VEGF蛋白表达的影响[J].中国药学杂志,2011,46(13):998-1002.
    [99] Dai Y, But PP, Chu LM, et al. Inhibitory effects of Selaginella tamariscina onimmediate allergic reactions[J]. The American journal of Chinese medicine,2005,33(6):957-966.
    [100]郑晓珂,张鑫,王小兰,等.卷柏提取物改善高脂血症大鼠肝脏脂肪变及肝脏保护作用的实验研究[J].中国新药杂志,2010,19(14):1218-1221.
    [101]郑晓珂,陈克宇,侯庆伟,等.卷柏提取物对去卵巢大鼠骨代谢的影响[J].中草药,2010,41(10):1686-1689.
    [102]王小兰,郑晓珂,魏悦,等.卷柏提取物对去势大鼠股骨中羟脯氨酸含量的影响[J].中国实验方剂学杂志,2011,17(10):132-135.
    [103] Valeria Tarallo, Laura Lepore, Marcella Marcellini, et al. The BiflavonoidAmentoflavone Inhibits Neovascularization Preventing the Activity ofProangiogenic Vascular Endothelial Growth Factors[J]. The Journal ofbiological chemistry,2011,286(22):19641-19651.
    [104]郑晓珂,刘彩霞,翟英英,等.卷柏中穗花杉双黄酮对TNF-α诱导的血管内皮细胞损伤的保护作用[J].药学学报,2013,48(9):1503-1509.
    [105] Zhang J, Liu Z, Cao W, et al. Amentoflavone inhibits angiogenesis ofendothelial cells and stimulates apoptosis in hypertrophic scar fibroblasts[J].Burns.2013, Nov;23. pii: S0305-4179(13)00341-0. doi:10.1016/j.burns.2013.10.012.
    [106]许兰,尹明浩.卷柏穗花杉双黄酮的舒张血管作用实验研究[J].延边大学医学学报,2009,32(4):246-248.
    [107] Kang DG, Yin MH, Oh H, et al. Vasorelaxation by amentoflavone isolated fromSelaginella tamariscina[J]. Planta medica,2004,70(8):718-722.
    [108] Kubota Y, Umegaki K, Tanaka N, et al. Safety of Dietary Supplements:Chronotropic and Inotropic Effects on Isolated Rat Atria[J]. Biological&pharmaceutical bulletin,2002,25(2):197-200.
    [109] Saponara R, Bosisio E. Inhibition of cAMP-phosphodiesterase by biflavones ofGinkgo biloba in rat adipose tissue[J]. Journal of natural products,1998,61(11):1386-1387.
    [110] Ishola IO, Agbaje OE, Narender T, et al. Bioactivity guided isolation ofanalgesic and anti-inflammatory constituents of Cnestis ferruginea Vahl ex DC(Connaraceae) root[J]. Journal of Ethnopharmacology,2012,142(2):383-389.
    [111] Ishola IO, Chaturvedi JP, Rai S, et al. Evaluation of amentoflavone isolatedfrom Cnestis ferruginea Vahl ex DC (Connaraceae) on production ofinflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) andTHP-1cells[J]. Journal of Ethnopharmacology,2013,146(2):440-448.
    [112] Diane F Birt, Mark P Widrlechner1, Kimberly DP Hammer, et al. Hypericum ininfection: Identification of anti-viral and antiinflammatory constituents[J].Pharmaceutical biology,2009,47(8):774-782.
    [113] Kimberly D. P. Hammer, Matthew L. Hillwig, Avery K. S. Solco, et al.Inhibition of Prostaglandin E2Production by Anti-inflammatory Hypericumperforatum Extracts and Constituents in RAW264.7Mouse MacrophageCells[J]. Journal of agricultural and food chemistry,2007,55(18):7323-7331.
    [114] Jueun Oh, Ho Sik Rho, Yanyan Yang, et al. Extracellular Signal-RegulatedKinase Is a Direct Target of the Anti-Inflammatory Compound AmentoflavoneDerived from Torreya nucifera[J]. Mediators of Inflammation,2013;2013:761506. doi:10.1155/2013/761506. Epub2013Jul21.
    [115] Jeong EJ, Seo H, Yang H, et al. Anti-inflammatory phenolics isolated fromJuniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264.7macrophage cells[J]. Journal of enzyme inhibition and medicinal chemistry,2012,27(6):875-879.
    [116] Ilkay Erdogan-Orhan, Mehmet Levent Altun, Betu¨ l Sever-Yilmaz, et al.Anti-Acetylcholinesterase and Antioxidant Assets of the MajorComponents(Salicin, Amentoflavone, and Chlorogenic Acid) and the Extractsof Viburnum opulus and Viburnum lantana and Their Total Phenol andFlavonoid Contents[J]. Journal of medicinal food,2011,14(4):434-440.
    [117] Cibele Bonacorsi, Maria Stella G. Raddi, Luiz Marcos da Fonseca, et al. Effectof Byrsonima crassa and Phenolic Constituents on Helicobacter pylori-InducedNeutrophils Oxidative Burst[J]. International Journal of Molecular Sciences,2012,13(1):133-141.
    [118] Ji Hong Hwang, Hyemin Choi1, Eun-Rhan Woo, et al. Antibacterial Effect ofAmentoflavone and Its Synergistic Effect with Antibiotics[J]. Journal ofmicrobiology and biotechnology,2013,23(7):953-958.
    [119] Kaikabo AA, Eloff JN. Antibacterial activity of two biflavonoids from Garcinialivingstonei leaves against Mycobacterium smegmatis[J]. Journal ofEthnopharmacology,2011,138(1):253-255.
    [120] Ferchichi L, Derbré S, Mahmood K, et al. Bioguided fractionation and isolationof natural inhibitors of advanced glycation end-products (AGEs) fromCalophyllum flavoramulum[J]. Phytochemistry,2012Jun;78:98-106. doi:10.1016/j.phytochem.2012.02.006.
    [121] Banerjee T, Valacchi G, Ziboh VA, et al. Inhibition of TNF alpha-inducedcyclooxygenase-2expression by amentoflavone through suppression ofNF-kappaB activation in A549cells[J]. Molecular and cellular biochemistry,2002,238(1-2):105-110.
    [122] Siveen KS, Kuttan G.. Effect of amentoflavone, a phenolic component fromBiophytum sensitivum, on cell cycling and apoptosis of B16F-10melanomacells[J]. Journal of environmental pathology, toxicology and oncology: officialorgan of the International Society for Environmental Toxicology and Cancer.2011,30(4):301-309.
    [123] Lee S, Kim H, Kang JW, et al. The biflavonoid amentoflavone inducesapoptosis via suppressing E7expression, cell cycle arrest at sub-G1phase, andmitochondria-emanated intrinsic pathways in human cervical cancer cells[J].Journal of medicinal food.2011,14(7-8):808-816.
    [124] Pei JS, Liu CC, Hsu YN, et al. Amentoflavone induces cell-cycle arrest andapoptosis in MCF-7human breast cancer cells via mitochondria-dependentpathway[J]. In Vivo.2012,26(6):963-970.
    [125] Lee JS, Sul JY, Park JB, et al. Fatty acid synthase inhibition by amentoflavonesuppresses HER2/neu (erbB2) oncogene in SKBR3human breast cancercells[J]. Phytotherapy research: PTR,2013,27(5):713-720.
    [126] Jin Sun LEE, Myung Sun LEE, Won Keun OH, et al. Fatty Acid SynthaseInhibition by Amentoflavone Induces Apoptosis and Antiproliferation in HumanBreast Cancer Cells[J]. Biological&pharmaceutical bulletin,2009,32(8):1427-1432.
    [127] Coulerie P, Nour M, Maciuk A, et al. Structure-Activity Relationship Study ofBiflavonoids on the Dengue Virus Polymerase DENV-NS5RdRp[J]. Plantamedica,2013,79(14):1313-1318.
    [128] Lin YM, Anderson H, Flavin MT, et al. In vitro anti-HIV activity ofbiflavonoids isolated from Rhus succedanea and Garcinia multiflora[J].Journal of natural products.1997,60(9):884-888.
    [129] Huerta-Reyes, Maria del CB, Fumiko ABE, et al. HIV-1Inhibitory Compoundsfrom Calophyllum brasiliense Leaves Maira[J]. Biological&pharmaceuticalbulletin,2004,27(9):1471-1475.
    [130] Shuang-Cheng MA, Paul Pui-Hay BUT, Vincent Eng-Choon OOI, et al.Antiviral Amentoflavone from Selaginella sinensis[J]. Biological&pharmaceutical bulletin,2001,24(3):311-312.
    [131] Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nuciferadisplaying SARS-CoV3CL(pro) inhibition[J]. Bioorganic&medicinalchemistry.2010,18(22):7940-7947.
    [132] Wilsky S, Sobotta K, Wiesener N, et al. Inhibition of fatty acid synthase byamentoflavone reduces coxsackievirus B3replication[J]. Archives of virology,2012,157(2):259-269.
    [133] Jung HJ, Sung WS, Yeo SH, et al. Antifungal effect of amentoflavone derivedfrom Selaginella tamariscina[J]. Archives of pharmacal research.2006,29(9):746-751.
    [134] Jung HJ, Keunnam PARK, In-Seon LEE, et al. S-Phase Accumulation ofCandida albicans by Anticandidal Effect of Amentoflavone Isolated fromSelaginella tamariscina[J]. Biological&pharmaceutical bulletin.2007,30(10):1969-1971.
    [135] Hwang IS, Lee J, Jin HG, et al. Amentoflavone stimulates mitochondrialdysfunction and induces apoptotic cell death in Candida albicans[J].Mycopathologia.2012,173(4):207-218.
    [136] Park NH, Lee CW, Bae JH, et al. Protective effects of amentoflavone on LaminA-dependent UVB-induced nuclear aberration in normal human fibroblasts[J].Bioorganic&medicinal chemistry letters,2011,21(21):6482-6484.
    [137] Lee CW, Na Y, Park NH, et al. Amentoflavone inhibits UVB-induced matrixmetalloproteinase-1expression through the modulation of AP-1components innormal human fibroblast[J]. Applied biochemistry and biotechnology,2012,166(5):1137-1147.
    [138] Thapa A, Woo ER, Chi EY, et al. Biflavonoids are superior to monoflavonoidsin inhibiting amyloid-β toxicity and fibrillogenesis via accumulation ofnontoxic oligomer-like structures[J]. Biochemistry.2011,50(13):2445-55.
    [139] smail O. Ishola, Santoshkumar Tota, Olufunmilayo O. Adeyemi, et al.Protective effect of Cnestis ferruginea and its active constituent onscopolamine-induced memory impairment in mice: A behavioral andbiochemical study[J]. Pharmaceutical biology.2013,51(7):825-835.
    [140]郑晓珂,苏成福,张莉,等.卷柏中穗花杉双黄酮降血糖作用研究[J].中国实验方剂学杂志,2013,19(17):181-186.
    [141] MinKyun NA, Kyung Ah KIM, Hyuncheol OH, et al. Protein TyrosinePhosphatase1B Inhibitory Activity of Amentoflavone and Its Cellular Effect onTyrosine Phosphorylation of Insulin Receptors[J]. Biological&pharmaceuticalbulletin.2007,30(2):379-381.
    [142] Ishola IO, Chatterjee M, Tota S, et al. Antidepressant and anxiolytic effects ofamentoflavone isolated from Cnestis ferruginea in mice[J]. Pharmacology,biochemistry, and behavior,2012,103(2):322-331.
    [143] Prasad J, Shrivastava A, Khanna AK, et al. Antidyslipidemic and antioxidantactivity of the constituents isolated from the leaves of Calophylluminophyllum[J]. Phytomedicine,2012,19(14):1245-1249.
    [144] Tamara Regina CALVO, Zeila Pinheiro LIMA, Janaina Scaramelo SILVA, et al.Constituents and Antiulcer Effect of Alchornea glandulosa: Activation of CellProliferation in Gastric Mucosa during the Healing Process[J]. Biological&pharmaceutical bulletin.2007,30(3)451-459.
    [145] Park D, Yang YH, Bae DK, et al. Improvement of cognitive function andphysical activity of aging mice by human neural stem cells over-expressingcholine acetyltransferase[J]. Neurobiology of aging,2013,34(11):2639-2646.
    [146]李斌,郭德玉,李林.三种老年痴呆动物模型行为学比较[J].中国实验动物学报,1999,7(1):40-45.
    [147]徐建民,俞海燕.不同剂量的东莨菪碱对大鼠学习记忆能力的影响[J].苏州大学学报(医学版),2006,26(1):53-54.
    [148]翟泽玲,颜勇,商亚珍.灯盏花素对小鼠化学性记忆障碍的改善作用[J].中国生化药物杂志,2012,33(1):61-63.
    [149] Draganski B, Lutti A, Kherif F. Impact of brain aging and neurodegeneration oncognition: evidence from MRI[J]. Current opinion in neurology,2013,26(6):640-645.
    [150] Lu J, Zheng YL, Wu DM, et al. Ursolic acid ameliorates cognition deficits andattenuates oxidative damage in the brain of senescent mice induced byD-galactose[J]. Biochemical pharmacology,2007,4(7):1078-1090.
    [151] Kwon DH, Kim BS, Chang H, et al. Exercise ameliorates cognition impairmentdue to restraint stress-induced oxidative insult and reduced BDNF level[J].Biochemical and biophysical research communications,2013,434(2):245-251.
    [152]贾健民,贾健平,贾丽,等.老年鼠海马自由基与学习记忆关系的研究[J].中华医学杂志,2003,83(9):96-98.
    [153] Siu PM,Wang Y,Alway SE. Apoptotic signaling induced by H2O2-mediatedoxidative stress in differentiated C2C12myotubes[J]. Life sciences,2009,84(13-14):468-481.
    [154] Wang YK,Hong YJ,Wei M,et al. Curculigoside attenuates human umbilicalvein endothelial cell injury induced by H2O2[J]. Journal of Ethnopharmacology,2010,132(1):233-239.
    [155]龙石银,黄良珠,乔新惠,等.二苯乙烯苷对过氧化氢诱导内皮细胞凋亡的影响[J].中国动脉硬化杂志,2011,19(3):181-186.
    [156] Kim D, Su J, Cotman CW. Sequence of neurodegeneration and accumulation ofphosphorylated tau in cultured neurons after okadaic acid treatment[J]. BrainResearch,1999,839(2):253-262.
    [157] Cong CX, Shaikh S, Wang JZ, et al. Phosphatase activity toward abnormallyphosphorylation tau decrease in Alzheimer disease brain[J]. Journal ofneurochemistry,1995,65(2):732-738.
    [158]郑观成.脑老化与老年痴呆第二卷[M]:脑老化科学.上海:复旦大学出版社,2008:208.
    [159] Kundu A, Bayya A. Speech Recognition Using Bybrid Hidden Markov Modeland NN Classifier[J]. International Journal of Speech Technology,1998,2(3):227-240.
    [160] B hm HJ, Klebe G. What can we learn from molecular recognition inprotein-ligand complexes for the design of new drugs?[J]. Angewandte Chemie(International ed. in English),1996,35(22):2588-2614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700