红色亚栖热菌海藻糖合成酶相关基因的克隆、表达以及海藻糖代谢途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻糖因其具有保护生物分子活性的功能,被广泛应用于食品加工业、农业、医药业等诸多领域。在海藻糖的酶转化法工业生产中,海藻糖合酶(trehalosesynthase)只需一步反应即可将麦芽糖转化为海藻糖,生产原料可来源于淀粉的水解产物,更为廉价,因此备受关注。而筛选稳定的、转化率高的、适合工业生产的海藻糖合酶,并构建高表达的工程菌株,成为降低海藻糖生产成本的关键因素。
     在本实验的前期工作中,从地热水中筛选得到一株能够生产海藻糖合酶的耐热菌株CBS-01。对其海藻糖合酶的初步分析显示,该酶的最适反应温度为50℃,最适pH为6.5,在50℃以下和pH 5.0-9.0的范围内该酶能够保持80%以上的酶活。鉴于该海藻糖合酶具有较强的稳定性,有必要克隆得到该酶的基因并构建工程菌株,为海藻糖的工业生产奠定基础;另一方面,也有必要对该酶的结构、作用机制以及耐热机制进行研究,为进一步提高该酶的热稳定性和转化率提供充分的理论依据。
     首先,对这株能够生产海藻糖合酶的菌株进行了鉴定。该菌为革兰氏阴性的杆菌,多个细胞相连接可形成丝状,能够产生暗红色色素,好氧,生长的最适温度和pH分别为55℃~60℃和7.5~8.5。在生理生化试验中,该菌与标准菌株红色亚栖热菌(Meiothermus ruber ATCC 35948)的测试结果完全一致。该菌基因组的G+C含量为62.1%,与红色亚栖热菌标准菌株的DNA-DNA杂交率为63.9%。该菌的16srDNA基因与Genbank中红色亚栖热菌呈现最大的相似性。综合以上实验结果,该菌被鉴定为亚栖热菌属红色亚栖热菌(Meiothermus ruber CBS-01)。
     第二,克隆得到了海藻糖合酶的基因。根据已报道的海藻糖合酶同源序列中保守的氨基酸序列设计简并引物进行PCR,结果得到一长度为762bp,编码254个氨基酸的基因片段。通过对其编码的氨基酸序列的相似性搜索表明,所扩增片段为新的潜在的海藻糖合酶基因的部分DNA序列。在此基础上,采用接头PCR、TAIL-PCR以及混合质粒PCR筛选基因组DNA文库的方法共得到全长为6200 bp的核苷酸序列。序列分析发现,该序列中共含有三个ORF区:第一个ORF区的长度为1350bp、编码449个氨基酸;第二个ORF区的长度为690 bp、编码229个氨基酸;第三个ORF区的长度为2889 bp、编码962个氨基酸;通过比对发现这三个ORF区分别是潜在的6-磷酸海藻糖合成酶(TPS)、6-磷酸海藻糖磷酸酶(TPP)和海藻糖合酶(TreS)基因。即在红色亚栖热菌CBS-01中存在两条海藻糖的合成途径,而且这三个基因很可能位于同一个多顺反子中。通过对所得到的潜在的海藻糖合酶氨基酸序列的分析,发现红色亚栖热菌的海藻糖合酶与栖热菌属的海藻糖合酶的同源性最高,且蛋白的分子量远远大于其他种属的海藻糖合酶,预示所发现的海藻糖合酶可能具有较好的热稳定性。同时还发现,克隆得到的潜在的海藻糖合酶属于α-淀粉酶家族,在其氨基酸序列中具有四个α-淀粉酶家族的保守区。这些结果也进一步证实所得到的序列为潜在的海藻糖合酶基因。
     第三,构建了生产海藻糖合酶的工程菌株,并优化了表达条件。将潜在的编码海藻糖合酶的基因序列转化到大肠杆菌中进行表达,通过高效液相色谱(HPLC)检测了粗酶液的酶活。结果显示,该序列所编码的蛋白具有海藻糖合酶的活性,能够实现麦芽糖和海藻糖之间的相互转化反应,并有少量副产物葡萄糖生成。该基因序列已经注册到NCBI的GenBank中(序列接收号为EU443098)。为了增加海藻糖合酶在大肠杆菌中的表达量,利用PCR定点突变技术,将海藻糖合酶基因5'末端的核苷酸进行了优化,大幅度提高了该酶的表达量。同时通过对诱导表达条件的优化,确定了发酵生产海藻糖合酶的最适条件:采用pET-21a载体在胞质中表达目的蛋白,选用E.coli Rosetta-gami(DE3)作为宿主菌,20℃、低转速过夜诱导,以降低包涵体的生成,获得更多的可溶且有活性的目的蛋白。利用所构建的大肠杆菌工程菌株发酵生产海藻糖合酶的比活为0.60U/ml发酵液,比发酵红色亚栖热菌的0.08U/ml提高了大约8倍。
     第四,纯化了重组海藻糖合酶,并对其酶学性质做了详细的研究。利用NTA-Ni柱亲和层析法纯化得到了重组海藻糖合酶。测定了重组海藻糖合酶的各项动力学常数,并发现葡萄糖是该反应的竞争性抑制剂。测定海藻糖合酶的酶活为80U/mg,最适反应温度为50℃,最适pH为6.0-7.0。并且发现该酶在较宽的温度(4-60℃)和pH值(pH 4.0-8.5)范围内都极其稳定;更为突出的是,该酶在60℃中保温5h后,残余酶活仍然能够达到90%以上,而且4℃冷藏保存2个月对该酶的活性几乎不会产生影响。从而证明该酶非常适合工业化生产海藻糖。同时,实验还确定在低温下反应更利于降低副产物葡萄糖的形成,提高海藻糖的产量。以麦芽糖作为底物,20℃下反应,最终可以得到大约64%的海藻糖,而副产物葡萄糖的含量不到2%。
     第五,构建了缺失C端结构域的海藻糖合酶蛋白,发现该蛋白并不具有海藻糖合酶的活性。根据Native-PAGE的结果,TreS以四聚体形式存在,而TreSΔC蛋白形成二聚体结构。从而,我们推测来源于红色亚栖热菌的海藻糖合酶是以四聚体的形式行使功能,而C端结构域对四聚体的形成具有十分重要的作用,该结构域的缺失导致酶不能以正确的构象存在,故而活性丧失。
     第六,对红色亚栖热菌的海藻糖代谢途径做了初步研究。将潜在的编码TPS和TPP的基因序列转化到大肠杆菌中进行表达,利用NTA-Ni柱纯化得到了两个蛋白,并通过薄层层析(TLC)检测到了其酶活。基因序列已经注册到NCBI的GenBank中(序列接收号分别为FJ360766和FJ360767)。同时,研究发现红色亚栖热菌在高盐环境压力下胞内积累的内溶物为6-磷酸海藻糖。我们推测6-磷酸海藻糖磷酸酶在表达方面可能具有一定缺陷,不能将生成的6-磷酸海藻糖转化为海藻糖。
Trehalose is widely used in food processing industry, agriculture, pharmaceutical industry and many other fields, because of its ability to protect the biological molecules. In industrial production of trehalose, trehalose synthase (TreS) has been getting so much concern. That was because TreS can convert maltose into trehalose in one step reaction, and the cheaper raw material can be derived from starch hydrolysates. Screening of trehalose synthase gene and building a high-expression strain become key factors in decreasing the cost of trehalose industrial production.
     At the early study of our laboratory, a thermophilic strain CBS-01 producing trehalose synthase was isolated from geothermal water. The preliminary analysis of the TreS showed that the optimal reaction temperature is 50℃, and the optimum reaction pH is 6.5. The enzyme can maintain more than 80% of its activity below 50℃and at pH range of 5.0-9.0. In view of the trehalose synthase with strong stability, it is necessary to clone the TreS gene and build engineering strains producing TreS for trehalose industrial production. On the other hand, it is necessary to study the structure, reaction mechanism and thermoadapatation mechanism of the enzyme, so that modified TreS with stronger thermostability and a favorable conversion rate could be obtained by molecular biological technology.
     First of all, this strain producing trehalose synthase was identified. It was rod, Gram-negative, aerobic, and could produce dark red pigment. The optimum temperature and pH of its growth are 55℃~60℃and 7.5~8.5, respectively. At physiological and biochemical experiments, the strain CBS-01 showed the same results as the standard strains of Meiothermus ruber ATCC 35948. The G+C content of its genome was 62.1%, and the DNA-DNA hybridization rate with M. ruber ATCC 35948 was 63.9%. The sequence of 16s rDNA gene of CBS-01 showed the greatest identity to M. ruber in Genbank. Based on the above experimental results, the strain producing TreS was identified as Meiothermus ruber.
     Secondly, the trehalose synthase gene was cloned. According to the conserved amino acid sequences of trehalose synthase reported, degenerate primers were designed for PCR. A fragment of 762 bp was obtained. The deduced amino acid sequence of the DNA product had high identity to other trehalose synthase, indicating that a partial putative
     TreS gene was isolated from M. ruber. On this basis, A 6200 bp DNA sequence containing three open reading frames was isolated, by using linker mediated PCR, TAIL-PCR, and PCR-based method for screening genomic DNA library. The length of the three ORFs were 1350, 690, and 2889 bp, encoding 449, 229, and 962 amino acids, respectively. Sequence alignment analysis revealed that the deduced amino acid sequences of these ORFs were potential trehalose 6-phosphate synthase (TPS), trehalose 6-phosphate phosphatase (TPP) and trehalose synthase (TreS), respectively. Hence, there were two trehalose synthetic pathways in M. ruber CBS-01 and these three genes are likely to exist in the same operon-like structure. The potential TreS from M.ruber showed the highest homology to those of Thermus genus, and the molecular weight was much larger than those from mesophilic bacteria, indicating the TreS was likely to have better thermal stability. At the same time, it was found that the potential trehalose synthase belonged to theα-amylase family. These results indicated a putative TreS gene was isolated.
     Third, an engineering strain producing TreS was built, and protein expression conditions were optimized. The potential trehalose synthase gene was transformed into E. coli and induced to express. The activity of crude enzyme solution was detected by using high-performance liquid chromatography (HPLC). The result revealed that the recombinant protein showed the activity of trehalose synthase, and could catalyze the conversion reaction of maltose into trehalose with glucose as the byproduct. This novel gene has been assigned in GenBank, the accession No. is EU443098. In order to increase the yield of trehalose synthase in E. coli, the 5' terminal nucleotides of the TreS were optimized by using PCR-based site-directed mutagenesis technology. At the same time, conditions of protein expression were also optimized, and the optimum conditions were below: using pET-21a as expression vector and E. coli Rosetta-gami (DE3) as host bacterium, the induction was carried out at 20℃, low speed, and overnight. The results suggested the formation of inclusion bodies was decreased, and the yield of soluble and active protein was increased. The TreS activity was 0.60 U/ml broth by fermentation of E. coli engineering strain, and it was about 8-fold than that of M. ruber.
     Fourth, the recombinant TreS was purified and its enzymatic properties were studied in detail. The TreS was purified by using NTA-Ni column affinity chromatography. The kinetic values of the enzyme were determined, and glucose was found a competitive inhibitor of the reaction. The activity of the recombinant TreS was 80 U/mg, the optimum reaction temperature was 50℃, the optimum pH was 6.0-7.0. It was found that the enzyme could maintain 90% of its activity at a wide temperature (4-60℃) and pH range (pH 4.0-8.5). Because of its stability, the TreS proved very suitable for industrial production of trehalose. Meanwhile, it was found that low reaction temperature could decrease the formation of glucose, and increased the yield of trehalose.
     Fifth, the vector for expressing the truncated TreS without C-terminal domain was constructed. It was found that the TreSΔC protein did not have the TreS activity. According to the Native-PAGE results, TreS was a tetramer, but TreSΔC was a dimer. The results suggested that the C-terminal domain of TreS played an important role in the formation of the tetramer, which had the TreS activity. However, TreSΔC without C-terminal domain could not form a tetramer, so its activity lost.
     Sixth, the trehalose biosynthetic pathway of M. ruber was studied. The potential TPS and TPP gene were transformed into E. coli, and the recombinant proteins were purified by using NTA-Ni column. The results of thin layer chromatography (TLC) revealed that the two proteins showed the activity of TPS and TPP, respectively. The novel genes have been assigned in GenBank, the accession No. were FJ360766 and FJ360767. At the same time, it was found that M. ruber could accumulate 6-phosphate trehalose as the compatible solute in response to water stress imposed by salt. The results suggested that the TPP expression of M. ruber was defective, so the 6-trehalose phosphate producted by TPS could not be converted into trehalose.
引文
1. Elbein, A.D. The metabolism of a,a-trehalose. Adv.Carbohyd.Chem.Biochem., 1974, 30, 227-256.
    
    2. Trevelyan,W.E., Harrison,J.S. Studies on yeast metabolism. The trehalose content of baker's yeast during anaerobic fermentation. Biochem.J., 1956, 62, 177-182.
    
    3. Nwaka,S., Mechler,B., Holzer H. Detection of the ATH1 gene in Saccharomyces cerevesiae prevents growth on trehalose. FEBS Lett., 1996, 386, 235-238.
    
    4. Clegg,J.S., Filosa,M.F. Trehalose in the cellular slime mold, Dictyostelium mucoroides. Nature,1961, 192, 1077-1078.
    
    5. Sussman,A.S., Lingappa,B.T. Role of trehalose in ascospores of Neurospora tetrasperma. Science,1959, 130, 1343-1344.
    
    6. Lindberg,B. Studies on the chemistry of lichens.Investigation of a Dermatocarpon and some Roccella species. Acta Chem.Scand., 1955, 9, 917-919.
    
    7. Augier,J. The biochemistry of a North American algae, Tuomeya-fluviatilis. Compt.Rend., 1954,239,87-89.
    
    8. Adams,R.R, Kendall,E., Kartha,K.K. Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem.Syst.Ecol., 1990, 18, 107-110.
    
    9. Muller,J., Aeschbacher,R.A., Wingler,A., Boller,T., Wiemken,A. Trehalose and trehalase in Arabidopsis. Plant Physiol., 2001, 125, 1086-1093.
    
    10. Martin,M.C., Diaz,L.A., Manzanal,M.B., Hardisson,C. Role of trehalose in the spores of Streptomyces. FEMS Micro.Lett., 1986, 35, 49-54.
    
    11. Elbein,A.D., Mitchell,M. Levels of glycogen and trehalose in Mycobacterium smegmatis, and the purification and properties of the glycogen synthase. J.Bacteriol., 1973, 113, 863-873.
    
    12. Shimakata,T, Minatagawa,Y. Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii. Arch.Biochem.Biophys.,2000,380,331-338.
    
    13. Kaasen,I., McDougall,J., Strom,A.R. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli. Gene, 1994, 145, 9-15.
    
    14. Maruta,K., Hattori,K., Nakada,T., Kubota,M., Sugimoto,T, Kurimoto,M. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci.Biotechnol.Biochem., 1996, 60,717-720.
    
    15. Maruta,K., Mitsuzumi,H., Nakada,T., Kubota,M., Chaen,H., Fukuda,S., Sugimoto,T., Kurimoto,M. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys.Acta, 1996,1291, 177-181.
    
    16. Nishimoto,T., Nakano,M., Bnakada,T., Chaen,H., Fukuda,S., Sugimoto,T., Kurimoto,M.,Tsujisaka,Y. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci.Biotechnol.Biochem., 1995, 60, 640-644.
    
    17. Maruta,K., Hattori,K., Nakada,T., Kubota,M., Sugimoto,T., Kurimoto,M. Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim.Biophys.Acta, 1996, 1289,10-13.
    
    18. Fairbairn,D. Glucose, trehalose and glycogen in Porrocaecum decipiens larvae. Nature, 1958, 181,1593-1594.
    
    19. Wyatt,G.R., Kalf,G.F. The chemistry of insect hemolymph. Trehalose and other carbohydrates.J.Gen.Physiol., 1957, 40, 833-846.
    
    20. Evans,D.R., Dethier,V.G. The regulation of taste thresholds for sugars in the blowfly. J.Insect Physiol., 1957, 1,3-17.
    
    21. Fairbairn,D., Passey,R.F. Occurrence and distribution of trehalose and glycogen in the eggs and tissues of Ascaris lumbricoides. Exp.Parasitol., 1957, 6, 566-574.
    
    22. Kalf,G.F., Rieder,S.V. The purification and properties of trehalase. J.Biol.Chem., 1958, 230,691-698.
    
    23. Becker,A., Schloeder,P., Steele,J.E., Wegener,G. The regulation of trehalose metabolism in insects.Experientia, 1996, 52, 433-439.
    
    24. Thevelein,J.M. Regulation of trehalose metabolism in fungi. Microbiol.Rev., 1984, 48, 42-59.
    
    25. Rosseau,R, Halvorson,H.O., Bulla,L.A.Jr, St.Jullan,G. Germination and outgrowth of single spores of Saccharomyces cerevesiae viewed by scanning electron and phase contrast microscopy.J.Bacteriol., 1972, 109, 1232-1238.
    
    26. Leopold,A.C. Membranes, metabolism, and dry organisms. Cornell University Press, Ithaca, NY.1986, pp. 1-377.
    
    27. Madin,K.A.C. Crowe,J.H. Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J.Exp.Zool., 1975, 193, 335-342.
    
    28. Womersley,C. Biochemical and physiological aspects of anhydrobiosis. Comp. Biochem. Physiol.,1981,70B, 669-678.
    
    29. Gadd,G.M., Chalmers,K., Reed,R.H. The role of trehalose in dehydration resistance of Saccharomyces cerevesiae. FEMS Microbiol.Lett., 1987, 48, 249-254.
    30. Hottinger,T., Boller,T., Wiemken,A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevesiae. FEBS Lett., 1987, 220, 113-115.
    
    31. Zentella.R., Mascorro-Gallardo.J.O., Van Dijck,P., Folch-Mallol,J., Bonini,B., VanVaeck,C,Gaxiola,R., Covarrubias,A.A., NietoSotelo,J., TheveleinJ.M., Iturriaga,G. A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol., 1999, 119, 1473-1482.
    
    32. Anandarajah,K., Mckersie,B.D. Manipulating the desiccation tolerance and vigor of dry somatic embryos of Medicago sativa L with sucrose, heat shock and abscissic acid. Plant Cell Rep., 1990,9,451-455.
    
    33. Nicolaus.B., Gambacorta,A., Basso,A.L., Riccio,R., DeRosa,M., Grant,W.D. Trehalose in Archaebacteria systems. Appl.Microbiol., 1988, 10,215-217.
    
    34. Crowe,L.M., Crowe,J.H. Trehalose and dry dipalmitoyl phosphatidylcholine revisited.Biochim.Biophys.Acta, 1988, 946, 193-201.
    
    35. Rudolph,A.S., Chandrasekhar,E., Gaber,B.P., Nagumo,M. Molecular modeling of saccharide-lipid interactions. Chem.Phys.Lipids, 1990, 53, 243-261.
    
    36. Carpenter,J.F., Crowe,J.F. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry, 1989, 28, 3916-3922.
    
    37. Pilon-Smits,E.A.H., Terry,N., Sears,T., Kim,H., Zayed,A., Hwang,S., van Dun,K., Voogd,E.,Verwoerd,T.C, Krutwagen,R.W.H.H., Goddijn,O.J.M. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J.Plant Physiol., 1998, 152,525-532.
    
    38. Guo,N., Puhlev,I., Brown,D.R., Mansbridge,J., Levine,F. Trehalose expression confers desiccation tolerance on human cells. Nature Biotechnol., 2000, 18, 168-171.
    
    39. Bell,W., Klaassen,P. Ohnacker,M., Boller,T, Herweijer,M., Schoppink,P., van der Zee,P.,Wiemken,A. Characterization of the 56 kDa subunit of yeast trehalose-6-phosphate synthase and cloning its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur.J.Biochem., 1992, 209, 951-959.
    
    40. Singer,M.A., Lindquist,S. Thermotolerance in Saccharomyces cerevesiae: the yin and yang of trehalose. TIB Tech., 1998, 16, 460-468.
    
    41. De Virgilio,C., Hottinger,T, Dominiguez,J., Boller,T., Wiemken,A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Eur.J.Biochem., 1994, 219, 179-186.
    
    42. Kandror,O., DeLeon,A., Goldberg,A.L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc.Natl.Acad.Sci.USA, 2002,99,9727-9732.
    43.Vogel,G,Aeschbacher,R.A.,Muller,J.,Boller,T.,Wiemken,A.Trehalose-6-phosphate phosphatases from Arabidopsis thaliana:identification by functional complementation of the yeast tps2 mutant.Plant J.,1998,13,673-683.
    44.Lederer,E.Cord factor and related trehalose esters.Chem.Phys.Lipids,1976,16,91-106.
    45.Brennan,P.J.,Nikaido,H.The envelope of mycobacteria.Annu.Rev.Biochem.,1995,64,29-63.
    46.Chatterjee,D.The mycobacterial cell wall:structure,biosynthesis and sites of drug action.Curr.Opin.Chem.Biol.,1997,1,578-588.
    47.Besra,G.S.,Bolton,R.C.,McNeil,M.R.,Ridell,M.,Simpson,K.E.,Glushka,J.,van Halbeek,H.,Brennan,P.J.,Minnikin,D.E.Structural elucidation of a novel family of acyltrehaloses from Mycobacterium tuberculosis.Biochemistry,1992,31,9832-9837.
    48.Alugupalli,S.,Laneelle,M.-A.,Larsson,L.,Daffe,M.Chemical characterization of the ester-linked 3-hydroxy fatty acyl-containing lipids in Mycobacterium tuberculosis.J.Bacteriol.,1995,177,4566-4570.
    49.Satpathya GR,T(o|¨)r(o|¨)ka Z,Balia R,Dwyrea DM,Littlea E,Walkera NJ,Tablina F,Crowea JH,Tsvetkovaa NM.Loading red blood cells with trehalose:a step towards biostabilization.Cryobiology,2004,49,123-136.
    50.Schiraldi C,Di Lernia I,De Rose M.Trehalose production:exploiting novel approaches.Trends biotechnol,2002,20,420-425.
    51.丁顺华,王宝山。海藻糖在植物抗性方面的研究进展。山东师大学报(自然科学版),2000,15,447-449.
    52.Cortina C,Culianfiez-Macia F.Tomato abiotic stress enhanced tolerance by trehalose biosynthesis.Plant Sci,2005,169,75-82.
    53.戴秀玉,王忆琴,杨波,周坚。大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究。微生物学报,2001,41,427-431.
    54.Carninci P,Nishiyama Y,Westover A,Itoh M,Nagaoka S,Sasaki N,Okazaki Y,Muramatsu M,Hayashizaki Y.Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA.Proc Natl Acad Sci U S A.,1998,95,520-524.
    55.Paiva,C.L.A.and Panek,A.D.Biotechnological applications of the disaccharide trehalose.Biotechnol.Annu.Rev.1996,2,293-314.
    56.Meleiro,C.R.M.et al.Patent 9303490,INPI,Brazil,1993.
    57.Doran,P.M.,Bailey,J.E.Effects of the immobilization on growth,fermentation properties and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol. Bioeng.1986, 28, 73-77.
    
    58. Parascandola, P. et al. Invertase and acid phosphatase in free and gel immobilized cell of Saccharomyces cerevisiae grown under different cultural conditions. Enzyme Microb. Technol.1993, 15,42-49.
    
    59. Lama, L., Nicolaus, B., Trincone, A., Morzillo, P., Rosa, M. de, Gambacorta, A. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus.
    
    60. Lama, L., Nicolaus, B., Trincone, A., Morzillo, P., Calandrelli V., Gambacorta, A. Thermostable amylolytic activity from Sulfolobus solfataricus, B.F.E. 1991, 8, 201-203.
    
    61. Cabib,E., Leloir,L. The biosynthesis of trehalose-phosphate. J.Biol.Chem., 1958, 231, 259-275.
    
    62. Candy,D.J., Kilby,B.A. Site and mode of trehalose biosynthesis in the locust. Nature, 1958, 183,1584-1595.
    
    63. Murphy,T.A., Wyatt,GR. The enzymes of glycogen and trehalose and synthesis in silk moth fat body. J.Biol.Chem., 1965, 240, 1500-1508.
    
    64. Lornitzo,F.A., Goldman,D. Purification and properties of the trans-glucosylase inhibitor of M.tuberculosis. J.Biol.Chem., 1964, 239, 2730-2734.
    
    65. Roth,R., Sussmann,M. Trehalose synthesis in the cellular slime mold, Dictyostelium discoideum.Biochim.Biophys.Acta, 1966, 122, 225-231.
    
    66. Elbein,A.D. Trehalose phosphate synthesis in Streptomyces hygroscopicus. Purification of GDP-glucose: glucose-6-P 1-glucosyl transferase. J.Bacteriol., 1968, 96,1623-1631.
    
    67. Lapp,D., Patterson,B.W., Elbein,A.D. Properties of a trehalose phosphate synthetase from Mycobacterium smegmatis. J.Biol.Chem., 1971, 246, 4567-4579.
    
    68. Bell,W., Sun,W., Hohmann,S., Wera,S., Reinders,A., De Virgilio,C, Wiemken,A., Thevelein,J.M.Composition and functional analysis of the Saccharomyces cerevesiae trehalose synthase complex.J.Biol.Chem., 1998, 272, 33311-33319.
    
    69. Noubhani,A., Bunoust,O., Rigolet,M., Thevelein,J.M. Reconstitution of ethanolic fermentation in permeabilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of yeast Saccharomyces cerevesiae. Eur.J.Biochem., 2000, 267,4566-4576.
    
    70. Thevelein,J.M. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevesiae. Antonie Leewenhoek, 1992, 62, 109-130.
    
    71. Hohmann,S., Neves,M.J., deKoning,W., Alijo,R., Ramos,J., Thevelein,J.M. The growth and signaling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase. Curr.Genetics, 1993, 23, 281-289.
    72. Blazquez,M.A., Lagunas,R., Gancedo,C., Gancedo,J.M. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinase. FEBS Lett., 1993, 329, 51-54.
    
    73. Kaasen,I., Falkenberg,P., Sryrvold,O.B., Strom,A.R. Molecular cloning and physical mapping of the otsBA genes upon exposure,which encode the osmoregulatory trehalose pathway of Escherichia coli. J.Bacteriol., 1992, 174, 889-898.
    
    74. Boos,W., Ehmann,U., Forki,W., Klein,M., Rimmele,M., Postma,P. Trehalose transport and metabolism in Escherichia coli. J.Bacteriol., 1990, 172, 3450-3461.
    
    75. Dorr C, Zaparty M, Tjaden B, Brinkmann H, Siebers B. The hexokinase of the hyperthermophile Thermoproteus tenax. ATP-dependent hexokinases and ADP-dependent glucokinases, teo alternatives for glucose phosphorylation in Archaea. J Biol Chem., 2003, 278, 18744-18753.
    
    76. Siebers B, Tjaden B, Michalke K, D(?)rr C, Ahmed H, Zaparty M, Gordon P, Sensen A, Zibat CW, Klenk HP, Schuster SC, Hensel R. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol, 2004, 186,2179-2194.
    
    77. Silva Z, Alarico S, da Costa MS. Trehalose biosynthesis in Thermits thermophilus RQ-1:biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Extremophiles, 2005, 9, 29-36.
    
    78. Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPPl confers stress tolerance in rice and results in the activation of stress responsive genes. Planta. 2008, 228, 191-201.
    
    79. Paul MJ. Trehalose 6-phosphate: a signal of sucrose status. Biochem J. 2008, 412, e1-2.
    
    80. Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P,Hajirezaei MR, Stitt M. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J. 2006, 397, 139-148.
    
    81. Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M.Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC 33923.Biochim Biophys Acta, 1997, 1334,28-32.
    
    82. Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD.Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression and properties of the enzyme. Eur J Biochem, 2004, 271, 4259-4269.
    
    83. Chen YS, Lee GC, Shaw JF. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem,2006,54,7098-8104.
    84. Qu Q, Lee SJ, Boos W. TreT, a Novel Glycosyltransferring Synthase of the Hyperthermophilic Archaeon Thermococcus litoralis. J Biol Chem, 2004, 279,47890-47897.
    
    85. Ryu SI, Park CS, Cha J, Woo EJ, Lee SB. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun,2005, 329, 429-436.
    
    86. Saito K, Kase T, Takahashi E, Horinouchi S. Purification and characterization of a trehalose synthase from the basidiomycete grifolafrondosa. Appl Environ Microbiol., 1998, 64, 4340-4345.
    
    87. Eis C, Watkins M, Prohaska T, Nidetzky B. Fungal trehalose phosphorylase: kinetic mechanism,pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J, 2001, 356, 757-767.
    
    88. Han SE, Kwon HB, Lee SB, Yi BY, Murayama I, Kitamoto Y, Byun MO. Cloning andcharacterization of a gene encoding trehalose phosphorylase (TP) from Pleurotus sajor-caju.Protein Expr Purif. 2003, 30, 194-202.
    
    89. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G. Insights on the evolution of trehalose biosynthesis. BMC Evol Biol, 2006, 6, 109.
    
    90. Bourquelot,M.E.M. Remarques sur les ferments solubles secretes par l'aspergillus niger V. Tgh et le pencillium glaucum link. Compt.Rend.Soc.De biol., 1893, 9.S., v.653.
    
    91. Yonemaya,Y, Lever,J.E. Apical trehalase expression associated with cell patterning after inducer treatment of LLC-PK monolayers. J.Cell.Physiol., 1987, 131, 330-341.
    
    92. Dahlqvist,A. Assay of intestinal disaccharidases. Anal.Biochem., 1968, 22, 99-107.
    
    93. Filipa S. Cardoso, Rute F. Castro, Nuno Borges and Helena Santos. Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii,and their role in stress response. Microbiology, 2007, 153, 270-280.
    
    94. Makihara F, Tsuzuki M, Sato K, Masuda S, Nagashima KV, Abo M, Okubo A. Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106. Arch Microbiol, 2005, 184, 56-65.
    
    95. Tzvetkov M, Klopprogge C, Zelder O, Liebl W. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology, 2003, 149, 1659-1673.
    
    96. De Smet KA, Weston A, Brown IN, Young DB, Robertson BD. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology, 2000, 146, 199-208.
    
    97. McIntyre HJ, Davies H, Hore TA, Miller SH, Dufour JP, Ronson CW. Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol.2007,73,3984-3992.
    98.Tsusaki K,Nishimoto T,Nakada T,Kubota M,Chaen H,Sugimoto T,Kurimoto M.Cloning and sequencing of trehalose synthase gene from Pimelobacter sp.R48.Biochim Biophys Acta,1996,1290,1-3.
    99.Pan YT,Carroll JD,Asano N,Pastuszak I,Edavana VK,Elbein AD.Trehalose synthase converts glycogen to trehalose.FEBS J.2008,275,3408-3420.
    100.Lee JH,Lee KH,Kim CG.Lee SY,Kim GJ,Park YH,Chung SO.Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose.Appl Microbiol Biotechnol,2005,68,213-219.
    101.Wei YT,Zhu QX,Luo ZF,Lu FS,Chert FZ,Wang QY,Huang K,Meng JZ,Wang R,Huang RB.Cloning,expression and identification of a new trehalose synthase gene from Thermobifida fusca genome.Acta Biochim Biophys Sin,2004,36,477-484.
    102.韦宇拓,黄日波,蒙健宗,卢福燊,庞中文,朱绮霞,陈发忠,罗兆飞,卢运琨,王青艳,黄鲲。谷氨酸棒杆菌海藻糖合成酶基因及海藻糖制造方法。中国:200410013006.9。2005.
    103.韦宇拓,黄日波,蒙健宗,卢福燊,庞中文,朱绮霞,陈发忠,罗兆飞,卢运琨,王青艳,黄鲲。耐放射性异常球菌海藻糖合成酶基因及海藻糖制造方法。中国:200410013008.8。2005.
    104.韦宇拓,朱绮霞,罗兆飞,陈发忠,李桂媛,黄鲲,黄日波。耐放射异常球菌海藻糖合成酶基因的克隆及功能鉴定。生物化学与生物物理进展,2004,31,1018-1023.
    105.MacGregor EA,Janecek S,Svensson B.Relationship of sequence and structure to specificity in the α-amylase family of enzymes.Biochim Biophys Acta.2001,1546,1-20.
    106.Davies G,Sinnott ML,Withers SC,Glycosyl transfer,in:M.Sinnott(Ed.),Comprehensive Biological Catalysis,Academic Press,New York,1998,pp.119-208.
    107.Ly HD,Withers SG,Mutagenesis of glycosidases,Annu.Rev.Biochem.1999,68,487-522.
    108.Uitdehaag JCM,Mosi R,Kalk KH,van der Veen BA,Dijkhuizen L,Withers SG,Dijkstra BW,X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family,Nat.Struct.Biol.1999,6,432-436.
    109.Uitdehaag JCM.,Kalk KH,van der Veen BA,Dijkhuizen L,Dijkstra BW,The cyclization mechanism of cyclodextrin glycosyltransferase(CGTase) as revealed by a Q-cyclodextrin-CGTase complex at 1.8A resolution,J.Biol.Chem.1999,274,34868-34876.
    110.Janecek S,MacGregor EA,Svensson B,Characteristic differences in the primary structure allow discrimination of cyclodextrin glucanotransferases from α-amylases,Biochem.J.1995,305,685-686.
    111.Svensson B,Protein engineering in the α-amylase family:catalytic mechanism,substrate specificity,and stability,Plant Mol.Biol.,1994,25,141-157.
    112.Koh S,Kim J,Shin HJ,Lee D,Bae J,Kim D,Lee DS.Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase.Carbohydr Res.,2003,338,1339-1343.
    113.Fang TY,Tseng WC,Pan CH,Chun YT,Wang MY.Protein engineering of Sulfolobus solfataricus maltooligosyltrehalose synthase to alter its selectivity.1:J Agric Food Chem.2007,55,5588-5594.
    114.Kato,M.,Takehara,K.,Kettoku,M.,Kobayashi,K.,Shimizu,T.Subsite structure and catalytic mechanism of a new glycosyltrehalose-producing enzyme isolated from the hyperthermophilic archaeum,Sulfolobus solfataricus KM1.Biosci.Biotechnol.Biochem.2000,64,319-326.
    115.Fang,T.Y.,Hung,X.G.,Shih,T.Y.,Tseng,W.C.Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092.Extremophiles 2004,8,335-343.
    116.Kobayashi,M.,Kubota,M.,Matsuura,Y.Refined structure and functional implications of trehalose synthase from Sulfolobus acidocaldarius.J.Appl.Glycosci.2003,50,1-8.
    117.Fang,T.Y.,Tseng,W.C.,Chung,Y.T.,Pan,C.H.Mutations on aromatic residues of the active site to alter selectivity of the Sulfolobus solfataricus maltooligosyltrehalose synthase.J.Agric.Food Chem.2006,54,3585-3590.
    118.Wang JH,Tsai MY,Chen JJ,Lee GC,Shaw JF.Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity,thermostability,and efficient production of trehalose.J Agric Food Chem.2007,55,3435-3443.
    119.和致中,彭谦,陈俊英。高温菌生物学。北京:科学出版社,2001.
    120.任红妍。嗜热微生物。生物学通报,1995,30(3):18-19.
    121.Sterner R,Liebl W.,Thermophilic adaptation of proteins,Crit Rev Biochem Mol Biol.,2001,36,39-106.
    122.Trivedi S,Gehlot HS,Rao SR.,Protein thermostability in Archaea and Eubacteria,Genet Mol Res.2006,5,816-827.
    123.Jaenicke R,Bohm G,The stability of proteins in extreme environments,Curr Opin Strnct Biol,1998,8,738-748.
    124.Knapp S,Kardinahl S,Hellgren N,et al.,Refined crystal structure of a superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius at 2.2 A resolution,J Mol Biol,1999,285,689-702.
    125.Chang C,Park B C,Lee D S,et al.,Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus:possible structural determinants of thermostability.J Mol Biol,1999,288,623-634.
    126.Parthasarathy S,Murthy M R.,Protein thermal stability:insights from atomic displacement parameters(B values),Protein Eng,2000,13,9-13.
    127.Argos P,Rossman M C,Grau U M,et al.,Thermal stability and protein structure.Biochemistry,1979,18,5698-5703.
    128.卢圣栋,现代分子生物学实验技术.北京:高等教育出版社,1993.
    129.萨木布鲁克J,弗里奇EF,曼尼阿带斯T.金冬雁等,译.分子克隆试验指南.第二版.北京:科学出版社,1993.
    130.沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社,1999.
    131.宋太新等.微生物实验技术教程.上海:复旦大学出版社,1993,253-265.
    132.Xu HX,Kawamura Y,Li N,Zhao L,Li TM,Li ZY,Shu S,Ezaki T.A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube.Int J Syst Evol Microbiol.2000,50,1463-1469.
    133.梁峰,刘秀花,刘茵.复性速率液相分子杂交法测定芽孢杆菌DNA杂交度.商丘师专学报,2000,16,97-99.
    134.De Ley J,Cattoir H,Reynaerts A.The quantitative measurement of DNA hybridization from renaturation rates.Eur J Biochem.1970,12,133-142.
    135.Chen C,Lin L,Peng Q,Ben K,Zhou Z.Meiothermus rosaceus sp nov isolated from Tengchong hot spring in Yunnan,China.FEMS Microbiol Lett.2002,216,263-268.
    136.Chung AP,Rainey F,Nobre MF,Burghardt J,da Costa MS.Meiothermus cerbereus sp.nov.,a new slightly thermophilic species with high levels of 3-hydroxy fatty acids.Int J Syst Bacteriol.1997,47,1225-1230.
    137.和致中,彭谦,陈俊英.高温菌生物学.北京:科学出版社,2000.
    138.陈朝银,林连兵.栖热菌目、科、属、种.微生物学通报,2003,30,124-127.
    139.Liu Yao-Guang,Robert F Whitter.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking.Genomics,1995,25,674-681.
    140.Zhu Y,Zhang J,Wei D,Wang Y,Chen X,Xing L,Li M.Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China.Biosci Biotechnol Biochem.2008,72,2019-2024.
    141.洪登峰,万丽丽,杨光圣.侧翼序列克隆方法评价.分子植物育种,2006,4,280-288.
    142.Huang G.,Zhang L.,Birch R.G.Rapid amplification and cloning of Tn5 flanking fragments by inverse PCR. Lett. Appl. Microbiol., 2000, 31, 149-153.
    
    143. Li H.Z., Liu D.P., Liang C.C., Modified inverse PCR method for cloning the flanking sequences from human cell pools. Biotechniques, 1999, 27, 660-662.
    
    144. Yan Y.X., An Ch.C, Li L., Gu J.Y., Tan GH., Chen Z.L. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends,Nucl. Acid. Res., 2003, 31, e68.
    
    145. Siebert P.D., Chenchik A., Kellogg D.E., Lukyanov K.A., Lukyanov S.A., An improved PCR method for walking in uncloned genomic DNA, Nucl. Acid. Res., 1995, 23, 1087-1088.
    
    146. Rosenthal A., and Jones D.S.C., Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction, Nucleic Acids Res., 1990, 18, 3095-3096.
    
    147. Tessier LH, Sondermeyer P, Faure T, Dreyer D, Benavente A, Villeval D, Courtney M, Lecocq JP.The influence of mRNA primary and secondary structure on human IFN-gamma gene expression in E. coli. Nucleic Acids Res. 1984, 12, 7663-7675.
    
    148. Looman AC, Bodlaender J, de Gruyter M, Vogelaar A, van Knippenberg PH. Secondary structure as primary determinant of the efficiency of ribosomal binding sites in Escherichia coli. Nucleic Acids Res. 1986, 14, 5481-5497.
    
    149. Lee N, Zhang SQ, Cozzitorto J, Yang JS, Testa D. Modification of mRNA secondary structure and alteration of the expression of human interferon alpha 1 in Escherichia coli. Gene. 1987, 58,77-86.
    
    150. Sorensen M A,Kurland C G,Pedersen S,et al. Codon usage determines translation rate in Escherichia coli. Journal of Molecular Biology, 1989, 207, 365-377.
    
    151. Zhang S P,Zubay G,Goldman E,et al. Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene, 1991, 105, 61-72.
    
    152. Chen GFT, Inouye M. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of Escherichia coli genes. Nucl Acids Res, 1990, 18, 1465-1473.
    
    153. Brinkmann U, Mattes RE, Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the DNA Y gene product. Gene, 1989, 85, 109-114.
    
    154. Hua Z, Wang H, Chen D, Chen Y, Zhu D, Enhancement of expression of human granulocyte-macrophage colony stimulating factor by argU gene product in Escherichia coli of special interest. Biochem Mol Biol Int. 1994, 32, 537-543.
    
    155. Calderone TL, Stevens RD, Oas TG. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol. 1996, 262, 407-412.
    156. Zahn K. Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth. J. Bacteriol. 1996, 178, 2926-2933.
    
    157. Schenk PM, Baumann S, Mattes R, Steinbiss HH. Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs.Biotechniques. 1995, 19, 196-200.
    
    158. Seidel HM, Pompliano DL, Knowles JR. Phosphonate biosynthesis: molecular cloning of the gene for phosphoenolpyruvate mutase from Tetrahymena pyriformis and overexpression of the gene product in Escherichia coli. Biochemistry. 1992, 31, 2598-2608.
    
    159. Rosenberg AH, Goldman E, Dunn JJ, Studier FW, Zubay G. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol.1993, 175,716-722.
    
    160. Novy, R., Drott, D., Yaeger, K., Mierendorf, R. Overcoming the codon bias of E. coli for enhanced protein expression. inNovations, 2001, 12, 1-3.
    
    161. Schein, C. H. and Noteborn, M. H. M. Production of soluble recombinant protein in Bacteria.Bio/Technology 1989, 7, 1141-1148.
    
    162. Rietsch, A., Belin, D., Martin, N. and Beckwith, J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl. Acad. Sci. USA 1996, 93, 13048-13053.
    
    163. Raina S, Missiakas D. Making and breaking disulfide bonds. Annu Rev Microbiol. 1997, 51,179-202.
    
    164. Sone M, Akiyama Y, Ito K. Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds. J Biol Chem. 1997, 272, 10349-10352.
    
    165. Snyder WB, Silhavy TJ. Beta-galactosidase is inactivated by intermolecular disulfide bonds and is toxic when secreted to the periplasm of Escherichia coli. J. Bacteriol. 1995, 177, 953-963.
    
    166. Kajava, A. V., Zolov, S. N., Kalinin, A. E., Nesmeyanova, M. A. The Net Charge of the First 18 Residues of the Mature Sequence Affects Protein Translocation across the Cytoplasmic Membrane of Gram-Negative Bacteria. J. Bacteriol. 2000, 182, 2163-2169.
    
    167. Santos, H., da Costa MS. Compatible solutes of organisms that live in hot saline environments.Environ. Microbiol. 2002, 4, 501-509.
    
    168. Martins, LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H. Organic solutes in hyperthermophilic Archaea. Appl. Environ. Microbiol. 1997, 63, 896-902.
    
    169. Nunes, OC, Manaia CM, da Costa MS, Santos H. Compatible solutes in the thermophilic bacteria Rhodothermus marinus and "Thermus thermophilus." Appl. Environ. Microbiol. 1995, 61,2351-2357.
    170. Silva, Z., N. Borges, L. O. Martins, R. Wait, M. S. da Costa, and H. Santos. Combined effect of the growth temperature and the salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 1999, 3, 163-172.
    
    171. Lamosa, P., L. O. Martins, M. S. da Costa, and H. Santos. Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl. Environ.Microbiol. 1998, 64, 3591-3598.
    
    172. Silva Z, Alarico S, Nobre A, Horlacher R, Marugg J, Boos W, Mingote AI, da Costa MS. Osmotic adaptation of Thermus thermophilus RQ-1: lesson from a mutant deficient in synthesis of trehalose. J Bacteriol. 2003, 185, 5943-5952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700