海参虫草复剂降血糖作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海参(sea cucumber)是具有较高食用和药用价值的海洋生物资源。化学分析及药理学研究表明,海参体壁富含海参多糖、海参皂苷和海参蛋白多肽等多种活性物质,具有抗肿瘤、抗氧化、降血压和提高免疫力等生物活性。蛹虫草(Cordyceps militaris)是目前冬虫夏草的最佳替代品,其含有的活性分包括虫草多糖、虫草酸和虫草素等,并证实具有增强免疫力、降血脂、抗氧化和降血糖等多种活性。目前已被列为我国的新资源食品。中医理论认为,海参性温补,蛹虫草味甘性平,二者组方合用,可增强生津养阴,益气温阳的功效。本论文利用腹腔注射链脲佐菌素(streptozotocin, STZ)的方法建立糖尿病大鼠模型,灌胃由日本刺参(Apostichopus japonicas)与蛹虫草配的复剂,研究海参虫草复剂的降血糖活性,并对其作用机制进行初步探讨。主要研究结果如下:
     海参虫草复剂具有显著的降血糖作用。糖尿病大鼠灌胃给予海参虫草复剂35d后,大鼠空腹血糖含量显著降低(P<0.01)。海参虫草复剂不但能显著提高大鼠的葡萄糖耐量(P<0.01),提高机体对葡萄糖的耐受力,还能显著提高大鼠血清胰岛素含量(P<0.01)、胰岛素分泌指数(P<0.01)和p细胞功能指数(P<0.05);增加肌、肝糖元的含量(P<0.01)。提示海参虫草复剂对糖尿病大鼠体内葡萄糖代谢具有较好的调控作用。海参虫草复剂显著地降低了糖化血红蛋白和糖化血清蛋白含量(P<0.01),表明海参虫草复剂能较好的控制糖尿病病情的发展。结果表明,海参虫草复剂良好的降血糖效果与其有效改善体内的葡萄糖代谢水平、控制病情恶化有关,并且海参虫草复剂的降血糖效果明显好于海参、蛹虫草单剂作用。
     海参虫草复剂具有提高抗氧化能力和保护胰岛p细胞的作用。海参虫草复剂能显著提高肝脏中SOD、CAT和GSH-Px酶的活力(P<0.01);高剂量海参虫草复剂能显著提高胰腺中CAT酶活力(P<0.01)。采用HE染色和透射电镜技术研究了海参虫草复剂对糖尿病大鼠胰腺组织的显微和亚显微结构的影响。结果表明:灌胃海参虫草复剂的糖尿病大鼠,其胰岛破坏程度减轻,形态恢复正常,胰岛p细胞的数量明显增多。电镜下可观察到β细胞结构与正常对照组接近,细胞界限清晰。细胞核呈圆形,核膜光滑;核仁清晰且染色质分布均匀;胞质内的细胞器结构肿胀程度较模型对照组明显减轻。提示海参虫草复剂能提高机体和胰腺的抗氧化能力,较好的保护了胰岛β细胞结构,使其结构完整,提高其合和分泌胰岛素的功能。
     利用RT-PCR和Western Blot的方法检测了糖尿病大鼠外周组织中胰岛素信号通路关键蛋白激酶和葡萄糖转运蛋白4(Glucose transporter4, Glut4)的mRNA及蛋白表达,并对其降血糖机制进行了探讨。结果表明:海参虫草复剂能提高肌肉和脂肪组织中磷脂酰肌醇-3-激酶(Phosphatidylinositol 3-kinase, PI3K)、蛋白激酶B(Protein kinase B, PKB/Akt)和Glut4的mRNA表达。肌肉组织中,海参虫草复剂低、高剂量组PI3K mRNA的表达量与模型对照组比较具有显著性差异(P<0.01);高剂量能明显提高Glut4 mRNA的表达。脂肪组织中,复剂高剂量组的PI3K mRNA表达量提高了42.86%,而复剂低、高剂量组Glut4的表达量平均提高了32.63%,相比于模型对照组均具有显著性差异(P<0.05,P<0.01)。另外,海参虫草复剂能增强糖尿病大鼠脂肪组织中Glut4的蛋白表达,呈现剂量效应关系。提示海参虫草复剂通过调节胰岛素信号通路,增强葡萄糖转运蛋白Glut4的表达,促进外周组织对葡萄糖的利用,达到降血糖的目的。
     本实验较为系统全面的评价了海参虫草复剂的降血糖活性,并对其机制进行了初步探讨。为海参虫草复剂的高值化开发利用提供了理论依据。
Sea cucumber belongs to the Holothuroidea in biological classification and is distributed throughout the world seas. It has been a traditional tonic food in China and other Asian countries due to its antitumor, immunoregulatory, antiatherosclerotic, and anti-aging properties. Nowadays, many studies show that the body wall of sea cucumber contains many bioactive substances, such as polysaccharides, collagen, triterpene glycosides and so on, which exhibit excellent effect of immunomodulatory, anti-oxidation, anti-tumor, and anti-hypertension. Cordyceps militaris is known as the Chinese rare caterpillar fungus, and it has been listed as a new source food in China since 2008. Its chemical components, including cordycepin, D-mannitol, and various polysaccharides are similar to the substances contained in famous Chinese traditional medicine C. sinensis. The efficacy of C. militaris was confirmed in the treatment of cardiovascular and renal dysfunction, in immune enhancement and in the anti-hyperlipidemia effect. Use the mixture of sea cucumber and C. militaris may enhance the effect on some diseases.
     The aim of this study is to investigate the hypoglycemia effect of the mixture of Apostichopus japonicas and C. sinensis on diabetic rats, which were established by intraperitoneal injection of streptozotocin (STZ), and to discuss the mechanism involved in this effect. The major results are as follows:
     The mixture exhibit a significant hypoglycemia effect on STZ-induced diabetic rats. With mixture treated 35 days, a dramatic decrease in fasting blood level was observed in both low and high dosage groups (P<0.01), and the glucose tolerance was improved. The mixture can increase serum insulin contents (P<0.01), insulin secretion index (P<0.01) andβ-cell function index (P<0.01); moreover, it can improve the contents of muscle glycogen and liver glycogen notably (P<0.01). Meanwhile, the contents of glycosylated hemoglobin and glycosylated serum protein were significantly decreased by this mixture (P<0.05, P<0.01). These results suggested that the mixture of A. japonicus and C. militaris could improve the glucose metabolism level and have a better hypoglycemic effect on diabetic rats, and the effect in mixture groups are more better than that in A. japonicas or C. militaris.
     The mixture can prevent the damage of oxidation stress by enhance the ability of antioxidation. The results showed that the antioxidase activities of Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GSH-Px) in liver were improved obviously in both low and high dosage groups (P<0.01). The mixture can also increase the activity of CAT in pancreas (P<0.01). The protect effect of the mixture on islet of diabetic rats was observed using the method of hematoxylin-eosin stain and transmission electron microscope. In the groups treated with the mixture, the number ofβcells of islet was increased in comparision to the model group, and the degree of oxidation damage was reverted to a normal level. The observation of transmission electron microscope showed that, the nucleus architecture in mixture group are remarkably reverted to a normal status, and the membrane of nucleus was smooth, nucleolus and chromatins were clear. Only a slightly swelling in mitochondrion and granular endoplasmic was observed in the group of the mixture. All the results indicated that mixture of A. japonicas and C.militaris can enhance the ability of anti-oxidation of the body and the pancreas to protect theβcells, keep the normal morphology of cells, and improve the function of synthesis and secret insulin.
     The investigation of hypoglycemia mechanisms of the mixture were conducted by RT-PCR and Western Blot. The mRNA and protein expression levels of phosphatidylinositol 3-kinase (PI3K), serine-threonine kinases (Akt) and glucose transporter 4 (Glut4) in skeletal muscle and adipose tissues were examined. The results implied that this mixture could significantly increase the mRNA expressions of PI3K and Glut4 in skeletal muscle (P<0.01). In adipose tissues, PI3K expression levels of high dosage group was increased by 42.86%, and that of Glut4 in low and high group was average increased by 32.63% (P<0.05, P<0.01). The protein expression levels of Glut4 were also enhanced by the mixture in adipose tissue of low and high dosage group (P<0.01) and there exist a dosage-dependent relationship. Results suggest that the mixture of A. japonicas and C. militaris exhibits significant hypoglycemia activity through improvement of insulin signaling pathway by which enhance the glucose uptake and utilization in peripheral tissues and finally decreased the high glucose level in blood.
     In conclusion, the hypoglycemia effect of the mixture of A. japonicas and C. militaris may be related to its antioxidant bioactivity, and the mixture can upregulat the gene and protein expression of key protein kinases and Glut4 in skeletal muscle and adipose tissues, that may be one of the most important mechanism involved in this effect.
引文
[1]Wild S, Roglic G, Green A, et al. Global prevalence of diabetes:estimates for the year 2000 and projections of 2030[J]. Diabetes Care,2004,27(5):1047-1053.
    [2]Stewart CA, Horton R, Allcock RJ, et al. Complete MHC haplotype sequencing for common disease gene mapping[J]. Genome Res,2004,14(6):1176-1187.
    [3]裴紫艳,张立煌.病毒感染与自身免疫性糖尿病[J].国际流行病学传染病学杂志,2006,33(1):71-72.
    [4]Varela CR, Ellis R, Sgarbi G, et al. Characterization of the T-cell response to coxsackievirus b4:evidence that effector memory cells predominate in patients with type 1 diabetes[J]. Diabetes,2002,51(6):1745-1753.
    [5]Rackietan N, Rackietan ML, Nadkarni MR, et al. Studies on diabetogenic action of streptozotocin[J]. Cancer Chemotherapy Reports,1993,29:91-95.
    [6]Hainan C, Edward CC. Overexpression of metallothionein in pancreatic β-cells reduces streptozotocin-induced DNA damage and diabetes[J]. Diabetes,2001,50:2040-2046.
    [7]Wachlin G, Augsrein P, Schroder D, et al. IL-lbeta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction[J]. J Autoimmun,2003, 20(4):3030-312.
    [8]Overbergh L, D ecallonne B, Branisteanu DD, et al. Acute shock induced by antigen vaccination in NOD mice[J]. Diabetes,2003,52(2):335.
    [9]Eizirik DL, Darville MI. Beta-cell apoptosis and defense mechanisms:lessons from type 1 diabetes[J]. Diabetes,2001,50(1):64.
    [10]Lamhanmedi-Cherradi SE, Luan JJ, Eloy L, et al. Resistance of T cell to apoptosis in autoimmune deiabetic mice is increased early in life and is associated with dysregulated expression of Bcl-x[J]. Diabetologia,1998,41(1):178.
    [11]Costacou T, Mayer-Davis EJ. Nutrition and prevention of type 2 diabetes[J]. Annu Rev Nutr, 2003,23:147-170.
    [12]Moller DE, Flier JS. Insulin resistance, mechanisms, syddromes and implications[J]. N Engl. J Med,1991,325:938-948.
    [13]Picton SF, Flatt PR, Mcclenghan NH, et al. Differential acute and long term actions of succinic acid monomethyl ester exposure on insulin secreting BRAIN-BD11 cells[J]. Int J Exp. Diabetes Res,2001,2:19-27.
    [14]卢圆,王丽宏,王宁,等.伴胰岛素抵抗的糖尿病大鼠抗氧化能力测定及临床评价[J].中国药理学通报,2009,25(6):836-837.
    [15]Maritime AC, Sanders RA, Watkins JB, et al. Diabetes, oxidative stress, and antioxidant:a review[J]. J Biochem Mol Toxical,2003,17(1):24-38.
    [16]Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001,414(6865):813-820.
    [17]Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature,2000,404(6779):787-790.
    [18]Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes:role of vascular NAD(P)H oxidase[J]. J Am Soc Nephrol,2003,14:S227-232.
    [19]Mullarkey CJ, Edelstein D, Brownlee M, et al. Free radical generation by early glycation products:a mechanism for accelerated atherogenesis in diabetes[J]. Biochem Biophys Res Commun,1990,173:932.
    [20]Wautier MP, Chapey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE[J]. Am J Physiol Endocrinol Metab,2001,280: E685-694.
    [21]Kim WH, Lee JW, Gao B, et al. Synergistic activation of JNK/SAPK induced by TNF-alpha and IFN-gamma:apoptosis of pancreatic beta-cells via the p53 and ROS pathway[J]. Cell Signal,2005,17(12):1516-1532.
    [22]Chung SS, Ho EC, Lam KS, et al. Contribution of polyol pathway to diabetes-induced oxidative stress[J]. J Am Soc Nephrol.2003,14:S233-236.
    [23]Grankvist K, Marklund SL, Taljedal IB, et al. Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse[J]. Biochem J,1981,199(2):393-398
    [24]Tiedge M, Lortz S, Munday R, et al. Complementary action fo antioxidant enzymes in the protection of bioengineered insulin-producing RIN5F cells against the toxicity of reactive oxygen species[J]. Diabetes,1998,47:1578-1585.
    [25]Tiedge M, Lortz S, Drinkgern J, et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells[J]. Diabetes,1997,46(11): 1733-1742.
    [26]Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in beta-cells:type 2 diabetes, good radicals gone bad, and the glutathione connection[J]. Diabetes,2003,52:581-587.
    [27]Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress[J]. J Bio Chem,2001, 276:31099-31104.
    [28]Liu K, Paterson AJ, Chin E, et al. Glucose stimulated protein modification by O-linked GlcNAc in pancreatic β-cell:linkage of O-linked Nac to β cell death[J]. Pro Natl Acad Sci USA,2000,97:2820-2825.
    [29]Nakamura Udai, lwase Masanori, Uchizono Yuji, et al. Rapid intracellular acidification and cell death by H2O2 and alloxan in pancreatic beta cells[J]. Free Radic Biol Med,2006,40(11): 2047-2055.
    [30]Kaneto H,Kajimoto Y,Fujitani T,et al. Oxidative stress induces p21 expression in pancreatic islet cells:implication in beta-cell dysfunction[J]. Diabetologia,1999,42:1093-1097.
    [31]Kim Won Ho, Lee June Woo, Gao Bin, et al. Synergistic activation of JNK/SAPK induced by TNF-alpha and IFN-gamma:apoptosis of pancreatic beta-cells via the p53 and ROS pathway[J]. Cell Signal,2005,17(12):1516-1532.
    [32]Evans JL, Goldfine ID, Maddux BA, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction[J]. Diabetes,2003,52(1):1-8.
    [33]Paolisso G, Giugliano D. The need for a "free radical initiative" [J]. Diabetologia,1996,39: 357-363.
    [34]Tirosh A, Potashnik R, Bashan N, et al. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and Glut4 translocation[J]. J Biol Chem,1999,274:10595-10602.
    [35]Asahina T, Kashiwagi A, Nishio Y, et al. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high glucose medium[J]. Diabetes,1995,44:520-552.
    [36]Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways:a unifying hypothesis of type 2 diabetes[J]. Endocr Rev,2002,23:599-622.
    [37]Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in P-cells:type 2 diabetes, good radicals gone bad, and the glutathione connection[J]. Diabetes,2003,52:581-587.
    [38]Lortz S, Tiedge M. Sequential inactivation of reactive oxygen species by combined overexpression of SOD isoforms and catalase in insulin-producing cells[J]. Free Radic Biol Med,2003,34:683-688.
    [39]Kaneto H, Kajimoto Y, Miyagawa T, et al. Benificial effects of antioxidant in diabetes: possible protection of pancreatic beta-cell against toxicity [J]. Diabetes,1999,38(12): 2398-2406.
    [40]Takatori A, Ishii Y, Itagaki S, et al. Amelioration of the beta-cell dysfunction in diabetic APA hamsters by antioxidants and AGE inhibitor treatments[J]. Diabetes Metab Res Rev,2004, 20(3):211-218.
    [41]Ness AR, Khaw KT, Bingham S, et al. Plasma vitamin C:what does it measure[J]. Public Health Nutr,1999,2:51-54.
    [42]Crino A, Schiaffini R, Manfrini S, et al. A randomized trial of nicotinamide and vitamin E in children with recent onset type 1 diabetes[J]. Eur-J-Endocrinol,2004,150(5):719-724.
    [43]Paolisso G, Giugliano D, Pizza G, et al. Glutathinoe infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance[J]. Diabetes Care,1992,15: 1-7.
    [44]Wang CC, Goalstone ML, Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology[J]. Diabetes.2004,53:2735-2740.
    [45]Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids[J]. J Biol Chem 2003,13: 10297-10303.
    [46]Baron V, Kaliman P, Gautier N, et al. The insulin receptor acibation process involves localized conformational changes[J]. J Biol Chem 1992,267:23290-23294.
    [47]Ablooglu AJ, Kohanski RA. Activation of the insulin receptor's kinase domain changes the rate-determining step of substrate phosphorylation[J]. Biochemistry,2001,40:504-513.
    [48]Sabine U, Tilo M, Barbara L, et al. Isoform-specific insulin receptor signaling involved different plasma membrane domains[J]. The Journal of Cell Biology,2003,163(6): 1327-1338.
    [49]Jackerott M, Baudry A, Lamothe B, et al. Endocrine pancreas in insulin receptor-deficient mouse pups[J]. Diabetes,2001,50(Suppl):S146-149.
    [50]Otani K, Kulkarni RN, Baldwin AC, et al. Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice[J]. Am J Physiol Enobcrinol Metab,2004,286:41-49.
    [51]Zhang B, Roth RA. The insulin receptor-related receptor:tissue expression ligand binding specificity and signaling capabilities[J]. J Biol Chem 1992,267:18320-18328.
    [52]Ward CW, Garrett TP, Mckern NM, et al. Structure of the insulin receptor family:unexpected relationships with other proteins[J]. Today's Life Science,1999, II:26-32.
    [53]Kido Y, Burks DJ, Withers DJ, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1 and IRS-2[J]. J Clin Invest,2000,105(2):199-205.
    [54]张妍,袁莉.β细胞胰岛素受体信号系统与p细胞功能[J].国外医学内分泌学分册,2005,25(4):259-261.
    [55]Aspinwall CA, Qian WJ, Roper MG, et al. Roles of insulin receptor Substratel, phosphatidylinositol-3-kinase, and release of intracellular Ca+ Stores in insulin-stimulated insulin secretion in β-cells[J]. J Biol Chem,2000,275(29):22331-22338.
    [56]Linghr MK, Dickson LM, Wrede CE,et al. IRS-3 inhibits IRS-2 mediated signaling in pancreatic β-cells[J]. Mol Cell Endocrinol,2003,204:85-99.
    [57]Hennige AM, Burks DJ, Ozcan U, et al. Up regulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes[J]. J Clin Invest,2003,112(10):1521-1532.
    [58]秦胜花,夏宁.胰岛素受体和胰岛素受体底物2在胰岛p细胞中的作用[J].广西医科大学学报,2005,22(4):644-645.
    [59]Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models[J]. J Clin Invest,2000,106(4):459-465.
    [60]Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport[J]. J Biol Chem,1999,274(4):1865-1868.
    [61]Ogihara T, Shint BC, Anais M, et al. Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-2 via its association with phosphatidylinositol 3-Kinase in skeletal muscle cells[J]. J Bio Chem,1997,272(19):12868-12873.
    [62]Pirola L, Bonnafous S, Johnston AM, et al. Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells[J]. J Biol Chem, 2003,278(18):15641-15651.
    [63]Cantley LC. The phosphoinositide 3-Kinase pathway[J]. Science.2002,296(5573): 1655-1657.
    [64]Theberge JF, Mohamad Z. Mehdi, Sanjay K. Pandey, et al. Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK 1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor[J]. Archives of Biochemistry and Biophysics,2003,420:9-17.
    [65]Chi TC, Chen WP, Chi TL, et al. Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats[J]. Life Sciences,2007,80:17173-1720.
    [66]Le Marchand Brustel Y, Tanti JF, Cormont M, et al. From insulin receptor signaling to Glut4 translocation abnormalities in obesity and insulin resistance[J]. J Recept Signal Transduct Res,1999,19:217-228.
    [67]Ishizuka T, Miura A, Kajita K. Alteration in insulin-induced postreceptor signaling in adipocytes of the Otsuka Long-Evas Tokushima fatty rat strain[J]. J Endocrinol,1998, 156:1-13.
    [68]Manning BD, Newgard CB. AKT/PKB signaling:navigating downstream[J]. Cell.2007, (129):1261-1274.
    [69]Flink P, Wallace P, Brechtel G, et al. Evidence that glucose transport is rate limiting for in vivo glucose uptake[J]. Metabolism,1992,41(8):897-902.
    [70]Mueckler M, Hresko RC, Sato M. Structure, function and biosynthesis of GLUT1[J]. Biochem Soc Trans,1997,25:951-954.
    [71]Kanzaki M, Watson RT, Khan AH, et al. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L-1 adipocytes[J]. J Biol Chem,2001, 276:49331-49336.
    [72]Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity:reversal with intramyocellular fat depletion[J]. Diabetes,2002,51(1):144-151.
    [73]Wasson RT, Pessin J. Intracellular organization of insulin signaling and GLUT4 translocation[J]. Recent Prog Horm Res,2001,56:175-193.
    [74]Ahlem S, Khaled H, Wafa M, et al. Oral administration of Eucalyptus globulus extract resuces the alloxan-induced oxidative stress in rats[J]. Chemico-Biological Interactions,2009, 181:71-76.
    [75]Niskanen LK, Nyyssonen JT, Uisitupa MIJ. Plasma lipid peroxidation and hyperglycemia:a connection through hyperinsulinemia[J]. Diabetic Med,1995,12:802-808.
    [76]Maianu L, Keller SR, Garvey WT. Adipcytes exhibit abnormal subcellular diatribution and transloration of veieles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus:implications tegartling defects in vesicle tracking[J]. J Clin Endocrinol Melab,2001,86(11):5450-5456.
    [77]Tang ZS, Yuan L, Liu Y, et al. Effects of training on adiponectin and GLUT4 gene expression in type 2 diabetic rat[J]. China Journal of Modern Medicine,2005,15 (22):3439-3442.
    [78]Sameer M, Asia T, Bamezai R, et al. Modulation of glucose transporter (GLUT4) by vanadate and Trigonella in alloxan-diabetes rats[J]. Life Science,2006,78:820-824.
    [79]Andreelli F, Laville M, Vega N, et al. Regulation of gene expression during severe caloric restriction:lack of induction of p85 alpha phosphatidylinositol 3-kinase mRNA in skeletal muscle of patient with type Ⅱ (non-insulin-dependent) diabetes mellitus[J]. Diabetologia, 2000,43:356-363.
    [80]Andreelli F, Laville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinositol 3-kianase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients[J]. Diabetologia,1999,42:358-364.
    [81]Sharma PM, Egawa K, Huang Y, et al. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action[J]. J Biol Chem,1998,273: 18528-18537.
    [82]Odada T, Kawano Y, Sakakibara T, et al. Essential role of phophatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin[J]. J Biol Chem,1994,269:3568-3573.
    [83]Kohn AD, Summers SA, Birnbaum MJ, et al. Expression of a constitutively active Akt Ser/Thr kianse in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation[J]. J Biol Chem,1996,271:31372-31378.
    [84]Kohn AD, Barthel A, Kovacina KS, et al. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt[J]. J Biol Chem,1998,273: 11937-11943.
    [85]Cong LN, Chen H, Li Y, et al. Physiological role of Akt in insulin-stimulated translocation of Glut4 in transfected rat adipose cells[J]. Mol Endocrinol,1997,11:1881-1890.
    [86]Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)[J]. Science,2001,292:1728-1731.
    [87]姚可(明).食物本草(点校本)[M].北京:人民卫生出版社.1994:695.
    [88]赵学敏(清).本草纲目拾遗[M].北京:商务印书馆.1955:495.
    [89]王洪涛,付学军,等.海参多肽,多糖综合提取工艺条件的优化[J].食品与生物技术学报,2006,25(6):83-86.
    [90]Katzman RL, Jeanloz RW. The carbohydrate chemistry of invertebrate connective tissue.In: The chemistry and Molecular Biology of the Intercellular Matrix[J]. Academic Press,1970, 217.
    [91]Li JZ. Antithrombin activity and platelet aggregation by acid mucopolysuccharide from Stichopus japonicas Selenka[J]. China Acta Pharmacologica Sinica,1985,6:107.
    [92]Pacheco RG, Viente CP, Zancan P, et al. Different antithrombotic mechanisms among glycosaminoglycans revealed with a new fucosylated chondroitin sulfate from an echinoderm[J]. Blood Coagul Fibrinolysis,2000,11(6):563.
    [93]Mourao PA, Pereira MS, Pavao MS, et al. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide sccount for its high anticoagulant action[J]. J Biol Chem,1996,271(39): 23973-23984.
    [94]Mourao PA, Giumaraes B, Mulloy B, et al. Antithrombotic activity of a fucosylated chondroitin sulphate from echinoderm:sluphated fucose branches on the polysaccharide account for its antithrombotic action[J]. Br J Haematol,1998,101(4):647-652.
    [95]王强基,李春艳.玉足海参酸性粘多糖对小鼠免疫功能的影响[J].海洋药物,1984,(1):12.
    [96]黄益利,郑忠辉,苏文金,等.二色桌片参的化学分研究Ⅱ,二色桌片参多糖-Ⅰ——岩藻聚糖的免疫调节作用[J].海洋通报,2001,20(1):88-91.
    [97]闫冰,李玲,易杨华.海参多糖的生物活性研究概况[J].药学实践杂志,2004,22(2):101-102.
    [98]唐天华,姜国胜,李新,等.海源降糖胶囊的小鼠降糖实验研究[J].中国海洋药物,1999,3:33-36.
    [99]杨阳.海参的食疗价值[J].山东食品科技,2003,7:18.
    [100]沈卓洲,王学锋,谢玉才,等.玉足海参酸性粘多糖影响凝血、血脂和血粘度的研究[J].上海医学检验杂志,1997,12(2):100-103.
    [101]盛文静,薛长湖,王静凤,等.两种海参酸性粘多糖化学组及对血管内皮细胞保护作用的比较[J].中国海洋大学学报,2006,36(Sup.Ⅱ):62-66.
    [102]胡金凤,耿美玉.硫酸多糖与动脉粥样硬化[J].中国药理学通报,2001,17(2):127.
    [103]邱鹏新,黎明涛,唐孝礼,等.黑海参多糖对β-淀粉样蛋白诱导的皮质神经元凋亡的保护作用[J].中草药,2000,31:271.
    [104]徐菊娣,樊绘曾.花刺参酸性粘多糖的分离研究[J].中国海洋药物,1994,1:24-28.
    [105]姜健,杨宝灵,邰阳.海参资源及其生物活性物质的研究[J].生物技术通讯,2004,(5):537-539.
    [106]Sedov AM, Shepeleva IB, Zakharova NS, et al. Effect of cucumariosides (a triterpene glycoside from the holothurians Cucumaria japonica) on the development of an immune response in mice to corpuscular pertussis vaccine[J]. Mikrobiol Epidemiol Immunobiol,1984, 9:100-104.
    [107]Aminin DL, Pinegin BV, Pichugina LV, et al. Immununomodulatory properties of Cumaside[J]. Internat Immunopharmacol,2006,6:1070-1082.
    [108]Aminin DL, Agafonova IG, Berdyshev EV, et al. Immunomodulatory properties of cucumariosides from the edible far-eastern holothurians Cucumaria japonica[J]. Journal of Medicinal Food,2001,4(3):127-135.
    [109]王静凤,傅佳,王玉明,等.革皮氏海参皂苷对小鼠免疫功能的调节作用[J].中国海洋大学学报,2010,40(2):28-32.
    [110]Li IA, Popov AM, Tsybul AV, et al. Immunostimulatory characteristics of a novel carrier on the basis of cucumarioside A2-2 and monogalactosyldiacylgycerol[J]. Prikl Biokhim Mikrobiol,2008,44(6):694-700.
    [111]Santhakumari G, Stephen J. Antimitotic effct of holothurin[J]. Bytologia,1998(53):163.
    [112]Lory KL, Darah II. Structural and morphological alterations of Candida albicans cells after treatment with atratoxin B1 from Holothuiata[J]. Nat Prod Sci,1998,4(3):136.
    [113]刘治东.革皮氏海参皂苷抗肿瘤活性及其作用机制的研究[D].中国海洋大学,2009.
    [114]胡晓倩,王玉明,任兵兴,等.海参皂苷对脂肪肝大鼠脂质代谢的影响[A].2008年中国水产学会学术年会论文摘要集[C].2008.
    [115]Hu XQ, Wang YM, Wang JF, et al. Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARa and SREBP-lc signaling[J]. Lipids Health Dis, 2010,9:25.
    [116]王静凤,逢龙,薛勇,等.日本刺参酸性粘多糖,皂苷和胶原蛋白多肽对血管内皮细胞的保护作用[J].中国药理学通报,2008,24(2):227-232.
    [117]崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究[D].青岛:中国海洋大学.
    [118]赵芹.海参胶原蛋白多肽抗氧化活性的研究[D].青岛:中国海洋大学.
    [119]王奕,王静凤,高森,等.日本刺参胶原蛋白多肽对紫外线诱导的光老化模型小鼠皮肤的保护作用[J].中国药科大学学报,2008,39(1):64-67.
    [120]Yuanhui Zhao, Bafang Li, Zunying Liu, et al. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate[J]. Process Biochemistry. 2007, (42):1586-1591.
    [121]中国医学科学院药物研究所.新华本草纲要[M].上海:上海科学技术出版社,1998.
    [122]冉先德.中华药海[M].哈尔滨:哈尔滨出版社,1993,2024-2025.
    [123]全国中草药汇编编写组.全国中草药汇编(上)[M].北京:人民卫生出版社,1982,275.
    [124]汤晓云.蛹草的研究进展[J].基层中药杂志,2002,16(4):50-53.
    [125]李楠,龚长虹,张宏.北冬虫夏草人工栽培技术研究及保健品研制[J].长春师范学院学报,2001,20(1):36-37.
    [126]肖建辉,蒋侬辉,梁宗琦,等.虫草类真菌多糖的研究及应用前景[J].山地农业生物学报,2003,22(1):70-76
    [127]吴光吴.蛹虫草多糖的分离机免疫活性的研究[J].中国天然产物.2007,5(1):73-76.
    [128]江晓路,葛蓓蕾.北虫草菌Y3胞内与胞外多糖的免疫药理研究[J].青岛海洋大学学报,1998,28(2):192-198.
    [129]余丽霞,张冰冰,阮叶萍等.虫草多糖不同组分的免疫活性研究[J].浙江中医学院学报,2004,28(1):49-50.
    [130]Dong CH, Yao YJ. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis[J]. LWT,2008,41:669-677.
    [131]朱雅红,颜辉,桂仲争.蛹虫草多糖对四氯化碳诱导大鼠原代肝细胞损伤的保护作用研究[J].蚕业科学,2009,35(1):106-110.
    [132]王菊凤,李鹄鸣.蛹虫草多糖对果蝇寿命影响的研究[J].中国野生植物资源,2008,27(3):38-42.
    [133]陶美华,章卫民,潘清灵,等.几种药用真菌粗多糖降血糖作用研究[J].食用菌学报,2009,16(1):59-62.
    [134]黄志江,季晖,李萍,等.人工虫草多糖降血糖作用及其机制研究[J].中国药科大学学报,2002,33(1):51-54.
    [135]刘海兰.论部分中药临床免疫作用[J].时珍国药研究,1997,8(6):492.
    [136]Zhou XX, Meyer CU, Schmidtke P, et al. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells[J]. Eur J Pharmacol,2002,453:309-317.
    [137]王本祥.现代中药药理学[M].天津:天津科学技术出版社,1996.
    [138]王建芳,杨春清.蛹虫草有效分及药理作用研究进展[J].中医药信息,2005,22(5):30-32.
    [139]朱海波.虫草素调血脂作用及其靶点初探[A].2008全国药用真菌学术研讨会论文集[C],2008.
    [140]柴建萍,白兴荣,谢道燕.蛹虫草主要有效分及其药理功效[J].云南农业科技,2003,4:22-23.
    [141]夏春雨,孙巍,刘学铭.虫草有效分的研究进展[J].中国食用菌,2009,28(2):3-7.
    [142]张显科,王玉柱,刘文霞.蛹虫草的研究Ⅳ.蛹虫草与冬虫夏草化学分比较[J].辽宁大学学报,1996,23(4):80-83.
    [143]桂仲争,朱雅红.蛹虫草的人工培育、有效分及药理作用研究进展[J].蚕业科学,2008,34(1):178-184.
    [144]逄龙,王静凤,董平,等.两种海参对大鼠实验性高脂血症预防作用的比较[J].营养学报,2006,28(5):446-447.
    [145]Zhang SY, Yi YH, Tang HF. Bioactive triterpene glycosides from the sea cucumber Holothuria fuscocinerea[J]. J. Nat. Prod,2006,69(10):1492-1495.
    [146]Hsu CH, Sun HL, Sheu JN, et al. Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model[J]. Pdeiatr Neonatol,2008,49(5): 171-178.
    [147]Joc Y, Urbano AG, Sweeney EB, et al. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells.[J]. Leukemia,1996,10(6):1019-1024.
    [148]Tadashi K, AkihiroY, Ji H, et al. Polysaccharides in fungi.ⅩⅩⅩⅩⅥ. Hypoglycemic Activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver[J]. Biol Pharm Bull,1996,19(2):294-296.
    [149]沈齐英,沈秋英,苏春.北虫草对四氯化碳诱导的脂质过氧化的影响[J].天然产物研究与开发,2001,14(2):22-25.
    [150]Haffner SM, Kennedy E, Gonzafez C, et al. A prospective analysis of the homa modal:The mexico city diabetes study[J]. Diabetes Care,1996,19(10):1138-1141.
    [151]Haffner SM, Miettinen H, Stem MP. The homeostasis model in the San Antonio heart study[J]. Diabetes Care,1997,20(7):1087-1092.
    [152]瞿良,王惠萱,朱玉琨,等.糖化血红蛋白的循证检验医学观点[J].国外医学临床生物化学与检验学分册,2005,26(10):718.
    [153]王,李琳,王达,等.糖化血红蛋白的检测和临床应用[J].上海医学检验杂志,2003,18(2):119.
    [154]Li SP, Zhang GH, Zeng Q, et al. Hypoglycemic activity of polysaccharide, with antioxidation isolated from cultured Cordyceps mycelia[J]. Phytomedicine,2006, 13(6):428-433.
    [155]韩玉谦,隋晓,管华诗.海参活素抗疲劳作用的初步研究[J].中国海洋药物,2004,98(2),57-58.
    [156]Kiho T, Yamane A, Hui J, et al. Polysaccharides in fungi.ⅩⅩⅩⅥ. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultured mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver[J]. Biol Pharm Bull, 1996,19(2):294-296.
    [157]Kiho T, Ookubo K, Usui S, et al. Strucrural features and hypoglycemic activity of a polysaccharide (CF-F10) from the cultured mycelium of Cordyceps sinensis[J]. Biol Pharm Bull,1999,22(9):966-970.
    [158]Andras H, Arnold S, Tamas B, et al. Differences in the nitric oxide metabolism in streptozotocin-treated rats and children suffering from Type 1 diabetes[J]. Life Sciences, 2006,78:1362-1370.
    [159]Jean M, Emilien P, Karl G-L, et al. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa[J]. Food Chemistry,2007,104: 1040-1047.
    [160]张秀娟,杨姗姗,刘佰华,等.蛹虫草提取物对H22小鼠抗氧化能力的影响[J].时珍国医国药,2008,19(4):943-944.
    [161]Lapshina EA, Sudnikovich EJ, Maksimchik JZ, et al. Antioxidative enzyme and glutathione S-transferase activities in diabetic rats exposed to long-term ASA treatment[J]. Life Sciences, 2006,79:1804-1811.
    [162]Anwar MM, Meki AR. Oxidative stress in streptozotocin-induced diabetic rats:effect of garlic oil and melatonin[J]. Comparative biochemistry and physiology molecular and integrative physiology,2003,135:539-547.
    [163]Guo YW. Nitric oxide synthetase and the effect of aminoguanidine and NG-monomethyl-L-arginine on the onset of diabetes in the sponte-neously BB rat[J]. Diabetes,1995,44:360.
    [164]Herold KC, Bauman E. Expression and immune response to islet antigens following treatment with low doses of streptozotocin in H-2d mice[J]. J Autoimun,1997,10:17.
    [165]Suare PW, RA jotte. Both CD4 and CD8 T-cells in syngeneic islet grafts in NOD mice preduce interferon-gamma during beta-cell destruction[J]. Diabete,1996,45:1350.
    [166]Tiedge M, Lortz S, Drinkgern J, et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin producing cells[J]. Diabetes,1997,46:1733-1742.
    [167]刘程惠,朱蓓薇,董秀萍,等.海参酶解产物的分离及其体外抗氧化作用的研究[J].食品与发酵工业,2007,33(9):50-53.
    [168]赵兴坤.海参肽的功能特性及其应用[J].中国食物与营养.2003,12:31-33.
    [169]苏永昌,刘淑集,吴业.海参多肽的制备工艺优化及其抗氧化测定[J].福建水产,2009,26(2):6-10.
    [170]张,蒋宝泉,孙海岚,等.富硒超氧化物歧化酶绿茶对糖尿病大鼠降糖效应的研究[J].肠内与场外营养,2009,16(2):109-112.
    [171]Sibel T, Emre S, Sedef ZA, et al. Vanadyl sulfate treatment improves oxidative stress and increase serum paraoxonase activity in streptozotocin induced diabetic rats[J]. Nutr Res,2006, 26:670-676.
    [172]王建芳,杨春清.蛹虫草有效分及药理作用研究进展[J].中医药信息,2005,22(5):30-32.
    [173]邹文华,刘泽林,饶国华,等.硒对126例2型糖尿病的疗效[J].中国临床药学杂志,1998,7(2):71-74.
    [174]Tong WM, Wang F. Alterations in rat pancreatic islet beta cells induced by Keshan disease pathogenic factors:protective action of selenium and vitamin E[J]. Metabolism,1998,47(4): 415.
    [175]McNeill JH, Delgatty HLM, Battell ML. Insulin-like effects of odium selenate in streptozotocin-induced diabetic rats[J]. Diabetes,1991,40(12):1675.
    [176]姚文华,孙丽娟.硒对糖尿病人血抗氧化酶活力和脂质过氧化物含量的影响[J].中国糖尿病学杂志,1995,3(2):119.
    [177]Sunde RA. Intracellular glutathione peroxidase structure, regulation and function. In: Selenium in Biology and Human Health[M]. Burk RF ED. Springer-Verlage NY,1994,45.
    []78]秦俊法.微量元素与糖尿病[J].广东微量元素科学,2000,7(2):1.
    [179]Ogihara T, Shint BC, Anais M, et al. Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-2 via its association with phosphatidylinositol 3-Kinase in skeletal muscle cell[J]. J Bio Chem,1997,272:12868-12873.
    [180]Andreelli F, Laville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinositol 3-Kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients[J]. Diabetologia,1999,42:358-364.
    [181]Le Marchand Brustel Y, Tanti JF, Cormont M, et al. From insulin receptor signaling to Glut4 translocation abnormalities in obesity and insulin resistance[J]. J Recept Signal Transduct Res,1999,19:217-228.
    [182]Masuko UF, Alexader RW, Akers, M, et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smoth muscle cells[J]. J Bio Chem, 1999,274:22699-22704.
    [183]Tiosh M. Long-term insulin treatment of 3T3-L1 adipocytes results in mis-targeting of Glut4: implications for insulin-stimulated glucose transported[J]. Diabetologia,2000,43:1273-1281.
    [184]Paolisso G, Esposito R, Dalessio MA, et al. Primary and secondary prevention of atherosclerosis:Is there a role for antioxidants[J]. J Diabetes Metab,1999,25:298-306.
    [185]Wang PH, Tsai MJ, Hsu CY, et al. Toona sinenis Roem (Meliaceae) leaf extract alleviates hyperglycemia via altering adipose glucose transporter4[J]. Food and Chemical Toxicology, 2008, (46):2554-2560.
    [186]Sameer M, Asia T, Bamezai RNK, et al. Modulation of glucose transporter (GLUT4) by vanadate and Trigonella in alloxan-diabetic rats[J]. Life Sciences,2006, (78):820-824.
    [187]Kohn AD, Barthel A, Kovacina KS, et al. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt[J]. J Biol Chem,1998,273: 11937-11943.
    [188]Kanda H, Tamori Y, Shinoda H, et al. Adipocytes from Munc18c-null mice show increased sensitity to insulin-stimulated GLUT4 externalization[J]. J Clin Investig,2005,115:291-301.
    [189]胡翠华,徐华丽,于晓风,等.人参二醇组皂苷对实验性2型糖尿病大鼠血糖及血脂代谢的影响[J].人参吉林大学学报(医学版),2006,32(6):1004.
    [190]Shang WB, Yang Y, Chen MD. Anti-diabetic effect of ginseng and its constituents[J]. Inter J Endocrinol Metab,2007,27(2):115-117.
    [191]Zhang ZG, Li XY, Lv WS, et al. Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear-κB[J]. Mol Endocrinol,2008,22(1): 186-195.
    [192]王雨秾,孙佳犄,刘毓敏.人参皂苷对胰岛素抵抗大鼠模型中GLUT4和PI3K表达的影响[J].辽宁中医药大学学报,2009,11(60):234-237.
    [193]Lai DM, Tu YK, Liu IM, et al. Mediation of P-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats[J]. Planta Med,2006,72:9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700