等离子堆焊镍基合金的组织及其磨损性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基合金熔点低,流动性好,具有良好的耐磨、耐腐蚀、耐热和抗氧化等综合性能,并且成本较钴基低廉。为了提高核泵不锈钢的耐磨性能,采用等离子弧堆焊的方法,在不锈钢表面堆焊一层具有优良性能的镍基合金,既能发挥该合金的优良性能,又节约贵重金属。
     利用金相显微镜、电子探针、XRD衍射仪、荧光光谱分析仪、扫描电镜以及显微硬度计,对镍基合金涂层的显微组织及硬度进行分析。使用MMS-2A型微机控制磨损磨损试验机,对堆焊层的摩擦磨损性能进行了研究,同时利用扫描电镜,对磨损形貌进行观察,研究其磨损机理。同时研究了堆焊电流对镍基合金堆焊层组织、硬度及耐磨性能的影响,还研究了不同镍基合金粉末等离子堆焊层的显微组织、硬度和耐磨性。
     结果表明镍基合金堆焊层显微组织随着距熔合线距离而变化,堆焊层由y-Ni基体和多种形态的析出相组成,析出相有CrB、M23(C,B)6、Cr7C3、Cr583、Ni3Si。显微硬度随着距熔合线的距离而变化,中间层硬度较低。研究了多种磨损工艺参数对摩擦磨损性能的影响:随着载荷的增加,磨损量逐渐增加,摩擦系数下降;随着转速的增加,磨损量先降低后增加,而摩擦系数降低;随着磨损时间的增加,磨损量逐渐增加,而磨损率降低,平均摩擦系数降低;同时还研究了粗糙度对堆焊层摩擦磨损性能的影响,粗糙度降低时,磨损量先降低后升高。磨损机制是以粘着磨损、磨粒磨损、氧化磨损还有疲劳现象的综合磨损机制。
     堆焊电流对镍基合金涂层的组织性能影响都很大,电流太低,成型性不好;电流太高,出现烧蚀现象,性能急剧下降。140A电流下的堆焊层,组织杂乱,190A电流下堆焊层组织较粗大,160A电流下,成型性好,组织小均匀,堆焊层性能最优,硬度最高,并且耐磨性最好。
     镍基合金粉末成分含量的不同,得到的堆焊层组织和性能差别很大。Ni40A合金堆焊层以树枝晶和晶间析出相组成;Ni50A合金堆焊层树枝晶较少,析出相形态多样;Ni60A合金堆焊层在γ-Ni基体上均匀地分布着大量的硼化物和碳化物强化相。Ni60A合金堆焊层显微硬度最高、耐磨性最好;Ni40A合金堆焊层硬度最低、耐磨性最差。
The Ni-based alloy have many advantages, such as a lower melting point, good liquidity, abrasive resistance, corrosion resistance, oxidative resistance. Meanwhile, the cost is lower than that of Co-based alloy. In order to improve the abrasive resistance of stainless steel used in nuclear pump, the Ni-based alloy is deposited on the surface of stainless steel by plasma tranferred arc welding. It not only make the best of excellent performance of Ni-based alloy, but also save the precious metals.
     The coating of the Ni-based alloy was charaterized by metalloscope, electron probe, X-ray diffractometer, fluorescence spectrum analyzer, scanning electron microscope, and microhardness tester. The friction and wear properties were investigated on the MMS-2A friction-wear testing machine. The scanning electron microscope was used for wear surface morphology, which was intended for analysing the wear mechanism. Besides, the influence of welding current and different alloy powder for the microstrcture, microhardness, and wear resistance were researched.
     The results indicate that the microstructure morphology of the Ni-based alloy coating varied with the distance from the fusion line. The coating consisted of y-Ni matrix and the other precipitates, such as CrB, M23(C,B)6,Cr7C3, Cr5B3, and Ni3Si. The microhardness varied with the distance from the fusion line and the hardness of the middle layer was lower than the other area. The effect of wear technological parameter on friction and wear properties were investigated. With the increase of the load, the wear weight and the friction coefficient decreased. With the increase of the revolving speed, the friction coefficient decreased and the wear weight decreased firstly and increased subsequently. With the increase of the time, the wear weight increased, but the wear rate and the average frction coefficient reduced. When the roughness was reduced, the wear weight decreased firstly and increased subsequently. The wear mechanism included to adhesive wear, abrasive wear, oxidation wear, and fatigue.
     The influence of welding current on microstructure and properties was significantly. When the current was lower, the forming performance was poor. When the current was high, the coating ablator appeared and the properties dropped rapidly. The microstructure was mess under the current of140A and that was coarse under190A. When the welding current was160A, the coating had good forming performance, fine microstructure, the highest hardness, and the excellent wear resistance.
     The microstructure and properties of coating were influenced by the element content of Ni-based alloy powder. The microstructure of Ni40A alloy coating, which consisted of dendrite and intercrystalline precipitates, had the lowest hardness and the worst wear resistance. The dendrite was fewer and morphology was diverse of Ni50A alloy coating. A amount of borides and carbides distributed on y-Ni matrix of Ni60A alloy coating, which had the highest hardness and excellent wear resistance.
引文
[1]布尚B.摩擦学导论[M].北京:机械工业出版社,2006.
    [2]DOWSON D. History of tribology[M]. London:Instn Mech. engrs,1998.
    [3]金静静.CuNiMnFe合金的性能测试及组织分析[D].西安:西安理工大学,2008.
    [4]DAVIDSON C S C. Bearings since the stone age[J]. Engineering.1957,183:2-5.
    [5]韩明.纳米氧化铝改性聚四氟乙烯的摩擦磨损性能研究[D].洛阳:河南科技大学,2010.
    [6]BHUSHAN B. Tribology and mechanics of magnetic storage devies[M]. New York: Springer-Verlag,1996.
    [7]徐滨士,刘家浚,马世宁.表面失效分析、预防与表面工程[J].设备管理与维修.1993(6):8-10.
    [8]屈晓斌,陈建敏,周惠娣,等.材料的磨损失效及其预防研究现状与发展趋势[J].摩擦学学报.1999(2):92-97.
    [9]尉言辉.304L不锈钢及其镍基合金堆焊层摩擦学特性研究[D].大连:大连理工大学,2011.
    [10]刘虹志TZ3Y20A-SrSO_4陶瓷基复合材料的制备及摩擦学性能[D].哈尔滨:哈尔滨工业大学,2008.
    [11]朱朋建.Cr-Al-N、Cr-Mo-N复合膜及CrN/Mo_2N纳米多层膜的制备与性能研究[D].镇江:江苏科技大学,2011.
    [12]谢祖飞.载荷对GCr15、304不锈钢、SE NiTi和SME NiTi合金摩擦机制转变的影响研究[D].西安:西南交通大学,2009.
    [13]鲍登F.P.,泰伯D.固体的摩擦与润滑续篇[M].北京:机械工业出版社,1986.
    [14]RIGNEY D A, HIRTH J P. Plastic deformation and sliding friction of metals[J]. Wear. 1979,53(2):345-370.
    [15]SAMUELS B, WILKS J. The friction of diamond sliding on diamond [J]. Journal of Materials Science.1988,23:2846-2864.
    [16]张永振等.材料的干摩擦学[M].北京:科学出版社,2007.
    [17]ARCHARD J F. Contact and rubbing of flat surfaces [J]. Journal of Applied Physics.1953, 24:981-988.
    [18]杨文进.纳米Si<,3>N<,4>增强PA66复合材料的力学和摩擦学性能研究[D].中国科学院金属研究所,2007.
    [19]BHUSHAN B, DAVIS R E, Kolar H R. Metallurgical re-examination of wear modes II:adhesive and abrasive[J]. Thin Solid Films.1985,123(2):113-126.
    [20]周兴华.模具钢表面制备金属陶瓷覆层的组织性能研究[D].武汉:武汉理工大学,2009.
    [21]LAWN B R, MARSHALL D B. Hardness, toughness, and Brittleness:an indentation analysis[J]. Journal Of The American Ceramic Society.1979,62:347-350.
    [22]蒙秋红.挖掘机典型摩擦副磨损控制技术研究与应用[D].武汉:华中科技大学,2004.
    [23]刘长军.镍基堆焊合金在逆变交流纵向磁控下组织性能的研究[D].沈阳:沈阳工业大学,2005.
    [24]邓元江.阀门等离子弧自动堆焊控制系统的研制[D].成都:西南交通大学,2008.
    [25]唐景富.堆焊技术及实例[M].北京:机械工业出版社,2010.
    [26]王娟.表面堆焊与热喷涂技术[M].北京:化学工业出版社,2004.
    [27]徐滨士,刘世参等.表面工程[M].北京:机械工业出版社,2000.
    [28]XU G, KUTSUNA M, LIU Z, et al. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes [J]. Materials Science & Engineering A.2006,417: 63-72.
    [29]GURUMOORTHY K, KAMARAJ M, RAO K P, et al. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy [J]. Materials Science and Engineering A.2007, 456:11-19.
    [30]SUDHA C, SHANKAR P, RAO R V S, et al. Microchemical and microstructural studies in a PTA weld overlay of Ni-Cr-Si-B alloy on AISI 304L stainless steel [J]. Surface & Coatings Technology.2008,202:2103-2112.
    [31]HUANG Z, HOU Q, WANG P. Microstructure and properties of Cr3C2-modified nickel-based alloy coating deposited by plasma transferred arc process[J]. Surface & Coatings Technology.2008,202:2993-2999.
    [32]HOU Q Y, HUANG Z Y, SHI N, et al. Effects of molybdenum on the microstructure and wear resistance of nickel-based hardfacing alloys investigated using rietveld method[J]. Journal Of Materials Processing Technology.2009,209:2767-2772.
    [33]HOU Q Y, HE Y Z, ZHANG Q A, et al. Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process[J]. Materials & Design.2007,28:1982-1987.
    [34]ZHANG Z, WANG Z, LIANG B. Wear characterization of thermal spray welded Ni-Cr-B-Si-RE alloy coatings[J]. Journal Of Materials Processing Technology.2009,209: 1368-1374.
    [35]FERNANDES F, LOPES B, CAVALEIRO A, et al. Effect of arc current on microstructure and wear characteristics of a Ni-based coating deposited by PTA on gray cast iron[J]. Surface & Coatings Technology.2011,205:4094-4106.
    [36]ZHAO W, LIU L. Structural characterization of Ni-based superalloy manufactured by plasma transferred arc-assisted deposition[J]. Surface & Coatings Technology.2006, 201:1783-1787.
    [37]OCKEN H. The galling wear resistance of new iron-base hardfacing alloys:a comparison with established cobalt-and nickel-base alloys[J]. Surface and Coatings Technology. 1995,76-77, Part 2:456-461.
    [38]PERSSON D H E, JACOBSON S, HOGMARK S. Effect of temperature on friction and galling of laser processed Norem 02 and Stellite 21 [J]. Wear.2003,255(1-6):498-503.
    [39]COCKERAM B V, WILSON W L. The hardness, adhesion and wear resistance of coatings developed for cobalt-base alloys[J]. Surface and Coatings Technology.2001,139(2-3):161-182.
    [40]KESAVAN D, KAMARAJ M. The Microstructure and high temperature wear performance of a nickel base hardfaced coating[J]. Surface and Coatings Technology.2010,204(24): 4034-4043.
    [41]FIORES J F, NEVILLE A, KAPUR N, et al. An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs[J]. Wear.2009,267(1-4):213-222.
    [42]DAS C R, ALBERT S K, BHADURI A K, et al. A novel procedure for fabrication of wear-resistant bushes for high-temperature application[J]. Journal of Materials Processing Technology.2003,141(1):60-66.
    [43]QI W X, TU J P, LIU F, et al. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy [J]. Materials Science and Engineering:A.2003,343(1-2):89-96.
    [44]张延良,周军,邓建新,等.偶件表面粗糙度对PTFE密封材料摩擦磨损性能的影响[J].润滑与密封.2011(6):69-72.
    [45]刘洪涛,靳晶,曹守范,等.干摩擦磨损过程中表面粗糙度的定量描述[J].材料研究学报.2011(5):483-488.
    [46]FENLAN L, WENYAN T, HAIFENG D, et al. New development in research of non-contact surface roughness measurement [J]. Laser & Infrared.2007,37(6):498.
    [47]KRISHNAVENI K, SANKARA NARAYANAN T S N, SESHADRI S K. Electroless Ni-B coatings: preparation and evaluation of hardness and wear resistance[J]. Surface and Coatings Technology.2005,190(1):115-121.
    [48]康建东,苏允海.堆焊电流对Fe5堆焊层组织和力学性能的影响[J].热加工工艺.2011(9):120-121.
    [49]NAVAS C, COLACO R, DE Damborenea J, et al. Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings[J]. Surface & Coatings Technology.2006,200: 6854-6862.
    [50]LI Q, ZHANG D, LEI T, et al. Comparison of laser-clad and furnace-melted Ni-based alloy microstructures[J]. Surface & Coatings Technology.2001,137:122-135.
    [51]LIYANAGE T, FISHER G, GERLICH A P. Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW)[J]. Surface & Coatings Technology.2010,205:759-765.
    [52]CHAO M, LIANG E. Effect of Ti02-doping on the microstructure and the wear properties of laser-clad nickel-based coatings[J]. Surface & Coatings Technology.2004,179: 265-271.
    [53]DARABARA M, PAPADIMITRIOU G D, BOURITHIS L. Tribological evaluation of Fe-B-TiB2 metal matrix composites[J]. Surface & Coatings Technology.2007,202:246-253.
    [54]何祥明,刘秀波,杨茂盛,等.奥氏体不锈钢激光熔覆镍基复合涂层高温磨损行为[J].中国激光.2011(9):85-90.
    [55]李志,曲敬信,赵振业,等.镍基合金涂层滑动磨损过程中磨屑的演变机理[J].润滑与密封.2003(3):48-49.
    [56]STOTT F H. High-temperature sliding wear of metals[J]. Tribology International.2002, 35:489-495.
    [57]KESAVAN D, KAMARAJ M. The microstructure and high temperature wear performance of a nickel base hardfaced coat ing [J]. Surface & Coatings Technology.2010,204:4034-4043.
    [58]D OLIVEIRA A S C M, PAREDES R S C, SANTOS R L C. Pulsed current plasma transferred arc hardfacing[J]. Journal of Materials Processing Technology.2006,171(2):167-174.
    [59]BEAURIN G, MATHIEU J, GAUTHIER E, et al. Microstructural and mechanical properties evolutions of plasma transferred arc deposited Norem02 hardfacing alloy at high temperature[J]. Materials Science and Engineering:A.2011,528(15):5096-5105.
    [60]葛言柳,邓德伟,田鑫,等.焊接参数对Ni60合金等离子堆焊层组织结构和显微硬度的影响[J].中国表面工程.2011(5):26-31.
    [61]李潇一,罗震,步贤政,等.A1203陶瓷与金属镍的活性钎焊研究[J].材料工程.2008(9):32-35.
    [62]付坤,郑振太,步贤政,等.Inconel 601 Ni基合金的焊接工艺性分析[J].焊接技术.2010(1):23-25.
    [63]戎磊.激光熔覆碳化钨颗粒增强镍基合金梯度涂层的研究[D].上海:上海交通大学,2011.
    [64]王文丽,晁明举,王东升,等.原位生成TaC颗粒增强镍基激光熔覆层[J].中国激光.2007(2):277-282.
    [65]魏鑫.45钢表面感应熔覆Ni60涂层及WC-Ni60复合涂层的研究[D].大连:大连理工大学,2010.
    [66]SONG W, YANG G, LU J, et al. Microstructure and wear behaviour of Ni-based surface coating on copper substrate [J]. Wear.2007,262(7-8):868-875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700