基于视觉的微小型四旋翼飞行器位姿估计研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在近地面复杂环境中,利用视觉技术来为微小型四旋翼飞行器自主导航飞行控制系统提供所需飞行状态参数问题,一直都是无人机领域内的研究热点之一。
     本文以微小型四旋翼飞行器为研究对象,从推导与建立其位姿控制的数学模型入手,对基于视觉的微小型四旋翼飞行器的位姿参数估计方法进行了研究与探讨。在实验室环境中,提出了视觉位姿参数估计工程处理方法。它采用联合基色动态统计的自适应阈值分割法来对视觉图像进行预处理,并利用投影与小波变换的联合方法来提取目标图像的特征信息,从而减小了其计算时间和计算复杂度,提高了视觉图像工程处理的实时性。在此基础上,研制出微小型四旋翼飞行器飞行控制系统与视觉位姿参数估计系统的软硬件平台。以此平台为基础,在微小型四旋翼飞行器空中稳定悬停飞行时,对其飞行姿态参数的估计进行了仿真实验。
     研究结果表明:本文所建立的微小型四旋翼飞行器位姿控制的数学模型精确有效,为微小型四旋翼飞行器系统软硬件平台的研制提供了有价值的理论基础。论文所提出的图像处理方法,从实际工程应用层面上保证了嵌入式DSP视觉位姿参数估计系统的实时性,解决了基于视觉的微小型四旋翼飞行器位姿估计的难题。它可为近地面复杂环境中基于视觉的自主导航飞行提供参考。
Since Four-rotor Mini Rotorcraft has simple configuration, low fabricative cost and many other merits, it has been put into comprehensive uses in military domain, astrospace exploration, disaster rescue, geographic information surveying, terrain mapping, environment surveillance, agricultural and forest applications, electrical power line examination, film production industry, and many other areas. Hence, a lot of universities and research organizations all over the world now pay their attention on the mini aircrafts as the study focus in Unmanned Aerial Vehicles (UAV). But the study of the basic theory and the experimental applications on the Four-rotor Mini Rotorcraft is still at the initial stage. In the study, the fusion of many technologies is involved, and among them the navigation control is one of the key technologies in UAV. Moreover, one of the advanced navigations for the Four-rotor Mini Rotorcraft is about visual system.
     The visual information system loaded in mini aircraft can be applied to observe environment, avoid obstacles, identify and track objects. It can obtain position and attitude data, angular velocity data, speed data, and other data of the flight from the images taken by the system. These data provides flight parameter information which is needed by its flight control system. With this system, some problems in the autonomous navigation flight of mini aircraft under complex environment of near ground may be solved.
     In this dissertation, the Four-rotor Mini Rotorcraft is taken as the study object. The study starts from establishment of the mathematical model of position and attitude of the rotorcraft, and the estimation method of the position and attitude of its flight based on vision is discussed. An image processing algorithm for the position and attitude estimation of this rotorcraft for engineering implementation is proposed, and the flight control system and the vision-based position and attitude estimation system are designed and completed.
     All work involved in the dissertation is as the flowing:
     The first chapter provides a summary of the research background and significance of the mini aircraft. The study and application on the visual position and attitude estimation of mini aircraft both at home and abroad is introduced. Then the study goal and contents of this dissertation are given.
     The second chapter focuses the Four-rotor Mini Rotorcraft as the study object and its visual position and attitude parameter estimation as the study content. Based on the analysis of the flight control mode which is novel and special for the Four-rotor Mini Rotorcraft, the mathematics model of the visual position and attitude control is established for rotorcraft. It provides the basic theory for the control of position and attitude of the rotorcraftt. According to vision technology with the geometry perspective projection, a theoretical method of the position and attitude parameter estimation of vision-based by camera installed in the aircraft is further studied and discussed when the aircraft is stably in hovering. Thismethod can provide the theoretical reference in the designing of the hardware and developing software for the implementation of visual position and attitude estimation system of the rotorcraft.
     The third chapter proposes the arithmetic frame for the visual image information processing based on the design of the artificial landmark for the visual position and attitude estimation. By the analysis of experimental results from the visual image processing in the laboratory, an adaptive threshold segmentation method of dynamic statistic combined with primary colors is proposed for dynamic binary pre-processing on the landmark images captured by the camera in aircraft, and the method provides the better target images information for later visual image processing. After the basic analysis of the characteristics of the artificial landmark design, the projection method is applied to divide multi-objective image characteristics region of the visual position and attitude estimation into small areas. And the method combined with both projection and wavelet transform to get the central elliptic coordinates information from target images in the small areas partitioned is presented, and thus it can provide the necessary information of the points coordinate for the visual position and attitude estimation.
     In the fourth chapter, by explanation of the basic structure and principle of the vision system in mini aircraft, and based on the design requirements of visual position and attitude estimation, two feasible design schemes are discussed. After the comparison of these design schemes, a more suitable scheme for the implementation is chosen, and the entire system framework on four-rotor mini rotorcraft system is given, including a visual system and a flight control system. According to the system framework, design and implementation of the hardware and software platform on the rotorcraft’s vision system is provided. And the system is successfully applied to the stable flight tests of the rotorcraft in hovering. The experiment results have shown that the relative precision error of the parameter estimation of the visual attitude estimation system on the rotorcraft is within 8.5 degrees.
     In the final chapter, the brief summary of the work conducted in this dissertation is given and some further research problems are proposed.
     The main innovations in this dissertation are as the following:
     A mathematical model of the visual position and attitude parameter control on the Four-rotor Mini Rotorcraft is established, which provides a theoretical foundation for the control of flight position and attitude. Based on the relations of the geometric perspective projection, the theoretical approache of the position and attitude estimation by using visual image information from the aircraft camera is studied. It provides a theoretical reference for the design, development, and implementation of both software and hardware of the four-rotor min aircraft.
     Under the laboratory environment, the adaptive threshold segmentation method of dynamic statistic combined with the primary colors is proposed, which is used to pre-process the image by using dynamic binary processing. On this basis of the above method, a theorem that on a coordinate in the maximum peak of the elliptic projection is the coordinate of the elliptic centre is provided. Then this method combined with both projection and wavelet transform is proposed to quickly divide the image in multi-object areas and get the coordinates information of the elliptic centre in each small areas. The real-time processing capability of the visual position and attitude estimation in embedded DSP system is increased by using the image processing algorithm for engineering implementation.
     By using color CCD camera in the aircraft and multimedia video processor, the rotocraft can carry out image acquisition and quantification of the landmark for the visual position and attitude estimation system. Since the color information is applied to the visual position and attitude estimation system, the information quantity on identification of the character of object image is improved.
     A solutions to the Four-rotor Mini Rotorcraft system is proposed by the combination of the embedded DSP visual system and the flight control system. The design and implementation of the software and hardware platform for the vision of the Four-rotor Mini Rotorcraft is given. And the flight of the rotorcraft in hovering is tested under laboratory conditions.
引文
[1] ELIZABETH B., CHRISTOPHER B. Unmanned Aerial Vehichles: Background and Issues for Congress [R]. April 25, 2003. http://www.fas.org/irp/ crs/RL31872.pdf.
    [2]吴小椿.无人机问世之初[J].航空知识, 2001(2), pp: 30-32.
    [3] REMOTE PILOTED AERIAL VEHICLES. The“Aerial Target”and“Aerial Torpedo”in the USA [EB/OL]. [2003-06-22]. http://www.ctie.monash.edu.au /hargrave/rpav_usa.html.
    [4] NEWCOME L.R. Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles [M]. AIAA, 2004.
    [5] WILSON J.R. UAVS: A Worldwide Roundup More and More Countries Are Developing or Cooperating on UAVs as Their Numbers and Versatility Grow [EB/OL]. [2003-06-10]. http://www.aiaa.org/aerospace/article.cfm.
    [6] ONERA. Conférence Mieux Conna?tre les Drones Historique [EB/OL]. [2005-09-09]. http://www.onera.fr/conferences/drones/drones-histoire.php.
    [7]中青在线.中国无人机挑战美军“死神”[EB/OL]. [2008-12-15]. http://news. kj110.cn/news/wzzt/htxz/jgxx/2008/1215/081213469E926F624G2HD.shtml
    [8] FEDERATION OF AMERICAN SCIENTISTS. Pioneer Short Range (SR) UAV [EB/OL]. [2000-03-05]. http://www.fas.org/irp/program/collect/pioneer.htm.
    [9] General Atomics RS-1/MQ-1 Predator - Perhaps the Future of Powered Flight of the MQ-1 Predator Has Seen Some Success in the Armed Reconnaissance Role as Well as Basic Spying Duties [EB/OL]. [2003-05-21]. http://www.militaryfactory. com/aircraft/detail.asp?aircraft_id=46.
    [10] PUBLIC AFFAIRS OFFICE OF AIR COMBAT COMMAND. RQ-4 Global Hawk Unmanned Aircraft System [EB/OL]. [2005-10-05]. http:// www.af.mil/factsheets/factsheet.asp?id=13225.
    [11] FAS. Crecerelle (Kestrel) [EB/OL]. [1999-09-21]. http://www.fas.org/man /dod-101/sys/ac/row/crecerelle.htm.
    [12]军事文摘.中国在无人机领域突飞猛进[EB/OL]. [2007-05-11]. http://www. armsky.com/weapon/wurenxitong/chinaUAV/200705/7239.html
    [13]肖永利,张琛.微型飞行器的研究现状与关键技术[J].宇航学报, 2001, 22(5), pp: 71-77.
    [14] JOEL M., MATTHEW T. Development of the Black Widow Micro Air Vehicle[R]. AIAA-01-0127, 2001.
    [15] MICHAEL J.M., FRANCIS C.M.S. Micro Air Vehicles Toward a New Dimension in Flight [EB/OL]. [1997-07-08]. http://euler.aero.iitb.ac.in/docs/ MAV/www.darpa. mil/tto/MAV/mav_auvsi.html.
    [16] WILSON J.R. MicroSAR Meets MAV [J]. Aerospace American, 1999, 10 (2), pp: 32-35.
    [17] JONES K.D., Duggan S.J., PIatzer M.F. Flapping-wing Propulsion for A Micro Air Vehicle [R]. AIAA -01-0126, 2001.
    [18] PORNSIN-SISIRAK T.N., LEE S.W., NASSEF H., GRASMEYER J., etc. MEMS Wing Technology for A Battery-Powered Ornithopter. Micro Electro Mechanical Systems, 2000, MEMS 2000, IEEE [C]. 2000, 1, pp: 799-804.
    [19]郭庆.小型无人旋翼飞行平台的研制及关键技术研究[D].西安:西北工业大学, 2007.
    [20] MARK HEWISH. A Bird in the Hand-miniature and Micro Air Vehicles Challenge Conventional Thinking [J]. Jane’s International Defense Review, 1999, 32 (11), pp: 22-28.
    [21] CHRISTOPHER B. V-22 Osprey Tilt-Rotor Aircraft [EB/OL]. [2005-01-07]. http://pogoarchives.org/m/dp/dp-v22-%20CRS-172005.pdf
    [22]王卉.无人机:不可替代的力量[N].科学时报, 2008-08-05 (A02).
    [23]韩世杰.迅速升温的无人机民用应用[J].国际航空, 2007, 10, pp: 48-50.
    [24]王坤兴.无人机正在走向民用领域[J].机器人技术与应用, 1999, 04, pp: 26.
    [25]陈军.开发消防型民用无人机大有可为[J].航空科学技术, 2004, 1, pp: 37-39.
    [26]晏磊,吕书强,赵红颖,张雪虎等.无人机航空遥感系统关键技术研究[J].武汉大学学报(工学版), 2004, 37(6), pp: 67-70.
    [27]孙杰,林宗坚,崔红霞.无人机低空遥感监测系统[J].遥感信息, 2003, 01, pp: 49-50.
    [28]白由路,金继云,杨俐苹,张宁等.低空遥感技术及其在精准农业中的应用[J].土壤肥料, 2004, 01: pp: 3-7.
    [29] MERINO L., CABALLERO F., MARTINEZ DE DIOS J.R., FERRUZ J., etc. A Cooperative Perception System for Multiple UAVs: Application to Automatic Detection of Forest Fires [J]. Journal of Field Robotics, 2006, 23(3-4), pp: 165-184.
    [30]色志阳,赵红颖,晏磊.无人机航空摄影质量评价. 2006中国科协年会《数字成像技术及影像材料科学》学术交流会论文集[C].北京: [出版者不详], 2006, pp: 197-202.
    [31]陈晓兵,马玉林,徐祖舰.无人飞机输电线路巡线技术探讨[J].南方电网技术, 2008, 2(6), pp: 59-61.
    [32]聂博文,马宏绪,王剑,王建文.微小型四旋翼飞行器的研究现状与关键技术[J].电光与控制, 2007, 14(6), pp: 311, 411, 511, 611, 711.
    [33] NICOUD J.D., ZUFFEREY J.C. Toward Indoor Flying Robots. Intelligent Robots and System, 2002, IEEE/RSJ’02 [C]. 2002, 1, pp: 787-792.
    [34] BOUABDALLAHS, SIEGWARTR. Towards Intelligent Miniature Flying Robots. Proceedings of Field and Service Robotics [C]. Australia, PortDouglas, 2005.
    [35] SMITH S.M., BRADY J.M. SUSAN-a New Approach to Lowlevel Image Processing [J]. International Journal of Computer Vision, 1997, 23(1), pp: 45-78.
    [36]吴建德.基于频域辨识的微小型无人直升机的建模与控制研究[D].杭州:浙江大学信息科学与工程学院, 2007.
    [37]达兴亚,屠恒章,沈怀荣.基于视觉的复杂环境下微型飞行器自主飞控问题探讨[J].装备指挥技术学院学报, 2007, 18(6), pp: 23-24, 34, 44.
    [38]姜涌.基于计算机视觉的导引系统中若干关键技术的研究与实现[D].南京:南京航空航天大学, 2006.
    [39] SHARP C.S., SHAKERNIA O., SASTRY S.S. A Vision System for Landing an Unmanned Aerial Vehicle. Robotics and Automation, 2001. Proceedings ICRA’01. IEEE [C]. 2001, 2, pp: 1720-1727.
    [40] ROCK S.M., FREW E.W., JONES H., LEMASTER E.A., etc. Combined CDGPS and Vision-based Control of A Small Autonomous Helicopter. American Control Conference, 1998. IEEE [C], 1998, 2, pp: 694-698.
    [41] SARIPALLI S., MONTGOMERY J.F., SUKHATME G.S. Vision-based Autonomous Landing of an Unmanned Aerial Vehicle. Robotics and Automation, 2002. Proceedings ICRA’02. IEEE [C]. 2002, 3, pp: 2799-2804.
    [42] HU M.K. Visual Patern Recognition by Moment Invariants [J]. IRE Transactions Information Theory, 1962, 8(2), pp: 179-187.
    [43] SATO M., AGGARWAL J.K. Estimation of Position and Orientation from Image Sequence of A Circle. Robotics and Automation, 1997. Proceedings ICRA. IEEE [C]. 1997, 3, pp: 2252-2257.
    [44] NAKAMURA S., KATAOKA K., SUGENO M. A Study on Autonomous Landing of An Unmanned Helicopter Using Active Vision and GPS [J]. Journal of the Robotics Society of JAPAN, 2000, 18(2), pp: 252-260.
    [45] WERNER S., FURST S., DICKMANNS D., DICKMANNS E.D. A Vision-based Multi-sensor Machine Perception System for Autonomous Aircraft Landing Approach. The International Society for Optical Engineering, 1996, In Processing of the SPIE [C]. 1996, pp: 54-63.
    [46] PETRUSZKA A., STENTZ A. Stereo Vision Automatic Landing of VTOL UAVs. Unmanned Vehicle System. In Proceedings of Association [C]. 1996, pp: 245-263.
    [47] AMIDI O., KANADE T., FUJITA K. A Visual Odometer for Autonomous Helicopter Flight [J]. Robotics and Autonomous Systems, 1999, 28(3), pp: 185-193.
    [48] ETTINGER S.M. Design and Implementation of Autonomous Vision-guided Micro Air Vehicles [D]. Florida: Elect rical and Computer Engineering, University of Florida, 2001.
    [49] ETTINGER S.M., NECHYBA M.C., IFJU P.G., etc. Vision-guided Flight Stability and Control for Micro Air Vehicles. Intelligent Robots and System, 2002. IEEE/RSJ [C]. 2002, 3, pp: 2134-2140.
    [50] KEHOE J.J., CAUSEY R.S., MUJAHID A., etc. Waypoint Navigation for a Micro Air Vehicle Using Vision-based Attitude Estimation [R]. San Francisco, CA, USA: AIAA-2005-6400, 2005.
    [51]刘新华,曹云峰.基于视觉的无人机自主着陆姿态检测方案. 2003年中国智能自动化会议论文集(上册) [C].香港: 2003年, pp: 443-447.
    [52]高爱民,曹云峰,陈松灿.一种基于视觉的微型飞行器姿态检测算法[J].飞机设计, 2002, 4, pp: 70-73.
    [53]阎鹏,王睿.光流分析在无人机自着舰视觉导引中的应用.第十二届全国图像图形学学术会议[C].北京, 2005, pp:757-761.
    [54]那盟,贾培发.微型直升机自主飞行辅助视觉系统研究[J].计算机工程与应用, 2006, 30, pp: 220-224.
    [55]邱力为,宋子善,沈为群.无人直升机自主着舰的计算机视觉算法[J].北京航空航天大学学报, 2003, 29(2), pp: 99-102.
    [56]邱力为,宋子善,沈为群.直线参数检测的快速哈夫变换[J].北京航空航天大学学报, 2003, 29(8), pp: 741-744.
    [57]邱力为,宋子善,沈为群.用于无人直升机着舰控制的计算机视觉技术研[J].航空学报, 2003, 24 (4), pp: 351-354.
    [58]张广军,周富强.基于双圆特征的无人机着陆位置姿态视觉测量方法[J].航空学报, 2005, 26 (3), pp: 344-348.
    [59]任沁源.基于视觉信息的微小型无人直升机地标识别与位姿估计研究[D].杭州:浙江大学信息学院, 2008.
    [60]肖业伦.飞行器运动方程[M].北京:航空工业出版社, 1987, pp: 12-18.
    [61]符冰,方宗德,侯宇.一种新型微旋翼飞行器的设计与控制[J].航空制造技术, 2006,5, pp: 91-94.
    [62] ALDERETE T.S. Simulator Aero Model Implementation [R]. NASA Ames Research Center, Moffett Field, California, 1995.
    [63] ETKIN B. Dynamics of Flight [M]. New York: John Wiley and Sons, INC., 1959.
    [64] PETER C.H. Spacecraft Attitude Dynamics [M]. Mineola, New York: Dover Publications, INC, 2004, pp: 6-22.
    [65] GOLDSTEIN H. Classical Mechanics (Second Edition) [M]. Addison Wesley Series in Physics, Adison-Wesley, U.S.A., 1980.
    [66]秦家桦编著.经典力学[M].合肥:中国科学技术大学出版社, 1993, pp: 293-299.
    [67] PERSSON A. How DO We Understand the Coriolis Force [J]. Bulletin of the American Meteorological Society, 1998, 79(7), pp: 1373-1385.
    [68]霍伟编著.机器人动力学与控制[M].北京:高等教育出版社, 2005, pp: 125-137.
    [69]刘巽亮编著.光学视觉传感[M].北京:中国科学技术出版社, 1998, pp: 40-42.
    [70] WANG L.L., TSAI W.H. Camera Calibration by Vanishing Lines for 3-D Computer Vision [J]. IEEE Transactions on Pattern Analysis and machine interllignce, 1993, 13 (4), pp: 370-376.
    [71]任沁源.基于视觉信息的微小型无人直升机地标识别与位姿估计研究[D].杭州:浙江大学信息学院, 2008.
    [72]任洪波.关于圆在某些平面上的投影是椭圆的证明[J].中学数学, 2007, 8.
    [73]谭志明.基于图论的图像分割及其嵌入式应用研究[D].上海:上海交通大学, 2007.
    [74] LARA A.C., HIRATA R. Motion Segmentation using Mathematical Morphology. Computer Graphics and Image Processing, 2006. IEEE (SIBGRAPI’06) [C]. 2006, pp: 315-322.
    [75] BROX T., WEICKERT J. Level Set Segmentation With Multiple Regions [J]. IEEE Transactions on Image Processing, 2006, 15 (10), pp: 3213-3218.
    [76] JIM G., RICHARD B. Image Processing and Analysis: A Practical Approach [M]. Oxford: Oxford University Press, 2000.
    [77]吴正国,夏立,尹为民编著.现代信号处理技术:高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社, 2003.
    [78] FECIT TECHNOLOGICAL PRODUCTS STUDY CENTER. Wavelet Analysis and Application by MATLAB 6.5 [M]. Beijing: Publishing House of Electronics Industry, 2003.
    [79] NABOUT A.A., TIBKEN B. Object Shape Recognition Using Mexican Hat Wavelet Descriptors. Control and Automation, 2007. IEEE (ICCA2007) [C]. 2007, pp: 1313-1318.
    [80] TEXAS INSTRUMENTS. TMS320DM642 Video/Imaging Fixed-Point Digital Signal Processor [EB/OL]. http://www.ti.com, 2002, pp: 32-186.
    [81] MARKANDEY V., RAO D. TMS320DM642 Technical Overview [EB/OL]. http://www.ti.com, 2002, pp: 3-40.
    [82] TEXAS INSTRUMENTS. TPS54310 Data Sheet [EB/OL]. http://www.ti.com, 2002.
    [83] TEXAS INSTRUMENTS. TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide [EB/OL]. http://www.ti.com, Apr. 2008: pp: 15-144.
    [84] MICRON TECHNOLOGY. MT48LC4M32B2 Data Sheet [EB/OL]. http://pdf1. alldatasheet.com/datasheet-pdf/view/75877/MICRON/MT48LC4M32B2.html, 2002.
    [85] SPANSION. S29AL032D Data Sheet [EB/OL]. http://pdf1.alldatasheet.com/ datasheet-pdf/view/109863/SPANSION/S29AL032D70BAE000.html, 2005.
    [86] LATTICE SEMICONDUCTOR. IspLSI2128VE Data Sheet [EB/OL]. http:// www.alldatasheet.com, 2000.
    [87] TEXAS INSTRUMENTS. TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide [EB/OL]. http://www.ti.com, Jun. 2007, pp: 17-247.
    [88] TEXAS INSTRUMENTS. TVP5150AM1 Data Manual [EB/OL]. http://www.ti.com, 2004.
    [89] TEXAS INSTRUMENTS. TPS3823-33 Processor Supervisory Circuits [EB/OL]. http://www.ti.com, 2002.
    [90] ANAND S.O. Modélisation, Observation et Commande d’un Objet Volant [D]. France : Technology University of Compiegne, 2007.
    [91] CASTILLO P., LOZANO R., DZUL A. Stabilization of a Mini Rotorcraft with Four Rotors [J]. IEEE Control Systems Magazine, 2005, 25(6), pp: 45-55.
    [92] FREESCALE SEMICONDUCTOR. MCF51QE128 DATA SHEET: ADVANCE INFORMATION Rev.3 [EB/OL]. http://www.freescale.com, 2007.
    [93]周霖. DSP系统设计与实现[M].北京:国防工业出版社, 2003 (1).
    [94] LEWIS W.D. An Aeroelastic Model Structure Investigation for a Manned Real-Time Rotorcraft Simulation. American Helicopter Society, 49th Annual Forum Proceedings [C]. 1993, pp: 143-146.
    [95] RICHARD H., ANDREW Z. Multiple View Geometry in Computer Vision (Second Edition) [M]. Cambridge University Press. 2003.
    [96] HUGO R.T. Modélisation et Asservissement Visual d’un Mini Hélicoptère [D]. France: Technology University of Compiegne, 2008.
    [97] MARCONI L., ISIDORI A., SERRANI A. Autonomus Vertical Landing on an Oscillationg Platform: An Internal Model Based Approach [J]. Automatica, 2002, 38, pp: 21-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700