用户名: 密码: 验证码:
Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁稀土合金因其优良的力学性能,特别是高温性能引起国内外越来越多的重视。以Mg-Gd系合金为代表的镁重稀土合金因其具有出众的时效硬化特性和优良的耐热性能成为研究热门合金;这类合金的室温和高温力学性能虽然良好,但高的稀土含量(>8wt.%)大大的提高了合金的成本,成本的提高势必阻碍合金的应用。稀土元素Nd在镁中的最大固溶度为3.6wt.%,而且在200℃时的固溶度几乎为零(0.08wt.%),Mg-Nd两元合金即具有明显的时效强化效果,因此以Mg-Nd系合金为基础有望开发出高强度低成本镁稀土合金,我国ZM6和前苏联ML10合金即是通过在镁中添加富Nd混合稀土和少量Zn元素形成的商业镁合金。少量Zn元素加入Mg-Nd合金中可以提高合金时效时的峰值硬度和蠕变强度,进一步添加Zn元素反而会降低合金的峰值硬度,Zn元素在Mg-Nd合金中的作用机制尚不清楚,因此有必要对Mg-Nd-Zn系合金进行系统深入的研究,以达到优化合金力学性能、揭示合金强化机制的目的。
     本文主要以Mg-Nd-Zn-Zr铸造合金(Zr元素作为晶粒细化剂)为基础,采用电感耦合等离子直读光谱仪(ICP)、光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段,通过硬度、室温高温拉伸、室温压缩和冲击、蠕变试验,分别研究了不同Zn含量和不同Nd含量对铸造Mg-2.75Nd-xZn-Zr(x=0,0.2,0.5,1.0,2.0)和Mg-yNd-0.2Zn-Zr(y=1.25,1.75,2.25,2.75,3.0,3.25)(wt.%)合金组织与力学性能的影响,得到优化的合金化学成分配比;重点研究了合金中微量Zn元素对合金塑性变形机制的影响,优化后铸造合金典型时效态下的析出相、力学行为和强化机制,以及热挤压工艺对合金显微组织和室温力学行为的影响。研究结果表明:
     当x=0.2,y=3.0wt.%时,铸造Mg-yNd-xZn-Zr合金在铸态、固溶处理态和200℃峰值时效态下具有最佳的室温强度和延伸率配比,为优化的合金成分。该成分铸造和挤压合金最佳的室温屈服强度、抗拉强度与延伸率组合分别为:140MPa-300MPa-11%和314MPa-325MPa-19.3%。
     微量Zn元素(0.2wt.%)可以明显改善Mg-Nd-Zn-Zr合金在铸态、固溶处理态和200℃峰值时效态下合金的塑性并提高合金的抗拉强度。通过对比研究固溶处理态Mg-2.75Nd-Zr(NK-T4)和Mg-2.75Nd-0.2Zn-Zr (NZK-T4)合金室温原位拉伸(in-situ tensiletest)过程中试样表面形貌的变化,发现与NK-T4合金相比,NZK-T4合金塑性的提高很可能是波浪形滑移条纹所对应的塑性变形机制的大量开动引起的。对两种合金5%室温拉伸变形后的显微组织观察表明,除基面滑移外,非基面位错在NK-T4和NZK-T4两种合金中都可以观察到,但NZK-T4合金中非基面位错的密度更大,特别是在晶界附近;此外,在NZK-T4合金中,或者位错也可以在某些晶粒内大量观察到。所以原位拉伸观察到的大量波浪形滑移条纹很可能是由非基面滑移产生的。Nd元素以溶质原子的形式存在于合金中会促进非基面滑移系(主要为非基面位错)的开动,微量Zn元素的加入会进一步促进非基面滑移(包括非基面位错、或者位错)的开动,从而明显改善合金的室温塑性,提高合金的抗拉强度。
     铸造Mg-3.0Nd-0.2Zn-Zr(NZ30K)(wt.%)合金250℃下时效0.5~500h,析出相均为β’亚稳相,随着时效时间的增加,β’亚稳相粗化,析出相密度下降;200℃峰值时效10~14h,析出相在{1100}α和{1120}α棱柱面上均有分布,此时析出相主要为β”亚稳相。铸造合金200℃峰值时效态下具有最佳的室温力学性能。
     析出相的强化作用占铸造时效态NZ30K合金屈服强度的60%左右;而挤压时效后,细晶和挤压过程中产生的第二相的总体强化作用占到50%以上,析出相强化作用的绝对贡献值与铸造时效态合金相当,但相对值下降到30%左右。
     挤压态NZ30K合金主要由再结晶晶粒、未完全再结晶组织和热挤压过程中析出的第二相组成,其中再结晶晶粒呈双峰分布,大晶粒尺寸在微米级,小晶粒尺寸在亚微米级,未完全再结晶组织的(0001)面平行于挤压方向。挤压态NZ30K合金室温拉伸时表现出明显的韧性断裂特征:出现了明显的屈服降(Yield Drop)和下屈服平台、拉伸后期产生明显的缩颈、拉伸断口由大量韧窝组成。合金屈服降是由合金拉伸时局部塑性变形引起的,局部塑性变形的产生与挤压态合金中未完全再结晶组织和小晶粒分布不均匀、晶粒的双峰分布、晶粒自身塑性变形能力提高和初始可动位错密度较低等因素密切相关。局部塑性变形在拉伸试样标距段的扩展产生下屈服平台,在此阶段,合金的塑性变形主要由基面与非基面
位错提供。局部塑性变形扩展完成后,合金进入均匀塑性变形阶段,仍主要由基面与非基面位错提供,此时晶粒内部出现局部塑性变形带和位错墙;合金应力达到最大后产生缩颈,此时含矢量位错大量参与塑性变形,合金具备了五个独立滑移系,发生韧性断裂。在整个塑性变形阶段,孪晶数量较少(位于部分大晶粒内部),仅起到辅助变形的作用。
The extremely low density, high specific strength and stiffness of Mg alloy make itattractive for engineering applications. It has been demonstrated that rare earth metals(RE) are the most effective elements to improve the strength properties of magnesiumalloys especially at elevated temperatures. More recently, a lot of work has been focusedon magnesium alloys containing heavy rare earth elements, such as Mg-Gd based alloys.Though these alloys show high strength, high content of heavy rare earth elementsenhances alloys’ cost, which would probably limit their engineering application. Rationaluse of Neodynium (Nd) could make it possible to develop a high strength and low costmagnesium alloy. Nd is one of light rare earth elements, with maximum solubility in solidMg of3.6wt.%at eutectic temperature545℃. Mg-Nd binary alloys have already hadsignificant strengthening effect. The commercial Russia ML10and Chinese ZM6alloys aredeveloped from Mg-MM alloy, in which MM is Nd rich Misch Metal. Addition of smallamount Zn to Mg-Nd alloy can further increase its peak-aged hardness and creepstrength, but more addition can reduce the peak-aged hardness. The strengthenmechanisms of Zn addition in Mg-Nd alloy are unclear yet. Therefore, it is necessary to dosystematic research on Mg-Nd-Zn alloys in order to optimize the alloy’s strength andreveal the strengthen mechanisms.
     By inductively coupled plasma analyzer (ICP), optical microscopy (OM), X-raydiffractometer (XRD), scanning electron microscopy (SEM) and transmission electronmicroscopy (TEM), hardness, tensile, compression and creep test, the microstructure andmechanical properties of gravity cast Mg-2.75Nd-xZn-Zr (x=0,0.2,0.5,1.0,2.0wt.%) andMg-yNd-0.2Zn-Zr (y=1.25,1.75,2.25,2.75,3.0,3.25wt.%) alloys in as-cast,solution-treated and200℃peak-aged conditions are investigated at room temperatureand the optimal chemical compositions are determined. The effect of trace amount of Znaddition on the plastic deformation mechanism of the alloy at room temperature, theprecipitates, mechanical behavior and strengthen mechanism in typical aged optimized alloy, and the effect of hot extrusion on the optimized alloy are investigated anddiscussed. The results show:
     When x=0.2, y=3.0wt.%, the cast Mg-yNd-xZn-Zr alloy has the best combination ofroom temperature strength and elongation in as-cast, solution-treated and200℃peak-aged conditions, and is considered as optimized cast alloy. The best mechanicalproperties of optimized cast alloy at room temperature are: yield strength (YS)140MPa,ultimate tensile strength (UTS)300MPa, elongation11%. The best mechanical propertiesof hot extruded alloy, whose chemical composition are the same as the optimized castalloy, at room temperature are: YS314MPa, UTS325MPa, elongation19.3%.
     Trace amount of Zn addition can significantly enhance Mg-Nd-Zn-Zr alloys’ ductility andincrease the UTS in as-cast, solution-treated and200℃peak-aged conditions at roomtemperature. By comparison the surface morphology variation of solution-treatedMg-2.75Nd-Zr (NK-T4) and Mg-2.75Nd-0.2Zn-Zr (NZK-T4) alloy tensile samples in in-situtensile test in SEM at room temperature, it is found that the enhancement of ductility ofNZK-T4alloy is probably due to the frequent activity of plastic deformation mechanismrepresented by the wave slip lines. The investigation of dislocation distribution in5%tensile deformed NK-T4and NZK-T4samples in TEM shows that, besides basal
dislocations, non-basal basal dislocations are investigated in both NK-T4and NZK-T4alloys, however, the dislocation density is much higher in NZK-T4alloy than that in NK-T4alloy, specially near the grain boundaries. Also, in some grains in NZK-T4alloy, or dislocations are investigated and their density are high. Therefore, the wave slip linesinvestigated on the surface of tensile samples in in-situ tensile test are probably causedby the non-basal dislocations investigated in TEM. Nd solute atoms in magnesium alloycan enhance the activity of non-basal dislocations (mainly non-basal dislocations).Trace amount of Zn addition can further promote the activity of non-basal dislocations,inclusion non-basal dislocations and or dislocations, which improve thealloys’ both ductility and UTS at room temperature.
     Cast Mg-3.0Nd-0.2Zn-Zr (NZ30K)(wt.%) alloy has different precipitates under differentaging process: the precipitates are the β’ metastable phase when aged at250℃for0.5to500h; the precipitates are mainly the β” metastable phase when aged at200℃for10to14h (peak-aged). The200℃peak-aged alloy has the best mechanical properties atroom temperature.
     The contribution of precipitate strengthening in cast-T6alloy is about60%. After hot extrusion and200℃peak-aging, the absolute strengthening contribution of precipitatestays about90MPa as cast-T6alloy, but the contribution percentage reduces to30%. Thestrengthening contribution of grain refinement and secondary phase produced during hotextrusion is more than50%in hot extruded alloy.
     As-extruded NZ30K alloy composes of recrystallized grains, un-recrystallized area andsecond phases precipitated during hot extrusion. The recrystallized grains show thebimodal grain size distribution. The fine grains are less than1μm, while the coarse grainsare several micrometers in size. The (0001) planes of the un-recrystallized area areparallel to the extrusion direction, which is probably the main reason of the ring fibertexture. As-extruded NZ30K alloy shows typical ductile fracture characteristics during thetensile test at room temperature: the yield drop phenomenon, the yield point elongation,necking in the late period of tensile test and dimple fracture surface. The yield dropphenomenon is caused by the localized plastic deformation at the beginning of tensiletest. The localized plastic deformation is closely associated with the non-homogeneousdistribution of the un-recrystallized area and fine grains, the bimodal grain sizedistribution, the enhanced plastic deformation ability of the individual grains by Nd andZn solute atoms and the low density of mobile dislocation in as-extruded alloy. Thepropagation of localized plastic deformation on the gauge length of tensile samples leadsto the yield point elongation, which are mainly caused by the basal and non-basal
dislocations. The homogeneous plastic deformation follows the yield point elongation,which are also mainly caused by the basal and non-basal dislocations. Localizeddeformation zone and dislocation walls are investigated in the grain interiors in this stage.After UTS, necking happens and lots of dislocations containing component areinvestigated. In this stage, the alloy has five individual slip systems and ductile fracturehappens. During the whole tensile deformation, twinning is only investigated in somecoarse grains, hence, only takes small part of the whole plastic deformation.
引文
[1] R.F. Decker, the Renaissance in Magnesium, Advanced Materials and Processing,1998,9,31-35
    [2] A.A. Luo, A.K. Sachdev, Wrought Magnesium Research for Automotive Applications, in:Magnesium Technology2006, A.A. Luo, N.R. Neelameggham, and R.S. Beals (Eds.), TMS,2006,333-339
    [3] I.J. Polmear, Recent development in light alloys, Materials Transaction, JIM,1996,37(1),12-31
    [4] R. Brown, Magnesium alloys and their applications materials: Materials Week-Munich, Germany, Light Metal Age,2001,59,54-56
    [5] F.H. Froes, D. Eliezer, E. Aghion, The science, technology and application of magnesium,JOM,1998,50(9),30-34
    [6] F. K. Abu-Farha, M. K. Khraisheh, Analysis of Superplastic Deformation of AZ31Magnesium Alloy, Advanced Engineering Materials,2007,9,777-783
    [7] Kittel C, Introduction to solid state physics,5th ed., New York,1976*8+К.Н.马图哈,材料科学与技术丛书—非铁合金的结构与性能,丁道云等译,北京,科学出版社,1999
    [9] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM International, OH:Metal Park,1999
    [10] F.R.N. Nabarro, Dislocation in solids, Volume2, Dislocation in crystals, Amsterdam,New York, Oxford: North-holland Publishing Company,1979
    [11] D. Hull, D.J. Bacon, Introduction to dislocations,3rd ed., Oxford, New York: PergamonPress,1984
    [12] I.J. Polmear, Journal of Light Metals, Metallurgy of the light Metals,3rd ed., EdwardArnold, London,1995
    [13] M.H. Yoo, Slip, Twinning and Fracture in Hexagonal Close-Packed Metals, Metall.Trans. A,1981,12A,409-418
    [14] A.Couret, D. Caillard, Prismatic slip in beryllium I: The controlling mechanism at thepeak temperature, Phil. Mag. A,1989,59,783-800
    [15] H. Siethoff, K. Ahlborn, Steady-state Deformation of The HCP Metals at High andIntermediate Temperatures, Z. Metallkd.,1985,76(9),627-634
    [16] V. Vitek, M. Igarashi, Core structure of1/3[1120] screw dislocations on basal andprismatic planes in hcp metals: an atomistic study, Phil. Mag. A,1991,63,1059-1075
    [17] K.U. Kainer, Magnesium Alloys and their Applications, FRG.DGMInformationsgesellschaft,1992,415
    [18] J.W. Christian, S. Mahajan, Deformation Twinning, Progress in Materials Science,1995,39,1-157
    [19] P.W. Flynn, J. More, J. E. Dorn, Trans. Metall., On the thermally activated mechanismof prismatic slip in magnesium single crystals, Soc. AIME,1961,221,1148-1154
    [20]刘正,张奎,曾小勤,镁合金轻质合金理论基础及其应用,北京,机械工业出版社,2002
    [21] M.H. Yoo, J.K. Lee, Deformation twinning in hcp metals and alloys, Phil. Mag. A,1991,63,987-1000
    [22]藤谷涉,馬越佑吉,六方晶系マグネシウム合金の変形に及ぼす固溶元素の影響,軽金属,1995,45(4),181-186
    [23]陈振华,变形镁合金,北京,化学工业出版社,2005
    [24] G. Siebel, Technology of Magnesium and its Alloys, London, Hughes,1940
    [25] C.S. Roberts, Magnesium and its Alloys, Whiley, New York,1960
    [26] G.V. Raynor, the Physical Metallurgy of Magnesium and Its Alloys, London, PergamonPress,1959
    [27] A.R. Chaudhuri, H.C. Chang, N.J. Grant, Creep deformation of magnesium at elevatedtemperatures by non-basal slip, Trans. AIME,1955,682-688
    [28]刘光华,稀土材料与应用技术,北京,化学工业出版社,2005
    [29] L.L. Rokhlin, Magnesium alloys containing rare earth metals, London, Taylor andFrancis,2003
    [30] L.L. Rokhlin, Advanced Magnesium Alloys with Rare-earth Metal Additions, AdvancedLight Alloys and Composites (R. Ciach ed.),1998,443-448
    [31] I.J. Polmear, Light Alloys,3rd ed., London, Arnold,1995
    [32] Y. Kawamura, K. Hayashi, A. Inoue, et al, Rapidly Solidified Powder MetallurgyMg97Zn1Y2Alloys with Excellent Tensile Yield Strength above600MPa, Mater Trans,2001,42,1172-1176
    [33] B.L. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A,2002,324,103–112
    [34] T.E. Leontis, The properties of sand cast magnesium-rare earth alloys, J. Metals,1949,1(12),968-983
    [35] T.E. Leontis, Effect of rare-earth metals on the properties of extruded magnesium, J.Metals,1951,3(11),987-993
    [36] T.E. Leontis, J. Metals,1952,4(3),287-294
    [37] T.E. Leontis, Effect of Zirconium on Magnesium-Thorium and Magnesium–Thorium-Cerium Alloys, J. Metals,1952,4(6),633-643
    [38] B.E. Bockrath, Morden Metals,1958,14(8),52-58
    [39] C.S. Roberts, Magnesium and Its Alloys, Palo Alto California, Fairchild Semi-conductorCorporation,1960
    [40] A.A. Luo, M.O. Pekguleryuz, Review cast magnesium alloys for elevated temperatureapplications, Journal of Materials Science,1994,29,5259-5271
    [41] R.V. London, R.E. Edelman, H. Markus, Development of a wrought high-strengthmagnesium-yttrium alloy, Trans. ASM,1966,59(2),250-261
    [42] R. S. Busk, Modern Metals,1968,24(6),43-46
    [43] L.L. Rokhlin, N.I. Nikitina, Magnesium-Gadolinium and Magnesium–Gadolinium-Yttrium alloys, Z. Metallkd,1994,85,819-823
    [44] S. Kamado, S. Iwasawa, K. Ohuchi et al, Aging Hardening Characteristics and HighTemperature Strength of Mg-Gd and Mg-Tb alloys, Journal of Japan Institute of LightMetals,1992,42(12),727-733
    [45] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota, Aging Characteristics and HighTemperature Tensile Properties of Magnesium Alloys Containing Heavy Rare EarthElements, in: G.W. Lorimer(Ed.), Proceedings of the3rd International MagnesiumConference, Manchester, UK,1996; Institute of Materials,1997:327-342
    [46] I.A. Anyanwu, S.Kamado, Y. Kojima, Aging characteristics and high temperaturetensile properties of Mg-Gd-Y-Zr alloys, Materials Transactions,2001,42(7),1206-1211
    [47] I.A. Anyanwu, S.Kamado, Y. Kojima, Creep properties of Mg-Gd-Y-Zr alloys, MaterialsTransactions,2001,42(7),1212-1218
    [48] Y. Okubo, M. Shiono, S. Kamado, Y. Kojima, Improvement of Tensile PropertiesMg-Gd-Y-Zn-Zr Alloys Containing Long Period Staching Order Strcture by Optimizing AlloyComposotions, in: B.S. You, K.S. Shin, S. Kamado, W. Ding(Ed.), Proceeding of the1stAsian Symposium on magnesium alloys (Ed. by), Jeju, Korea, October11-14,2005,43-46
    [49] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Mechanical properties ofwarm-extruded Mg-Zn-Gd alloy with coherent14H long periodic stacking orderedstructure precipitate, Scripta Materialia,2005,53(7),799-803
    [50] B.L. Mordike, Development of highly creep-resistant magnesium alloys, Journal ofMaterials Processing Technology,2001,117,391-394
    [51] I. Stulíková, B. Smola, F. von Buch, B.L. Mordike, Development of Creep ResistantMg-Gd-Sc Alloys with Low Sc Content, Mat.-wiss. u. Werkstofftech.,2001,32,20-24
    [52] B. Smola, I. Stulíková, J. Pelcova, F. von Buch, B.L. Mordike, Phase transformationsdue to isochronal annealing of Mg-Rare earth-Sc-Mn squeeze cast alloys, Zeitschrift fuerMetallkunde,2003,94(5),553-558
    [53] G.W. Lorimer, P.J. Apps, H. Karimzadeh, J.F. King, Improving the performance ofMg-rare earth alloys by the use of Gd or Dy additions, Materials Science Forum,2003,419-422,279-284
    [54] J.F. Nie, X. Gao, S.M. Zhu, Enhanced age hardening response and creep resistance ofMg-Gd alloys containing Zn, Scripta Materialia,2005,53(9),1049-1053
    [55]张新明,陈健美,邓运来等,Mg-Gd-Y-(Mn, Zr)合金的显微组织和力学性能,中国有色金属学报,2006,16(2),219-227
    [56]彭卓凯,张新明,陈健美等,Mn, Zr对Mg-Gd-Y合金组织与力学性能的影响,中国有色金属学报,2005,15(6),917-922
    [57] Z.-K. Peng, X.-M. Zhang, J.-M. Chen, Y. Xiao, H. Jiang, Grain refining mechanism inMg-9Gd-4Y alloys by zirconium, Materials Science and Technology,2005,21(6),722-726
    [58]张新明,陈健美,邓运来等,Mg-Gd-Y-Zr耐热镁合金的压缩变形行为,中国有色金属学报,2005,15(12),1925-1932
    [59]张新明,肖阳,陈健美等,挤压温度对Mg-9Gd-4Y-0.6Zr合金组织与力学性能的影响,中国有色金属学报,2006,16(3),518-523
    [60] S.M. He, X.Q. Zeng, L.M. Peng, et al., Microstructure and strengthening mechanismof high strength Mg-10Gd-2Y-0.5Zr alloy, Journal of Alloys and Compounds,2007,427,316-323
    [61] S.M. He, X.Q. Zeng, L.M. Peng, et al., Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%)alloy during isothermal ageing at250℃, Journal of Alloys and Compounds,2006,421,309-313
    [62] X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, et al., Microstructure evolution in aMg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at250℃, Materials Science andEngineering A,2006,431,322-327
    [63]何上明,Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[博士论文],上海,交通大学,2007
    [64] K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Effect of thermo-mechanical treatment onthe microstructure and mechanical properties of a Mg–6Gd–2Nd–0.5Zr alloy,MaterialsScience and Engineering A,2007,454-455,314-321
    [65] K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Effect of precipitation aging on the fracturebehavior of Mg–11Gd–2Nd–0.4Zr cast alloy, Materials Characterization,2007,454-455,314-321
    [66]郑开云,Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究[博士论文],上海,交通大学,2008
    [67]章桢彦,Mg-Gd-Sm-Zr系镁合金时效析出行为及强化机制的研究[博士论文],上海,交通大学,2009
    [68] Dehui Li, Jie Dong, Xiaoqin Zeng, Chen Lu, Wenjiang Ding, Characterization ofprecipitate phases in a Mg-Dy-Gd-Nd alloy, Journal of Alloys and Compounds,2006,439,254-257
    [69] Dehui Li, Jie Dong, Xiaoqin Zeng, Chen Lu,Wenjian g Ding, Characterization of β”precipitate phase in a Mg-Dy-Gd-Nd alloy, Materials Characterization,2007,58,1025-1028
    [70]李德辉,高性能Mg-Dy-Nd-(Gd)合金组织与性能的研究[博士论文],上海,交通大学,2008
    [71] Massaki Hisa, John C. Barry, Gordon L. Dunlop, New type of precipitate inMg-rear-earth alloys, Philosophical Magazine,2002,82,497-510
    [72] T. J. Pike, B. Noble, the formation and structure of precipitates in a dilutemagnesium-neodymium alloy, Journal of the Less-Common metals,1973,30,63-74
    [73] Gradwell KJ, PhD Thesis, University of Manchester,1972
    [74] D. H. Ping, K. Hono, J. F. Nie, Atom probe characterization of plate-like precipitates ina Mg-RE-Zn-Zr casting alloy, Scripta Materialia,2003,48,1017-1022
    [75] Kun Yu, Wenxian Li, Songrui Li, Production, Properties and Microstructures ofMg-RE-Zn-Zr alloy, Journal of Materials Science and Technology,2002,18,378-380
    [76] R. Wilson, C. J. Bettles, B. C. Muddle, J. F. Nie, Precipitation hardening inMg-3wt%Nd(-Zn) Casting alloys, Materials Science Forum,2003,419-422,267-272
    [77] P. A. Nuttall, T. J. Pike, B. Noble, Metallography of dilute Mg-Nd-Zn alloys,Metallography,1980,13,3-20
    [78] J. F. Nie, Effects of precipitate shape and orientation on dispersion strengthening inmagnesium alloys, Scripta Materialia,2003,48,1009-1015
    [79]郑成菊,张继元,刘双丽,刘喜明,冷却方式对Mg-3Nd合金微观组织和物相构成的影响,长春工业大学学报,2005,26(3),173-176
    [80]黄伯杰,聂邦盛,贾延杰等,Mg-Nd-Zn-Zr耐热高强铸造镁合金,特种铸造及有色合金,1998,6(6),40-42
    [81] Yan Yunqi, Zhang Tingjie, Deng Ju, et al., Microstructural Evolution and TensileProperties Features of Wrought Mg-Nd alloy, Rare Metal Materials and Engineering,2005,34,845-849
    [82]夏长清,武文花,刘双丽等,Mg-Nd-Zn-Zr稀土镁合金的热变形行为,中国有色金属学报,2004,11(14),1810-1816
    [83] Kocks U. F., Kinetics of solution hardening, Metallurgical transactions A,1985,16A,2109-2129
    [84] P. Lukác, Strengthening and softening in some magnesium base alloys, in: G. W.Lorimer (Ed.), Proc. of Third International Magnesium Conference, April10-12,Manchester,1996; The Institut of Materials,1997,381-390
    [85] A. Akhtar, E. Teghtsoonian, Solid Solution Strengthening of Magnesium SingleCrystals-Ⅰ, Ⅱ, Acta Metall,1969,17(11),1339-49,1951-56
    [86] A. Akhtar, E. Teghtsoonian, Substitutional Solution Hardening of Magnesium SingleCrystals, Phil. Mag.,1972,25,897-916
    [87] Yasumasa Chino, Motohisa Kado, Mamoru Mabuchi, Compressive deformationbehavior at room temperature-773K in Mg-0.2mass%(0.035at.%)Ce alloy, ActaMaterialia,2008,56,387-394
    [88] Barnett MR, Nave MD, Bettles CJ, Deformation microstructures and textures of somecold rolled Mg alloys, Materials Science and Engineering A,2004,386,205-211
    [89] S.R. Agnew, M.H. Yoo, C.N.Tome, Application of texture simulation to understandingmechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Materialia,2001,49,4277-4289
    [90] S.R. Agnew, J.W. Senn, J.A. Horton, Mg sheet metal forming: Lessons learned fromdeep drawing Li and Y solid-solution alloys, JOM,2006,58,62-69
    [91] C.H. Caceres, D.M. Rovera, Solid solution strengthening in concentrated Mg-Al alloys,Journal of Light Metals,2001,1,151-156
    [92] F. Penghuai, et al., Effects of heat treatments on the microstructures and mechanicalproperties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy, Materials Science and Engineering A,2008,486,183–192
    [93] A. J. Ardell, Precipitation hardening, Metall. Trans. A,1985,16A,2131-2165
    [94] B. L. Mordike, T. Ebert. Magnesium: properties-applications-potential, MaterialsScience and Engineering A,2001,302,37-45
    [95] F.R.N. Nabarro, The statistical problem of hardening. J. Less Common Met.,1972,28(2),257-276
    [95] A. Kelly, R. B. Nicholson, Precipitation hardening, Progress in Materials Science,1963,10,153-391
    [97] H.米格兰,材料的塑性变形与断裂,颜鸣皋等译,材料科学与技术丛书(第6卷),北京,科学出版社,1998
    [98] L.M. Brown, R.K. Ham, in: Strengthening Methods in Crystals, A. R. B. Nicholson(Eds.), London, Applied Science Publishers Ltd.,1971,9-135
    [99] H. Gleiter, Theory of prismatic cross-slip of dislocations in the vicinity ofprecipitations, Acta Metallurgica,1967,15,1213-1221
    [100] H. Gleiter, Experimental investigation of prismatic cross-slip of dislocations in thevicinity of coherent, strained precipitations, Acta Metallurgica,1967,15,1221-1228
    [101] D.H. Bae, Y. Kim, I.J. Kim, Thermally stable quasicrystalline phase in a superplasticMg-Zn-Y-Zr alloy, Materials Letters,2006,60,2190-2193
    [102] N. Raghunathan, T. Sheppard, Materials Science and Technology,1990,6,629-640
    [103] G. Nussbaum, Strengthening mechanisms in the rapidly solidified AZ91magnesiumalloy, Scripta Metallurgica,1989,23,1079-1084
    [104] B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesiumcontaining high volume fractions of yttria dispersoids, Materials Science and EngineeringA,2000,277,297-304
    [105] Xuefeng Guo, Sergei Remennik, Chunjie Xu, Dan Shechtman, Development ofMg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr magnesium alloy and its microstructural evolutionduring processing, Materials Science and Engineering A,2008,1-2,266-273
    [106] X.F. Guo, D. Shechtman, Reciprocating extrusion of rapidly solidifiedMg-6Zn-1Y-0.6Ce-0.6Zr alloy, Journal of Materials Processing Technology,2007,187-188,640-644
    [107] K. Nakashima, H. Iwasaki, T. Mori, M. Mabuchi, M. Nakamura, T. Asahina,Mechanical properties of a powder metallurgically processed Mg-5Y-6RE alloy, MaterialsScience and Engineering A,2000,293,15-18
    [108]吴人洁,复合材料,天津,天津大学出版社,2000
    [109] Cai Y, Tan MJ, Shen GJ, Microstructure and heterogeneous nucleation phenomenain cast SiC particles reinforced magnesium composite, Materials Science and EngineeringA,2000,282(1-2),232-239
    [110] Inem B, Pollard G, Interface structure and fractography of a magnesium-alloy,metal-matrix composite reinforced with SiC particles, Journal of Materials Science,1993,28(16),4427-4434
    [111]郑明毅,吴昆,赵敏等,不连续增强镁基复合材料的制备与应用,宇航材料工艺,1997,6,6-9
    [112] A. Arunachaleswaran, I.M. Pereira, H. Dieringa, Y. Huang, N. Hort, B.K. Dhindaw, K.U.Kainer, Creep behavior of AE42based hybrid composites, Materials Science andEngineering A,2007,460-461,268-276
    [113] Z. Szaraz, Z. Trojanova, M. Cabbibo, E. Evangelista, Strengthening in a WE54magnesium alloy containing SiC particles, Materials Science and Engineering A,2007,462,225-229
    [114] K. N. Braszczynska, L. Litynska, A. Zyska, W. Baliga, TEM analysis of the interfacesbetween the components in magnesium matrix composites reinforced with SiC particles,Materials Chemistry and Physics,2003,81,326-328
    [115] Edward Ghali, Wolfgang Dietzel, Karl-Ulrich Kainer, General and localized corrosionof Magnesium alloys: a critical review, Journal of Materials Engineering and Performance,2004,13,7-23
    [116] B. Smola, I. Stulíková, F. von Buch, B.L. Mordike. Structural aspects of highperformance Mg alloys design, Materials Science and Engineering A,2002,324(1-2),113-117
    [117] GW Lorimer, Structure-property relationships in cast magnesium alloys, In:Proceedings Magnesium Technology, GW Lorimer (ed.), London, Institute of Metals,1986,47-53
    [118] J.F. Nie, B.C. Muddle, Precipitation in magnesium alloy WE54during isothermalageing at250°C, Scripta Materialia,1999,40(10),1089-1094
    [119] J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in aMg-Y-Nd alloy, Acta Materialia,2000,48(8),1691-1703
    [120] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Hardeningprecipitation in a Mg-4Y-3RE alloy, Acta Materialia,2003,51(18),5335-5348
    [121] P.J. Apps, H. Karimzadeh, J.F. King, G.W. Lorimer. Precipitation reactions inmagnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, Scripta Mater.2003,48(8),1023-1028
    [122] P.J. Apps, H. Karimzadeh, J.F. King, G.W. Lorimer, Phase compositions inmagnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, ScriptaMaterialia,2003,48(5),475-481
    [123] T. Honma, T. Ohkubo, K. Hono, S. Kamado, Chemistry of nanoscale precipitates inMg-2.1Gd-0.6Y-0.2Zr (at.%) alloy investigated by the atom probe technique, MaterialsScience and Engineering A,2005,395,301-306
    [124] J. F. Nie, Effects of Precipitate Shape and Orientation on Dispersion Strengthening inMagnesium Alloys, Scripta Materialia,2003,48(8),1009-1015
    [125] J. F. Nie, Preface to Viewpoint set on: Phase Transformations and Deformation inMagnesium Alloys, Scripta Materialia,2003,48(8),981-984, p.261
    [126]杜林,挤压工艺和退火制度对ZK01合金力学和阻尼性能的影响[硕士论文],上海,交通大学,2008
    [127] M. Suzuki, T. Kimura, J. Koike, K. Maruyama, Effects of zinc on creep strength anddeformation substructures in Mg-Y alloy, Materials Science and Engineering A,2004,387-389,706-709
    [128] K. Maruyama, M. Suzuki, H. Sato, Creep strength of magnesium-based alloys, Metall.Mater. Trans. A,2002,33,875-885
    [129] M. Suzuki, K. Tsuchida, K. Maruyama, Micro-alloying Effects of Ca, Ag, Ni and Zn onMechanical Properties in an Mg-3mass%Y Alloy, Materials Science Forum,2007,561-656,231-234
    [130] M. Suzuki, T. Kimura, J. Koike, Creep behavior and deformation substructure ofMg-Y alloys containing dilute content of zinc, Materials Science Forum,2003,426-432,593-598
    [131] Abe E, Kawamura Y, Hayashi K, Inoue A., Long-period ordered structure in ahigh-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolutionZ-contrast STEM, Acta Materialia,2002,50,3845-3857
    [132] Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H, Novelequilibrium two phase Mg alloy with the long-period ordered structure, Scripta Materialia,2004,51,711-714
    [133] B. Chen, D. Lin, X. Zeng, C. Lu, Journal of Alloys and Compounds,2007,440,94-100
    [134] M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura, Acta Materialia,2007,55,6798-6805
    [135] T. Honma, T. Ohkubo, S. Kamado, K. Hono, Acta Materialia,2007,55,4137-4150
    [136] J.C. Oh, T. Ohkubo, T. Mukai, K. Hono, Scripta Materialia,2005,53,675-679
    [137] C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Materials Science andEngineering A,2006,435-436,163-171
    [138]T.T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono,2006,55,251-254
    [139] Daquan Li, Qudong Wang, Wenjiang Ding, Materials Science and EngineeringA,2006,428,295-300
    [140] Daquan Li, Qudong Wang, Wenjiang Ding, Materials Science and EngineeringA,2007,448,165-170
    [1] L.L. Rokhlin, Magnesium alloys containing rare earth metals, London:Taylor andFrancis,2003
    [2]中国航空材料手册辑委员会,中国航空材料手册(第二版),第3卷,铝合金镁合金,中国标准出版社,2002,534-542
    [3]黄伯杰,聂邦盛,贾延杰等,Mg-Nd-Zn-Zr耐热高强铸造镁合金,特种铸造及有色合金,1998,6(6),40-42
    [4] Ma Qian, D. H. StJohn, M. T. Frost, Zirconium alloying and grain refinement ofMagnesium alloys, in: Magnesium Technology2003, edited by Howard I. Kaplan, TMS,2003,209-214
    [5]袁广银,铋和锑对镁铝合金显微组织和力学性能的影响[博士论文],南京,东南大学,1999
    [6]吕宜振,Mg-Al-Zn合金组织、性能、变形和断裂行为研究[博士论文],上海,交通大学,2001
    [7]靳丽,等通道角挤压变形镁合金微观组织与力学性能研究[博士论文],上海,交通大学,2006
    [1] P. A. Nuttall, T. J. Pike, B. Noble, Metallography,1980,13,3-20
    [2]吕宜振,Mg-Al-Zn合金组织、性能、变形和断裂行为研究[博士论文],上海,交通大学,2001
    [3] F. Penghuai, P. Liming, J. Haiyan, et al., Mater. Sci. Eng. A,2008,486,183-192
    [4] F. Penghuai, P. Liming, J. Haiyan, et al., Mater. Sci. Forum,2007,546-549,97-100
    [5] F. Penghuai, P. Liming, J. Haiyan, et al., Mater. Sci. Eng. A,2008,486,572-579
    [6] L.L. Rokhlin, Magnesium alloys containing rare earth metals, London:Taylor andFrancis,2003
    [7] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM International, OH:Metal Park,1999,241
    [8] Massaki Hisa, John C. Barry, G. L. Dunlop, Philosophical Magazine,2002,82,497-510
    [9] R. Wilson, C. J. Bettles, B.C. Muddle, et al., Mater. Sci. Forum,2003,419-422,267-272
    [10] J. F. Nie, Scripta Materialia,2003,48,1009-1015
    [1] F. Penghuai, P. Liming, J. haiyan, et al., Mater. Sci. Eng. A,2008,486,183
    [2] F. Penghuai, P. Liming, J. haiyan, et al., Mater. Sci. Forum,2007,546-549,97-100
    [3] Yasumasa Chino, Motohisa Kado, Mamoru Mabuchi, Acta Materialia,2008,56,387
    [4] M. Suzuki, H. Sato, K. Maruyama, H. Oikawa, Mater. Sci. Eng. A,2001,319-321,751
    [5] J. Koike, T. Kobayashi, T. Mukai, et al., Acta Materialia,2003,51,2055
    [6] S.R. Agnew, O. Duygulu, International Journal of Plasticity,2005,21,1161
    [7] S.R. Agnew, J.A. Horton, M.H. Yoo, Metall. Mater. Trans. A,2002,33,851
    [8]胡赓祥,蔡珣,材料科学基础,上海交通大学出版社,2000,p158
    [9]靳丽,等通道角挤压变形镁合金微观组织与力学性能研究[博士论文],上海,交通大学,2006
    [10] L.L. Rokhlin, Magnesium alloys containing rare earth metals: London, Taylor andFrancis,2003
    [11] S.R. Agnew, M.H. Yoo, C.N.Tome, Acta Materialia,2001,49,4277
    [12] Barnett MR, Nave MD, Bettles CJ, Mater. Sci. Eng. A,2004,386,205
    [13] Y. Chino, M. Kado, M. Mabuchi, Mater. Sci. Eng. A,2008,494,431
    [14] M. Kato, Introduction to the Theory of Dislocations,1st ed., Shokabo, Tokyo,1999
    [15] Aditi Datta, U.V. Waghmare, U. Ramamurty, Acta Materialia,2008,56,2531
    [16] J.F. Nie, X. Gao, S.M. Zhu, Scripta Materialia,2005,53,1049
    [17] T. Honma, T. Ohkubo, S. Kamado, K. Hono, Acta Materialia,2007,55,4137
    [18] J.C. Oh, T. Ohkubo, T. Mukai, K. Hono,2005,53,675
    [19] C.L. Mendis, C.J. Bettles, M.A. Gibson, et al., Mater. Sci. Eng. A,2006,435-436,163
    [20] T.T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono, Scripta Materialia,2006,55,251
    [21] M. Suzuki, T. Kimura, J. Koike, K. Maruyama, Mater. Sci. Eng. A,2004,387-389,706
    [22] K. Maruyama, M. Suzuki, H. Sato, Metall. Mater. Trans. A,2002,33,875
    [23] M. Suzuki, T. Kimura, J. Koike, Materials Science Forum,2003,426-432,593
    [24] Abe E, Kawamura Y, Hayashi K, Inoue A., Acta Materialia,2002,50,3845
    [25] M. Yamasaki, M. Sasaki, M. Nishijima, et al., Acta Materialia,2007,55,6798
    [26] J.F. Nie, K. Oh-ishi, X. Gao, K. Hono, Acta Materialia,2008,56,6061
    [27] A. Akhtar, E. Teghtsoonian, Acta Metall,1969,17(11),1339
    [28] A. Akhtar, E. Teghtsoonian, Acta Metall,1969,17(11),1951
    [29] A. H. Blake, C. H. Caceres, Solid solution effects on the tensile behavior ofconcentrated Mg-Zn alloys, in: Magnesium Technology2005, edited by N.R.Neelameggham, H.I. Kaplan, and B.R. Powell, TMS,2005,403
    [30] S. Ando, H. Tonda, Mater. Trans.,2000,41,1188
    [31] Y. Yoshinaga, R. Horiuchi, Tans. Japan Inst. Metals,1964,4,134
    [32] A. Ahmadich, J. Mitchell, J.E. Dorn, Trans. Am. Inst. Min. Engrs,1965,233,1130
    [1] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM, USA,1999
    [2] P. A. Nuttall, T. J. Pike, B. Noble, Metallography of dilute Mg-Nd-Zn alloys,Metallography,1980,13,3-20
    [3] R. Wilson, C. J. Bettles, B. C. Muddle, J. F. Nie, Precipitation hardening in Mg-3wt%Nd(-Zn) Casting alloys, Materials Science Forum,2003,419-422,267-272
    [4] T. J. Pike and B. Noble, the formation and structure of precipitates in a dilutemagnesium-neodymium alloy, Journal of the Less-Common metals,1973,30,63-74
    [5] L. Qian, H. Toda, S. Nishido, T. Kobayashi, Acta Mater,2006,54,4881-4893
    [6] H. Cao, M. Wessen, Effect of Microstructure on Mechanical Properties of As-CastMg-Al Alloys, Metall. Mat. Trans. A,2004,35A,309-319
    [7] M. Bamberger, Structural refinement of cast magnesium alloys, Materials Science andTechnology,2001,17(1),15-24
    [8] S.M. He, X.Q. Zeng, L.M. Peng, et al., Journal of Alloys and Compounds,2007,427,316-323
    [9] F. Penghuai, P. Liming, J. Haiyan, et al., Mater. Sci. Eng. A,2008,486,183-192
    [10] L.L. Rokhlin,Magnesium alloys containing rare earth metals, London:Taylor andFrancis,2003
    [1]邓文英,金属工艺学(上册),第4版,北京,高等学校教材,2000
    [2] B. Li, E. Ma, K.T. Ramesh, Metallurgical and Materials Transactions A,2008,39A,2607-2614
    [3] N. Stanford, M.R. Barnett, Materials Science and Engineering A,2008,496,399-408
    [4] L W F Mackenzie, B Davis, F J Humphreys, G W Lorimer, Materials Science andTechnology,2007,23(10),1173-1180
    [5] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM, USA,1999, p.241
    [6] Yongjun Chen, Qudong Wang, Jianguo Peng, Chunquan Zhai, Wenjiang Ding, Journalof Materials Processing Technology,2007,182,281-285
    [7] C.Y. Yu, P.W. Kao, C.P. Chang, Transition of tensile deformation behaviors inultrafine-grained aluminum, Acta Materialia,2005,53,4019-4028
    [8] M.R. Barnett, Scripta Materialia,2008,59,696-698
    [9] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Materialia,2004,52,5093-5103
    [10] N.V. Ravi Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, M. Suery, Materials andEngineering A,2003,359,150-157
    [11] Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata, N. Bekku, Materials andEngineering A,2006,434,131-140
    [12] M. Nakanishi, M. Mabuchi, N. Saito, M. Nakamura, Journal of materials scienceletters,1998,17,2003-2005
    [13] G. Garces, M. Maeso, P. Perez, P. Adeva, Effect of extrusion temperature onsuperplasticity of PM-WE54, Materials and Engineering A,2007,462,127-131
    [14] L.L. Rokhlin, Magnesium alloys containing rare earth metals, London:Taylor andFrancis,2003
    [15] H.T. Zhou, Z.D. Zhang, C.M. Liu, Q.W. Wang, Effect of Nd and Y on the microstructureand mechanical properties of ZK60alloy, Materials and Engineering A,2007,445-446,1-6
    [16] Ya Zhang, Xiaoqing Zeng, Chen Lu, Wenjiang Ding, Materials and Engineering A,2006,428,91-97
    [17] Chunjiang Ma, Manping Liu, Guohua Wu, Wenjiang Ding, Yanping Zhu, Tensileproperties of extruded ZK60-RE alloys, Materials and Engineering A,2003,349,207-212
    [18] T. Mohri, M. Mabuchi, N. Saito, M. Nakamura, Microstructure and mechanicalproperties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment, Materialsand Enginering A,1998,257,287-294
    [19] J. Cizek, I. Prochazka, B. Smola, I. Stulikova, R. Kuzel, Z. Matej, V. Cherkaska, R.K.Islamgaliev, O. Kulyasova, Microstructure investigations of ultra-fine grained Mg-Gd alloysprepared by high pressure torsion, phys. stat. sol.(c),2007,4,3591-3594
    [20] L. L. Rokhlin, N.I. Nikitina, Metal Science and Heat Treatment,1996,38,171-173
    [21] K. Matsubara, Y. Miy ahara, Z. Horita, T.G. Langdon, Metallurgical and MaterialsTransactions A,2004,35A,1735-1744
    [22] E.A. Ball, P.B. Prangnell, Scripta Metallurgica et Materiala,1994,31,111-116
    [23] Sean R. Agnew, Ozgur Duygulu, Plastic anisotropy and the role of non-basal slip inmagnesium alloy AZ31B, International Journal of Plasticity,2005,21,1161-1193
    [24] J. Koike, T. Kobayashi, T. Mukai, et al, The activity of non-basal slip systems anddynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, ActaMaterialia,2003,51,2055-2065
    [25] Wyrzykowski JW, Grabski MW, Lüders deformation in ultrafine-grained purealuminium, Materials and Engineering A,1982,56,197-200
    [26] Tsuji N, Ito Y, Saito Y, Minamino Y, Scripta Materialia,2002,47,893-899
    [27] Hayes JS, Keyte R, Prangnell PB, Mater Science and Technology,2000,16,1259
    [28] S.R. Agnew, J.W. Senn, J.A. Horton, Mg sheet metal forming: Lessons learned fromdeep drawing Li and Y solid-solution alloys, JOM,2006,58,62-69
    [29] Y.N. Wang, J.C. Huang, The role of twinning and untwinning in yielding behavior inhot-extruded Mg-Al-Zn alloy, Acta Materialia,2007,55,897-905
    [30] Yasumasa Chino, Katsuya Kimura and Mamoru Mabuchi, Materials and Engineering A,2008,494,343-349
    [31] Y.M. Wang, E. Ma, Acta Materialia,2004,52,1699-1709
    [32] Wang YM, Chen MW, Zhou FH, Ma E, Nature,2002,419,912-915
    [33] G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, Acta Materialia,2006,54,1759-1766
    [34] Honeycombe, Robert W. K., The plastic deformation of metals, London,1984, p.154
    [35] G.E.迪特尔(美),李铁生等译,力学冶金学,机械工业出版社,1986,p341
    [36] Q. Yang, A.K. Ghosh, Deformation behavior of ultrafine-grain (UFG) AZ31B Mg alloyat room temperature, Acta Materialia,2006,54,5159-5170
    [37] P.C. Hung, P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang, Inhomogeneous tensile deformationin ultrafine-grained aluminum, Scripta Materialia,2005,53,647-652
    [38] Jia, D., Wang, Y.M., Ramesh, K.T., et al., Deformation behavior and plastic instabilitiesof ultrafine-grained titanium, Applied Physics Letters,2001,79(5),611-613
    [39] K.U. Kainer, Microstructure, mechanical properties and deformation behaviour ofextruded magnesium alloys, in: Magnesium Alloys and Their Applications, B.L. Mordike,K.U. Kainer, Weinheim, WILEV-VCH,2000,596-601
    [40]陈振华,夏伟军,程永奇等,镁合金织构与各向异性,中国有色金属学报,2005,15(1),1-11
    [41]何上明,Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[博士论文],上海,交通大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700