用户名: 密码: 验证码:
激光熔覆碳化钨颗粒增强镍基合金梯度涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用激光熔覆技术制备的WC颗粒增强Ni基合金涂层以优良的耐磨性能在当前得到了广泛应用。然而Ni基合金与WC硬质相之间存在较大的性能差异,WC容易沉积于结合界面,出现应力集中并产生裂纹等问题。制备WC含量从表面至界面呈梯度分布的Ni/WC复合涂层,则可以较大地缓解热应力,有效解决涂层裂纹问题,并获得优异的力学性能。
     本文主要研究利用多层叠加激光熔覆制备WC颗粒增强Ni基合金梯度涂层。通过优化激光熔覆工艺得到良好的涂层成形效果,并利用预热措施有效解决裂纹问题,同时观察分析涂层的微观组织,测试其力学性能,最终得到性能优异的WC颗粒增强Ni基合金梯度涂层。
     研究结果表明,单道熔覆过程中,随WC含量增加,熔覆层的稀释率逐渐增大,熔覆层上部γ-Ni枝晶先粗化后变细,熔覆层下部的γ-Ni枝晶组织由于稀释率增加而持续增多。不同WC含量的单道熔覆层中,WC溶解形成的碳化物析出后分别以树枝状、块状与粒状等形态存在。单道熔覆层平均硬度随WC含量的增加而增加,当WC质量分数增加到30%时,熔覆层平均硬度可达到基体的4.3倍。对基板采取350℃预热可取得比较理想的熔覆效果,与未预热时相比,350℃预热条件下Deloro60搭接熔覆涂层裂纹完全消除,且熔覆层硬度下降的程度很有限,可作为制备梯度涂层一个良好的基础。在此基础上制备的WC颗粒增强Ni基合金梯度涂层的微观组织主要由γ-Ni枝晶,γ-Ni、Ni_3B、Ni_3Si等组成的多元共晶及弥散分布的M_6C、M_(23)C_6、M_7C_3、Cr_B等强化相构成。Ni/WC梯度涂层中从下往上随WC含量增加而形成的强化相数量逐渐增多,种类也呈现出有层次的分布,γ-Ni枝晶则逐渐减少。Ni/WC梯度涂层的显微硬度从界面到表面连续增大,表面最高硬度可达到1400 HV,约为基体硬度的8倍。各梯度亚层的显微硬度均高于相应成分的单道熔覆涂层,整个梯度涂层平均显微硬度达960 HV,约为基体硬度的5.6倍。摩擦磨损试验结果显示,Ni/WC梯度涂层表面的耐磨性可达到CCS-B基材的3.8倍,显示了优异的耐磨性能。
Laser cladded Ni-based alloy coating reinforced by WC particles has broad application due to its excellent wear-resistant property. But because of many differences of the property between Ni-based alloy and WC particle, WC particles incline to deposit on the interface, which is apt to bring on stress concentration and form crack. If the Ni-based alloy gradient coating reinforced by WC particles in which the content of WC distributes gradiently from surface to interface is produced, it will relax the thermal stress greatly so that to eliminate the crack of coating and gain excellent mechanical property.
     This article is about producing Ni-based alloy gradient coatings reinforced by WC particles through multilayer laser cladding. The main content is to optimize laser cladding technics to gain the good formation of coating, eliminate the crack of coating through preheating, analyze the microstructure of coating, test the mechanical property of coating and finally produce Ni-based alloy gradient coating reinforced by WC particles with excellent property.
     The result of the research goes as follows. In the process of single track laser cladding Ni-based WC composite coatings, with the increasing content of WC particles, the dilution rate of cladding layer increases,γ- Ni dendrites in the top of cladding layers first coarsen then refine, and dendrites in the bottom of cladding layers coarsen steadily. In the single track laser cladding layers with different WC content, WC particles dissolve and react with surrounding elements to form different carbides, which exist in the shape of branch, block and grain. The average hardness of cladding layers increases with the adding of WC. When the weight percent of WC increases to 30%, the hardness of cladding layers is four point three times of the substrate. It can get good cladding effect through preheating the substrate under 350℃. Compared with no preheating, the crack of Deloro60 overlap cladding layer can be eliminated completely and the reduction of cladding layer hardness is little under 350℃preheating, so it is a good base of gradient coating. The phase of gradient coating produced based on Deloro60 overlap coating mainly containsγ-Ni branch, eutectic includedγ-Ni、Ni_3B、Ni_3Si and dispersed hard phase included M_6C、M_(23)C)6、M_7C_3、CrB and so on. With the increasing of WC content in the gradient coating, there are more hard phases whose kinds are also different because of the dissolution of WC, and the quantity ofγ-Ni dendrites decrease. The microhardness of Ni/WC gradient coating increases continuously from interface to the surface, and the highest hardness of surface can reach 1400 HV, which is about eight times of the substrate. The microhardness of every inferior layer are higher than the single track cladding layer with the same component. The average microhardness of gradient coating is about 960 HV, which is about five point six times of the substrate. The wear testing shows that the wear- resistant property of Ni/WC gradient coating is about three point eight times of the CCS-B substrate, which shows excellent wear- resistant property of Ni/WC gradient coating.
引文
[1]刘政军,冯丽峰,成明华,苏允海.材料表面改性技术原理简析[J].现代焊接,2008(8):21-25.
    [2]王显彬.激光表面改性技术的应用及发展[J].汽车工艺与材料, 2007(10),26-28.
    [3]黄尚猛.激光熔覆技术防开裂对策探讨[J].装备制造技术, 2007(11):126-127.
    [4]居毅,郭邵义,李宗全.金属表面激光合金化及熔覆处理的研究进展[J].材料科学与工程, 2002(01): 143-145.
    [5]余菊美.铁基合金激光熔覆层质量与性能改善的研究[D].郑州:郑州大学, 2004.
    [6]李养良,金海霞,白小波等.激光熔覆技术的研究现状与发展趋势[J]. 2009,30(4):1-5.
    [7]李慧玲,曾晓雁.激光微细熔覆快速原型制造厚膜电感元件. 2006,25(8): 46-48.
    [8]李春彦,张松,康煜平等.综述激光熔覆材料的若干问题[J].激光杂志, 2002, 23(3): 5-9.
    [9]戴达煌,周克崧,袁镇海等.现代材料表面技术科学[M].北京:冶金工业出版社,2004.
    [10]董世运,马运哲,徐滨士等.激光熔覆材料研究现状[J].材料导报, 2006, 20(6): 5-9.
    [11] Sorin]gnat, Pierre Sallamand. MoSi2 laser cladding—elaboration, characterisation and addition of non-stabilized ZrO2 powder particles [J].Intermetallics, 2003, 11(9):931-938.
    [12]陈大明.模具钢表面激光熔覆硬面合金层改性的研究[J].金属热处理,1998 (1):26.
    [13]王昆林.用激光重熔法提高铝合金的耐磨性[J].金属热处理,1994(10):3-5.
    [14]胡木林,谢长生,王爱华.激光熔覆材料相容性的研究进展[J].金属热处理,2001(1): 1-8.
    [15]曾晓雁,陶曾毅,朱蓓蒂等.激光制备金属陶瓷复合涂层技术的现状与展望[J].材料科学与工程, 1995, 13(4): 8-14.
    [16]余菊美,冯向华,梁二军等.多道搭接对激光熔覆层组织及硬度的影响[J].激光杂志,2007,28 (5): 65.
    [17]邱星武,李刚,邱玲.激光熔覆技术的发展现状[J].热处理技术与装备,2009,30(6):6-8.
    [18]李春彦,陈传中.综述材料的若干问题[J].激光杂志,2002,23(3):5-9.
    [19] Miller J. E. ,Wineman J. A. Cladding of Ni-Cr-B-Si coating with a high power diode laser[J]. Metal progress, 1997(111): 38-42.
    [20]陈浩.激光熔覆耐磨涂层的研究进展[J].金属热处理,2002,27(9):5-8.
    [21]邱星武.激光熔覆技术[J].热处理技术与装备, 2010, 31(2): 37-41.
    [22] HIRA L, CHEN L. Recent and prospective development of functionally graded materials in Japan[J]. Mater Science Forum,1999,308-311:509-514.
    [23] JASIM KM, RAWLINGS R D, WEST D R F. Metal-ceramic functionally gradient materials produced by laser processing[J]. Journal of Mater Science, 1993,28 (10):2820-2826.
    [24]杨森,赵金兰,杨欣.激光熔覆制备梯度功能涂层的研究现状.激光技术, 2007, 31(2): 220-224.
    [25]邱星武,李刚,邱玲.激光熔覆技术发展现状及展望[J].稀有金属与硬质合金, 2008, 36(3): 54-57.
    [26]邱星武.Ni基大面积激光熔覆涂层制备工艺及组织性能研究[D].辽宁:辽宁工程技术大学,2008:7-8.
    [27]祝柏林,胡木林,陈俐等.激光熔覆层开裂问题的研究现状[J].金属热处理,2000, 25 (7): 1-4.
    [28]陈静,林鑫,王涛等. 316不锈钢激光快速成形过程中熔覆层的热裂机理[J].稀有金属材料与工程, 2003, 32(3): 183.
    [29]刘其斌,李绍杰.航空发动机叶片铸造缺陷激光熔覆修复的研究[J].金属热处理, 2006, 31(3): 52-55.
    [30] CHEN Ch Zh, CAO H H, LEI T Q et al. Structure and properties of laser cladded Al2O3- CoCrAlY composite ceramic coatings on W18Cr4V steel[J]. Journal of the Chinese Ceramic Society, 1999, 27(4): 445-451.
    [31]尚丽鹃.激光熔覆中产生的问题及对策[J].金属科学与工艺, 1992, 119(2): 65-69.
    [32] Levcovici D T, Munteanu V, Levcovici S M, et al. Laser processing of MMC layers on a metal base [J]. Materials and Manufacturing Processes 1999, 14: 475-487.
    [33] Wu P, Zhou C Z, Tang X N. Microstructural characterization and wear behavior of laser cladded nickel?based and tungsten carbide composite coatings [J]. Surface and Coatings Technology 66 (2003) 84-88.
    [34]方志民,徐斌,蒋明安.激光熔覆Ni60和Ni60/SiC涂层磨损性能的研究[J].煤矿机械, 2007, 28 (2): 36-38.
    [35] Lou B Y, Chen Z, Bai W J, et al. Structure and erosion resistance of Ni60A/SiC coatting by laser cladding [J]. Transactions of Nonferrous Metals Society of China 2006, 16: 643-646.
    [36]陈彦宾,任振安.激光熔覆Cu/WCP复合涂层[J].焊接学报, 2002, 23(1): 19-22.
    [37]吴萍,姜恩永,赵慈,等.激光参数对Ni基熔覆层结构及耐磨性的影响[J].焊接学报, 2003, 24(2): 45-50.
    [38]刘喜明.镍基合金+WC激光熔覆层的显微组织形成机理及控制[J].应用激光, 2006, 26(5): 299-302.
    [39]张三川.激光熔覆WC颗粒增强涂层成形机理研究.成组技术与生产现代化, 2005, 26(1):56-58.
    [40]吴新伟,曾晓雁,朱蓓蒂等. WC金属陶瓷激光熔覆涂层的熔化烧损规律.金属学报, 1997, 32(12): 1282-1288.
    [41]曾晓雁,吴新伟,陶曾毅等.激光熔覆铸造WC-Ni基合金中WC颗粒的烧损机理与评估, 1997, 33(8): 864-868.
    [42] P. Wu, C.Z. Zhou, X.Z. Tang. Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings. Surface and Coatings Technology, 2003 (166): 84-88.
    [43] SI Song-hua, YUAN Xiao-min, LIU Yue-long et al. Effect of Laser Power on Microstructure and Wear Resistance of WCP-Ni Cermet Coating[J]. Journal of Iron and Steel Research, International, 2006, 13 (3) : 74-78.
    [44] Qian Ming, L.C.Lim, Z.D.Chen. Laser cladding of nickel-based hardfacing alloys[J]. Surface and Coatings Technology, 1998(106): 174-182.
    [45] J.M.Amado, M.J.Tobar, J.C.Alvarez. Laser cladding of tungsten carbides hardfacing alloys for the mining and mineral industry[J]. Applied Surface Science 2009(255): 5553-5556.
    [46] J.Przyby?owicz, J.Kusiński. Structure of laser cladded tungsten carbide composite coatings[J]. Journal of Materials Processing Technology, 2001(109): 154-160.
    [47]李龙富,张三川,彭楠等.激光熔覆WC颗粒增强复合涂层工艺与性能研究.中原工学院学报, 2008, 19(2): 5-7.
    [48]吴萍,周昌炽,唐西南.激光熔覆镍基合金和Ni/WC涂层的磨损特性[J].金属学报, 2002, 38(12): 1257-1260.
    [49] M..J. Tobar, C.álvarez, J.M. Amado et al. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel. Surface & Coatings Technology 2006 (200): 6313–6317.
    [50] Hui Wang, Weiming Xia, Yuansheng Jin. A study on abrasive resistance of Ni-based coatings with a WC hard phase. Wear 1996 (195): 47-52.
    [51]吴新伟,曾晓雁,朱蓓蒂等.激光熔覆Ni基WC合金组织与硬度变化规律[J].热加工工艺, 1997(3): 14-16.
    [52] S.W.Huang, M.Samandi, M.Brandt. Abrasive wear performance and microstructure of laser clad WC/Ni layers[J]. Wear, 2004(256): 1095–1105.
    [53]梁二军,梁会琴,晁明举等.三种形态WC对Ni60激光熔覆层的不同影响[J].激光杂志,2006,27(2):66-68.
    [54]徐采云,陈华辉,谌俊等.激光熔覆微-纳米WC复合涂层的干摩擦磨损性能[J].金属热处理, 2006(增刊): 146-148.
    [55] H.Chen, C.Xu, J.Qu et al. Sliding wear behaviour of laser clad coatings based upon a nickel-based self-fluxing alloy co-deposited with conventional and nanostructured tungsten carbide–cobalt hard metals[J]. Wear, 2005(259): 801–806.
    [56]曾晓雁,吴新伟,陶曾毅等.激光熔覆Ni-WC金属陶瓷层的耐磨性分析[J].金属学报, 1997, 33(8): 885-890.
    [57] Yongqiang Yang. Microstructure and properties of laser-clad high-temperature wear-resistant alloys[J]. Applied Surface Science, 1999 (140): 19–23.
    [58] Y.M. Zhang, M. Hida, A. Sakakibara et al. Effect of WC addition on microstructures of laser melted Ni-based alloy powder[J]. Surface and Coatings Technology, 2003 (169-170): 384–387.
    [59] A.Hidouci, J.M.Pelletier, F.Ducoin et al. Microstructural and mechanical characteristics of laser coatings[J]. Surface and Coatings Technology, 2000(123): 17–23.
    [60]李强,雷延权,张永忠等.激光熔覆(WC+W2C)p/Ni基合金复合涂层的微观结构特征[J].材料科学与工艺, 2002, 10(1): 5-10.
    [61] Peng-Zhu Wang, Jing-Xin Qu, He-Sheng Shao. Cemented carbide reinforced nickel-based alloy coating by laser cladding and the wear characteristics[J]. Materials & Design, 1996,17(5/6): 289-296.
    [62]杨胶溪,左铁钏,王喜兵等.激光熔覆WC/Ni基硬质合金组织结构及耐磨性能研究[J].应用激光, 2008, 28(6): 450-454.
    [63]王存山,夏元良,李钢等.宽带激光熔覆Ni60B+WC复合涂层的组织及性能[J].材料热处理学报, 2001, 22(2): 32-36.
    [64]周继烈,程耀东等. Ni基WC金属陶瓷激光熔覆开裂特性的试验研究[J].电加工与模具, 2003(4): 32-34.
    [65] Shengfeng Zhou, Xiaoyan Zeng, Qianwu Hu et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Applied Surface Science 2008(255): 1646-1653.
    [66]黄永俊,曾晓雁.激光感应复合熔覆镍基涂层的裂纹研究[J].应用激光, 2009, 29(2): 111-115.
    [67]刘其斌,王存山,夏元良.宽带激光熔覆铸造WCp/Ni基合金梯度复合涂层中WCp的溶解机理.材料热处理学报.2001, 22(3): 34-36.
    [68] P. Wu, H.M. Du, X.L. Chen et al. Influence of WC particle behavior on the wear resistanceproperties of Ni–WC composite coatings[J]. Wear 2004 (257): 142–147.
    [69]刘其斌,王存山,夏元良.宽带激光熔覆铸造WCp/Ni基合金梯度复合涂层的组织和性能[J].钢铁研究学报, 2001, 13(4): 53-57.
    [70]刘其斌,陈佳,王存山等.宽带激光熔覆WCp/Ni基合金梯度复合涂层的组织和耐磨性[J].钢铁冶金学报, 2002, 14(3): 56-59.
    [71]王存山,夏元良,李刚等.宽带激光熔覆Ni-WC梯度复合涂层组织与性能[J].应用激光, 2001, 21(3): 151-154.
    [72] T.T. Wong, G.Y. Liang, B.L. He et al. Wear resistance of laser-clad Ni-Cr-B-Si alloy on aluminium alloy[J]. Journal of Materials Processing Technology, 2000(100): 142-146.
    [73] L. St-Georges. Development and characterization of composite Ni–Cr +WC laser cladding[J]. Wear 2007(263): 562-566.
    [74] S.F. Zhou, Y.J. Huang, X.Y. Zeng. Effects of processing parameters on structure of Ni?based WC composite coatings during laser induction hybrid rapid cladding [J]. Applied Surface Science, 2009, 255: 8494-8500.
    [75]苏荣华,刘伟军,龙日升.不同基板预热温度对激光金属沉积成形过程热应力影响的研究[J].制造技术与机床,2009(4):78-83.
    [76]刘其斌,陈佳,王存山等.宽带激光熔覆铸造WCp /Ni基合金复合涂层结合界面组织特征[J].贵州工业大学学报, 2001, 30(1): 27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700