基于Dempster-Shafer理论的金属图像融合分割方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理及分析技术已在材料科学、生物医学、自动控制、航空航天等学科领域展示出学科交叉的巨大潜力。研究图像处理及分析技术在材料学中的应用,特别是图像分割技术的基础理论研究,不仅是图像处理及分析研究的基础,也是各种图像处理方法及应用的基础,其成果为材料科学的研究与发展提供了坚实的基础,具有较为重要的研究意义和广泛的应用价值。
     在材料科学中,图像分析处理技术可以对金属金相图像中不同组织成分进行分割、提取、识别及其应用。利用显微组织特征、大小、分布与各种机械性能、物理性能之间的有规律的函数关系,可观察了解显微组织的各种参数对材料性能的影响,根据晶粒尺寸大小可预测材料性能。定量地测量材料的显微结构(测出各种参数)对材料研究非常重要。通过合适的图像分割技术可以对金属金相图像的不同组织成分先进行精确分割,然后提取、分析和应用,因此金属图像分割技术的研究是一项非常重要和必要的基础性研究。金属图像分割作为金属图像处理的一个重要分支正向高质量、高效率、高稳定性和自动化方向发展。
     本文从图像分割的理论、方法、技术和应用等方面入手进行了系统、全面、深入的研究,针对金属图像的特点及目前技术方法中的不足和遇到的困难,进行了深入的分析和探讨,提出了一系列相应的模型和改进方法,取得了良好的效果。
     本文研究了马尔科夫随机场图像模型的理论和分割方法。采用统计决策和参数估计相结合的方法,根据最大后验概率(MAP)优化准则来确定目标函数,建立马尔科夫随机场图像分割模型。与其它分割算法的比较,可以看出一般图像分割方法仅考虑图像的灰度信息,而基于马尔科夫随机场模型的图像分割考虑灰度信息的同时,还考虑了空间邻域信息。金属图像分割实验的研究表明,马尔科夫随机场图像分割方法具有较好的分割结果。
     本文对传统模糊C-均值聚类方法的图像分割技术进行了探讨,研究了模糊C-均值聚类方法中的聚类类别数、模糊加权指数、代截止误差ε等几个影响分割的重要参数,分析了模糊C-均值聚类进行图像分割存在的问题和困难。重点分析和讨论了模糊C-均值聚类方法进行图像分割过程中的重要参数:一是聚类类别数C,二是模糊加权指数m,三是迭代截止误差ε等相关参数,然后研究和分析了初始化聚类中心问题,进行了初始化聚类中心对图像分割结果影响的分析和讨论。传统模糊C-均值聚类图像分割算法对图像中的噪声较为敏感。研究发现考虑图像空间邻域信息,可以改善图像分割质量并具有抗噪声或消除噪声的作用。为此我们提出一种新的模糊C-均值聚类算法。
     通过对图像灰度信息和空间邻域等信息的分析研究,利用图像的空间邻域关系,将一维直方图拓展为具有空间邻域关系的二维直方图,设计了一种简单有效的二维距离度量方法。提出聚类中心在像素值和邻域像素值二维方向上同时更新的新方法,通过建立包含邻域信息的新的聚类目标函数,得到基于邻域空间信息的二维FCM图像分割新算法。实验和分析结果表明,所提出的考虑邻域空间信息的模糊C-均值聚类图像分割新算法具有很强的抗噪性能力,有较好的分割结果。
     本文分析和研究了大多数图像分割方法中关联信息均不能充分利用,针对图像自身及拓展信息浪费的问题。论文深入探讨了Dempster-Shafer理论,利用Dempster-Shafer理论具有整合多源信息的特点,分析了可应用的各种先验信息,讨论了图像间的信息融合问题,特别是两幅图像甚至多幅图像间的融合。分析了如何充分利用图像及相关信息。提出一种基于Dempster-Shafer理论、马尔科夫随机场、模糊理论的图像融合分割的新方法。并分析和讨论了Dempster-Shafer理论的基本概率赋值方法。
     尽管马尔科夫随机场分割和二维直方图模糊聚类分割所用的图像信息比一般分割方法多,且各不相同,但均不能完整利用信息,部分信息不准确且有信息损失。将马尔科夫随机场分割结果和模糊聚类的二维直方图分割结果做差值,提取差值图像作为冗余图像,应用Dempster-Shafer理论进行原始图像与冗余图像的信息融合分割,可以充分利用图像自身信息和不完整的信息、不准确的部分信息甚至是有缺陷的信息。模拟图像、CT工业图像、MR图像和实际金属图像的融合分割实验结果表明,所提出的基于马尔科夫随机场、模糊聚类和D-S理论的融合分割方法不仅适用于金属图像、工业CT图像,而且适用于MR图像。可以提高分割精度和质量,并具有很强的抗噪能力,是一种良好的自动、适应性强的分割方法,具有广泛的研究和应用价值。
     总之,图像分割技术的发展,必将推动材料科学的研究与应用,推动材料科学的进一步发展,在各种学科领域中得到更广泛的应用。
Image processing and analysis techniques show the interdisciplinary potential in materials science, biomedical science, automatic control, aerospace and other fields. The study of application of image processing and analysis techniques in materials science, especially the study of image segmentation, not only is the basis of image processing and analysis, was the basis for various image processing method and application. And its result provides a firm basis for materials science research and development, so it has important research foreground and widespread application value.
     In materials science, we can segment metal metallographic image to extract and discern different components through image processing and analysis techniques. We can observe the influence of microstructural parameters on the properties of materials, and to predict material properties according to the grain size, using the characteristics, size, distribution of microstructure and a regular functional relationship between various mechanical properties and physical properties. It is very important to measure quantitatively and to seek out various parameters. We can segment the different components of metal metallographic image to extract and apply them through image segmentation techniques, so study of metal image segmentation is a very important and basic research. Metal image segmentation as an important branch of metal image processing is developing toward high quality, high efficiency, high reliability and automation.
     This thesis has conducted systematic, comprehensive and in-depth research from the aspects of image segmentation theory, methods, techniques and applications. This thesis makes a deep analysis and discussion according to the characteristics of the metal image and the shortage of the technology and methods and the difficulties that they have ever met. And also makes a series of models and improved methods which achieved good results.
     This thesis studies on the theory of Markov random field image model and segmentation method. This thesis uses Statistical dec ision-making and parameter estimation method of combination and according to the maximum a posteriori (MAP) optimization criterion determines the objective function. Finally creates a Markov random field image segmentation model. Compared with other segmentation algorithms, we can see that the general image segmentation methods only consider image gray level information, however, based segmentation of Markov random field model not only consider the gray-scale information but also takes into account the spatial information. The metal image segmentation experiments show that Markov random field image segmentation method has better segmentation results.
     This thesis has conducted in-depth research and analysis of fuzzy C-means clustering image segmentation algorithm. This thesis studies the selection of initial parameters and also analyes the problems existing in the fuzzy C-means clustering image segmentation algorithm. This thesis focuses on the influence of and initial cluster centers the relevant parameters such as clustering category number, fuzzy weighted index and iterative cut-off error on image segmentation results.
     Fuzzy C-means clustering image segmentation algorithm is more sensitive to noise. To solve this problem, we propose a new fuzzy C-means clustering algorithm.
     Through analysis of the image gray information and spatial information, we take advantage of image space neighborhood relations to expand the one-dimensional histogram to the two-dimensional histogram with spatial neighborhood relations. Then we design a simple distance measurement method. We proposed to set up the new cluster objective function which includes neighborhood information, through the distance measurement between the pixel value of clustering center and the value of neighborhood pixels. Eventually we can get fuzzy C-means clustering image segmentation algorithm with neighborhood spatial information. The segmentation and analysis results of metal images and simulated images show that the fuzzy C-means clustering image segmentation algorithm with neighborhood spatial information has a strong noise immunity ability and good segmentation results.
     According to the problem that a lot of relevant information is wasted because of not being utilized fully in common methods of image segmentation, this thesis has a deep analysis of the D-S theory, D-S theory has the characteristics of integration of multi-source information. It can fusion between all kinds of prior information and image information, also it can fusion between two images and even more. So It can make full use of image and related information. This thesis presents a new method of image fusion segmentation based on D-S theory, Markov random field and fuzzy theory, and then analyzes and discusses the basic probability assignment method of D-S theory.
     Although the image information each are not identical which Markov random field segmentation and two-dimensional histogram fuzzy cluster segmentation uses, they are not full use of information and some information is not accurate and some information lose. We put the difference between Markov random field segmentation results and fuzzy clustering two-dimensional histogram segmentation results as a redundant image. Then we use D-S theory to make up for defects caused by incompleteness, inaccuracy and uncertainty of information.
     The results of fusion and segmentation experiments of metallographic images, CT images, MR images and simulated images and show that the method of image fusion segmentation which based on D-S theory, Markov random field and fuzzy theory can improve the accuracy of segmentation and quality. And the method has a strong anti-noise capability. It's a automatic, stable method so it has extensive research and application value.
     In a word, the development of image segmentation technology will promote the research and the application of materials science, it also promotes the further development of materials science. And it get more extensive application in various fields.
引文
[1]章毓晋,图像分割.北京:科学出版社,2001
    [2]徐建林,路阳,李文生,王智平,朱小武,体视学与图像分析技术在材料科学中的应用,金属热处理,2005,4(30):7-10
    [3]周玉,武高辉,材料分析测试技术—材料X射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社,1998
    [4]单鹂娜,李大勇,金相组织计算机图像处理与识别技术研究现状,中国铸造装备与技术,2005,1:4-7
    [5]刘国权,刘胜新,金相学和材料显微组织定量分析技术,中国体视学与图像分析,2002,12(7):248-251
    [6]王建萍,王家平,许建广,数字图像处理在定量金相分析中的应用,材料导报,2003,17(1):63-77
    [7]陈岳林,汪杰君,金相组织定量识别分析研究,特种铸造及有色合金,2005,3(25):135-138
    [8]李志敏,夏志坚,定量金相的图像分析技术,光电工程,1995,22(4):46-50
    [9]王智平,铸铁金相组织识别的机算机图像处理系统,铸造,1996,(1)45-47
    [10]宋晓艳,体视学、图像分析与计算材料学之间的关系及进展,中国体视学与图像分析,2008,13(4)280-285
    [11]刘国权,材料三维显微组织形态研究的进展与展望,CT理论与应用,2000,9(9):148-153
    [12]余永宁,刘国权,体视学—组织定量分析的原理和应用.北京:冶金工业出版社,1989
    [13]刘国权,刘胜新,黄启今等,金相学和材料显微组织定量分析技术,中国体视学与图像分析,2002,4:248-251
    [14]刘国权,张禹,秦湘阁等,材料显微组织三维观测与基于图像的模型研究,中国体视学与图像分析,2001,1:46-49
    [15]刘国权,宋晓艳,于海波等,颗粒复合材料中的三维晶粒长大与显微组织仿真设计研究,中国体视学与图像分析,2003,1:55-58
    [16]翟改霞.基于数字技术的铸铁图像分析:[博士学位论文].呼和浩特:内蒙古 农业大学,2007
    [17]王建萍.基于数字图像处理的金相几何参数的定量分析与研究:[硕士学位论文].杭州:浙江大学,2003
    [18]张海军.基于数字图像处理技术的灰铸铁金相分析:[博士学位论文].呼和浩特:内蒙古农业大学,2008
    [19]罗希平,田捷,图像分割方法综述,模式识别与人工智能,1999,12(9):300-312
    [20]林瑶,田捷,图像分割方法综述,模式识别与人工智能,2002,15(2):192-203
    [21]Kenneth R.Castleman. Digital Image Processing. UpperSaddle River:Prentice Hall,1996
    [22]李强,医学图像分割进展,中国医疗设备,2010,25(5):121-124
    [23]田捷,包尚联,周明全,医学影像处理与分析.北京:电子工业出版社,2003
    [24]辜碧容.核磁共振图像中的肝脏分割技术的研究与实现:[硕士学位论文].上海:上海交通大学,2008
    [25]Geman S. and Geman D..1984. Stochastic relaxation Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence,1984,6(6):721-741
    [26]Lakshmanan S., Derin H.. Simultaneous parameter estimation comcomcom segmentation of Gibbs random fields using simulated annealing. IEEE Transactions on pattern analysis and machine intelligence,1989,11(8):799-813
    [27]Donald Geman, Stuart Geman, Christine Graffigne, etal.Boundary Detection by Constrained Optimazation. IEEE Trans On Pattern Analysis and Machine Intelligence,1990,12 (7):609-628
    [28]WeianDeng, S.Sitharama Iyengar. A new probabilistic relaxationscheme and its application to edge detection. IEEE Trans.onPattern Analysis and Machine Intelligence,1996,18(4):432-437
    [29]Michael W.Hansen, William E.Higgins. Relaxation Method for Supervised Image Segmentation. IEEE Trans On Pattern Analysis and Machine Intelligence,1997,19 (9):946-962
    [30]Hansen M W, Higgins W E. Relaxation Method for Supervised Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence,1997, 19(9):946-962
    [30]Gupta L, Sortrakul T. A Gaussian Mixture Based Image Segmentation Algorithm Patten Recognition.1998,31(3):315-326
    [32]W.E. Blanz and S.L.Gish. A connectionist classifier architecture applied to image segmentation. In:Proc.10th ICPR. New Jersey,1990
    [33]N.Babaguchi,K.Yamada,K.Kisc and T.Tezuka. Connectionist model binarization. In:Proc.10th ICPR. New Jersey,1990
    [34]A. Ghosh, N.R. Pal and S.K. Pal. Image segmentation using a neural network. Biol. Cybern.1991,151-158
    [35]J. Shah. Parameter estimation multi-scale representation and algorithms for energy-minimizing segmentation. In:Proc. Int. conf Patten Recognition,1990
    [36]Guido Valli.Neural networks and prior knowledge help the segmentation of medical image. Florence:University of Florence,1994.
    [37]Haralick R M. Digital Step Edges from Zero Crossing of Second Directional Derivatives. IEEE Trans on Pattern Analysis and Machine Intelligence,1984,6(1): 58-68
    [38]Liang K H, Tjahajadi T, Yang Y H. Roof Edge Detection Using Regularized Cubic B-Spline Filtering Patten Recognition,1997,30(5):719-728
    [39]田捷,等.实用图像处理技术.北京:电子工业出版社,1994
    [40]A. X. Falcao, J. K. Udupa, S. Samarasekera etal. User-steered Image Segmentation Paradigms:Live Wire and Live Lane, Graphic models and Image Processing,1998,233-260
    [41]Canny J A Computational Approach to Edge Detection IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8(6):679-698
    [42]Freeman W T, Adelmn E H. The Design and Use of Steer able Filters. IEEE Trans on Patten Analysis and Machine Intelligence,1991,13(9):891-906
    [43]Y. G. Leclerc, constructing Simple Stable Descriptions for Image Partitioning. IEEE Trans On Pattern Analysis and Machine Intelligence,1989,3(1) 73-102.
    [44]Vishvjit S.Nalwa and Thomas O.Binford. On Detecting Edges. IEEE Trans On Pattern Analysis and Machine Intelligence,1986,8(6):699-711.
    [45]Robert M.Haralick, Digital Step Edges from Zero Crossing of Second Directional Derivatives. IEEE Trans On Pattern Analysis and Machine Intelligence,1984, 6(1)58-68
    [46]Lawrence H.Staib and James S.Duncan. Boundary Finding with Parametrically Deformable Models. IEEE Trans On Pattern Analysis and Machine Intelligence,1992, 14(11):1061-1075
    [47]Ardeshir Goshtasby, Design and Recovery of 2-D and 3-D Shapes Using Rational Gaussian Curves and Surfaces[J]. International Journal of Computer Vision, 1993,10(3):.233-256
    [48]A.Hummel. Representations based on zero-crossings in scale-space. In:Proc. IEEE Computer Vision and Pattern Recognition Conf,1986
    [49]Francine Catte, Pierre-Louis Lions, Jean-Michel Morel and Tomeu Coll.Image Selective Smoothing and Edge Detection by Nonlinear Diffusion Ⅱ. SIAM J. Numer. Anal 1992,29(3):845-866.
    [50]Mark Nitzberg and Takahiro Shiota. Nonliear Image Filtering with Edge and Corner Enhancement. IEEE Trans On Pattern Analysis and Machine Intelligence, 1992,14(8):826-833
    [51]Song Chun Zhu and David Mumford. GRADE:Gibbs Reaction and Diffusion Equations.International Conference On Computer Vision,1998,847-854
    [52]Ping Liang and Y.F.Wang. Local scale controlled anisotropic diffusion with local noise estimate for image smoothing and edge detection. In:Int. Conf. On Computer Vision,1998
    [53]Kass M, Witkin A, Terzopoulos D. Snakes:active contour models. International Journal of Computer Vision,1988,1(4):321-331
    [54]Terzopoulos D, Kass M, Witkin A I. Constraints on deformable Models: Recovering 3D Shape and Nonrigid Motion. Artificial intelligence,1988,36(1): 91-123
    [55]Mclnemey T. Topology Adaptive Deformable Surfaces for Medical Image Volume Segmentation. IEEE Trans on medical Imaging,1999,18(10):840-850
    [56]Szeliski R, Tonnesen D,Terzsopoulos D. Modeling Surfaces of Arbitrary Topology with Dynamic articles. In:Proc of IEEE Conference on Computer Vision and Pattern Recognition. New York,1993
    [57]L. Pavlidis and Y. Liow. Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Machine Intell.,1990,12(5)225-233.
    [58]L. D. Griffin, A. C. F. Colchester and G P. Robinson. Scale and segmentation of grey-level images using maximum gradient paths. Image Vis. Comput,1992, 10(8) 389-402
    [59]S.C. Zhu, T.S. Lee, and A.L. Yuille. Region competition:Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. In:Proc. Intl. Conf. on Computer Vision,1995
    [60]Timothy N. Jones, Dimitris N. Metaxas. Image Segmentation Based on the Integration of Pixel Affinity and Deformable Models. In:Proceedings,1998
    [61]Amit Chakraborty,Lawrence H.Staib and James S.Duncan. Deformable boundary Finding in Medical Images by Integrating Gradient and Region Information. IEEE Trans on Medical Imaging,1996,15(6):859-870.
    [62]田捷,罗希平,基于Live-Wire的交互式分割及其在医学图像中的应用,中国学术期刊文摘,2000,6(9):1174-1175
    [63]毛安定,管一弘等, 医学图像的三维自适应迭代分割算法.电子科技,2008,21(12):6-9
    [64]Leith D J, Leithead W E. Survey of gain scheduling analysis and design. Int. J. control,2000,73(11):1001-1025.
    [65]陈武凡,小波分析及其在图像处理中的应用.北京:科学出版社,2002
    [66]楚存坤,医学图像的分割技术及其新进展,泰山医学院学报,2007,28(4):315
    [67]Lue Vincent, Pierre Soille. Watersheds in digital spaces:An efficient algorithm based on immersion simulations. IEEE Transom Pattern Analysis and Machine Intelligence,1991,13(6):583-598
    [69]王艳华.基于模糊聚类的医学图像分割算法的应用研究:[硕士论文].昆明:昆明理工大学,,2009
    [70]王艳华,管一弘,基于模糊集理论的医学图像分割的应用,计算机技术与发展,2008,18(11):223-225
    [71]MontBeny E, Sobrevilla P,Romani S. A fuzzy approach to white blood cells segmentation in color bone marrow images. Fuzzy Systems,2004,1:178
    [72]Zadeh.L.A. Fuzzy sets. Information and control,1965,8:338-353.
    [73]E.H.Ruspini. A new approach to clustering. Inf. Cont,1969,15:22-32
    [74]J.C.Dunn. Well-separated clusters and the optimal fuzzy partitions. Cybernetics, 1974,4:95-104
    [75]J.C.Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. Cybenet,1974,3:32-57
    [76]J. C. Bezdek, L. O. Hall, L. P. Clarke. Review of MR image segmentation techniques using pattern recognition. Med. Phys.,1993,20(4):1033-1048
    [77]Liew A W C,Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans Med Imag,2003,22(9):1063-1075
    [78]Norberto Fzquerra, Rakesh Mullick. Knowledge-guided segmentation of 3D imagery. Graphical Models and Image Processing,1996,58(6)510-523
    [79]Matthew C.Clark, Lawrence O.Hall. Dmirty B.Goldgof etal. Automatic Turnor Segmentation Using knowledge-Based Technique. IEEE Trans. Medical Imaging, 1998,17(2):187-201.
    [80]Boscolo R.,etal. Medical image segmentation with knowledge guided robust active contours Radio graphics. McNitt-Gray,2002,22(2):437-448
    [81]Valdes-Cristema R, Medina-Bnauelos V, Yanez-Suarez O. Coupling of radial-basis network and active contour model for multispectral brain MRI segmentation. IEEE Trans on Bio mimetic Engineering,2004,51(3):459-470
    [82]Wang Zhi-hai, Mo Hua-yi, Lu Hua-xiang, etal. A method of biomimetic pattern recognition for face recognition. IEEE Acta Electronica Sinica,2003, 29(3)2216-2221
    [83]吴海珍,何伟等,基于仿生模式识别的医学图像分割方法,计算机工程与应用,2009,45(16):185-187.
    [84]Y.J.Zhang. A survey on Evaluation methods for image segmentation. Pattern Recognition,1996,29(8):1335-1346
    [86]S Geman, D Geman. Stochastic relaxation Gibbs distribution and the Bayesian restoration of image. IEEE Trans Pattern Anal Machine Intel,1991,13(5):401-412
    [87]段锐.基于马尔可夫随机场和模糊聚类的脑部图像D-S分割:[硕士学位论文].昆明:昆明理工大学,2009
    [88]郭斌.基于马尔科夫随机场D-S证据理论对人脑图像的分割研究:[硕士学位论文].昆明:昆明理工大学,2010
    [89]Winkler G Image Analysis Random Fields And Dynamic Monte Carlo Methods A Mathematical Introdunction. Applications Of Mathematics, Springer-Verlag,1995
    [90]Kirkpatrick S., Gellatt C.D., Vecchi M. P., Optimization by simulated annealing, IBM Thomas J. Watson research Center, Yorktown Heights, New York,1982
    [91]林亚忠.基于Gibbs随机场模型的医学图像分割新算法研究:[博士学位论文].广州:第一军医大学,2004
    [92]Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society,1974,36 (2):192-23
    [93]Ostu W H. Threshold Selection Method from Gray Histogram. IEEE trans. On System, Man and Cybernetics,1979,9:62-66.
    [94]Zadeh L..A. Fuzzy sets. Information and control,1965,8:338-353.
    [95]E.H.Ruspini. A new approach to clustering. Inf. Cont,1969,15:22-32.
    [96]J.C.Dunn. Well-separated clusters and the optimal fuzzy partitions. Cybenret, 1974,4:95-104
    [97]J.C.Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. Cybenet,1974,3:32-57
    [98]Pal N.R, Bezdek J.C. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Systems,1995,3(3):370-379
    [99]Pal N.R, Bezdek J.C. Correction to On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Systems,1997,5(1):152-153
    [100]Bezdek J.C. Pattern recognition with objective function algorithms. New York: Plenum Press,1981
    [101]范九伦,裴继红,谢维信,基于可能性分布的聚类有效性,电子学报,1998,26(4):113-115
    [102]Xie XL, Beni G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Analysis and Machine Intelligence,1991,13(8):841-847
    [103]Li J, Gao XB, Jiao LC. A New cluster validity function based on the modified partition fuzzy degree. LNAI, RSCTC.2004,3066:586-591
    [104]Bezdek J.C. Convergence theory for fuzzy c-means:counterexamples and repairs. IEEE Trans Syst. Man Cybern,1987,16:873-877
    [105]于剑,论模糊C均值算法的模糊指标,计算机学报,2003,26(8):968-973
    [106]高新波,裴继红,谢维信,模糊C—均值聚类算法中加权指数m的研究,电子学报,2000,28(4):80-83
    [107]D L PHAM. Fuzzy clustering with spatial constraints. In:International Conference on Image Processing. New York,2002
    [108]CHEN Song-can, ZHANG Dao-qiang. Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure. IEEE Transactions on systems, man and cybernetics,2004,34(4):1907-1916
    [109]朱志刚,林学訚,石定机.数字图像处理.北京:北京理工大学出版社,2004
    [110]Linas E. Waltz. Multisensor Data F us ion. Artec h. House Norwood: Massachusetts,1990
    [111]DEMPSTER A P. Upper and lower probability induced by a multivalued mapping. Annals Mathematical Statistics,1967,38(2)325-339
    [112]SHAFER G. A mathematical theory of evidence. Princeton:Princeton University Press,1976
    [113]潘巍王,阳生,杨宏戟,证据理论决策规则分析,计算机工程与应用,2004,14:14-17
    [114]Smith. C. A. B. Consistency in Statistical Inference and Decision (with discussion). Journal of the Royal Statistical Society,1961,23:1-37
    [115]Ph. Smets. Constructing the pignistic probability function in a context of uncertainty.Uncertainty in Artificial Intelligence,1990,5:29-39
    [116]John J.Sudano. Pignistic probability transforms for mixes of low and-high-probability events. The 4th Int'l Conf. Information Fusion 2001, Montreal, PC, Canada,2001
    [120]J.M.Keller,M.R.Gray,J.A.Givens. A fuzzy-knearest neigh-bor algorithm. IEEE Trans on SMC,1985,15(4):580-585
    [121]Yue Min-zhu, Layachi Bentabet, etal. Automatic determination of mass functions in Dempster-Shafer theory using fuzzy c-means and spatial neighborhood information for image segmentation. Optical Engineering,2002,41(4):760-770
    [122]安良.模糊理论及其在图像分割中的应用研究:[硕士学位论文].合肥:合肥工业大学,2003
    [123]A. Dromigny-Badin. Image fusion using evidence theory on applications to medical and industrial images:[J] dissertation. France:INSA de Lyon,1998.
    [124]Mich'ele Rombaut, Yue Min Zhu. Study of Dempster-Shafer Theory for Image Segmentation Applications. Image and Vision Computing,2001,1(20):15-23
    [125]Yager R R. On the Dempster-Shafer framework and new combination rules [J]. Information Science,1989,41(2):93-137
    [126]C.Lucas and B.N.Araabi. Generalization of the Dempster-Shafer theory:a fuzzy-valued measure.IEEE Trans. Fuzzy Syst,1999,7(3):255-270
    [127]L.M.Rocha. Evidence sets:Modeling subjective categories. Int.J.Gen. System. 1999,27(6):457-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700