水蚀风蚀交错区土壤水、碳、氮、磷分布及有关过程对植被类型的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水蚀风蚀交错带是黄土高原植被退化最严重的地区。该区气候变化剧烈,全年水蚀、风蚀交替进行,土壤下垫面高度异质。水蚀风蚀交错区特殊的植被生境意味着植被恢复措施在减少水土流失、改善土壤肥力和提高碳固持等方面的生态环境服务功效将有别于黄土高原其它地区。本文以灌木、草地、荒地和农地四种植被类型为例,采用中子仪、土壤呼吸仪、植物光合仪以及土样室内分析等仪器与方法,于2007至2009年在中国科学院水利部水土保持研究所神木土壤侵蚀与环境试验站,对典型地形条件下水、碳、氮、磷4种生源要素时空动态分布、植被蒸散、土壤呼吸和植物光合固碳对植被类型的响应进行了系统的研究,取得以下5个方面结果:
     1.植被类型改变了土壤水分的坡面分布特征与水量平衡。灌木和草地土壤储水量沿坡面分布均匀,而荒地和农地土壤储水量(0-4m)存在由地形驱动的土壤水分侧向运动趋势。四种植被类型蒸散量的大小顺序为:灌木>草地>农地>荒地。雨季初期(六月)灌木和草地的蒸散量高于降雨量。坡长尺度对水量平衡的影响主要体现在径流量上。
     2.不同植被类型改善土壤质量的能力不同。与农地相比,灌木能显著提高0-100cm土层土壤有机碳和全氮的含量及储量,而草地和荒地可通过减少侵蚀量来间接地增加土壤有机碳和全氮的含量。植被类型对土壤全磷含量影响不显著,但对土壤全磷的坡面分布特征有影响,表现为荒地和农地土壤全磷具有坡下累积现象。植被类型显著改变了坡面土壤速效磷和无机氮的时空动态分布特征。灌草和荒地土壤速效磷始终显著低于农地,而无机氮与农地的差异随季节变化而变化。灌草和荒地土壤速效磷在8月份较高,无坡下累积现象。生长季期间,灌木和草地土壤无机氮的主要形态转变频繁,荒地的主要形态为NH4+-N,农地在生长季前期以NO3--N为主。灌木和荒地土壤无机氮沿坡面随机分布,草地和农地某些月份存在无机氮在坡下部累积现象。研究区农田生态系统存在氮肥淋溶损失风险。
     3.植被类型对土壤呼吸日变化和月变化的影响与植物生物气候学阶段有关。荒地和农地土壤呼吸日变化幅度在七月与灌木和草地相当,但在八月和十月显著高于灌木和草地。除八月份农地土壤呼吸月均值与灌木和草地一样高外,研究时段内荒地和农地土壤呼吸月均值相当,且显著低于灌木和草地。不同植被类型土壤呼吸月均值变化受不同因子影响,土壤温度对灌草和荒地的土壤呼吸月均值影响明显,而对农地影响不大。生物因素(根生物量、叶面积指数和光合速率)是导致不同植被类型间土壤呼吸差异的主要原因,但主导因子随月份变化。
     4.碎石存在显著改变了土壤呼吸的降雨脉冲特征和雨季土壤呼吸水平。碎石隔层延迟了土壤呼吸的降雨脉冲峰值,延迟时间随雨强的增大而增长。降雨脉冲和根生物量差别导致生长季碎石隔层处理的土壤呼吸值显著小于无碎石处理。碎石覆盖不影响土壤呼吸的降雨脉冲节奏,但对降雨后土壤呼吸值影响明显。碎石含量对土壤呼吸降雨脉冲特征影响明显,雨后第二天无碎石处理土壤呼吸的增大幅度远高于含碎石处理。碎石覆盖和碎石含量对土壤呼吸生长季均值的影响不显著。碎石存在不改变土壤呼吸的生长季变化趋势。
     5.植被恢复措施能够提高小流域碳汇能力及生态系统植物光合固碳量。灌木和草地的碳汇功能强于荒地。通过退耕还林还草措施,20hm2小流域的年植被光合固碳量增加25 Mg C,年碳汇量增加2.2 Mg C。
     本研究表明水蚀风蚀交错区人工灌木在提高土壤养分含量方面的功效优于草地。人工灌草的植被光合固碳量可以抵消由其土壤呼吸导致的高碳排放量,使实施了植被恢复措施的小流域表现为碳汇功能。雨季初期土壤水分亏损加重了人工灌草的土壤干燥化问题,但这一问题可通过合理的植被类型空间布局得到缓解。研究区农田生态系统存在氮肥淋溶风险,故优化的施肥管理方法应取代原有的粗放模式。碎石存在显著地影响土壤呼吸的降雨脉冲特征和雨季土壤呼吸水平这一结果表明考虑土壤下垫面异质性在提高陆地生态系统碳排放估算精度方面不容忽视。该研究将为合理评价水蚀风蚀交错区植被恢复的生态环境效应和进行有效的生态环境建设提供理论依据。
The transitional belt with both water and wind erosion is the center of the intensive erosion and subject to severe vegetation degradation. The wind-water erosion region is characterized by dramatic change of climate and quite heterogeneous soil substrate, suffering wind and/or water erosion through the year. Such unique and harsh habitat quality indicates that the performance of vegetation restoration in eco-environmental serve, e.g. remedy soil and water erosion, improve soil fertility and ecosystem carbon sequestration, in the wind-water erosion region should be different from the other parts of the Loess plateau. In 2007-2009 years, experiments were conducted in Shenmu Erosion and Environment Research Station of the Institute of Soil and Water Conservation, CAS&WRR to study the dynamic temporal and spatial distribution of four biogenic elements (water, carbon, nitrogen and phosphorus), vegetation evapotranspiration, soil respiration and plant photosynthesis rate, and their responses to four vegetation types (shrub, grass, fallow and cropland). The main results are:
     1. Vegetation types changed the soil moisture distribution and water balance on the hillslopes. The soil moisture distribution was uniform along the hillslopes for shrub and grass. However, soil water storage to 4 m depth for fallow and cropland showed a water lateral movement driven by the topography. The evapotranspiration order of four vegetation types was shrub > grass > cropland > fallow. At the beginning of the rain season (June), the evapotranspiration from shrub and grass were quite larger than the precipitation. The slope scale in length mainly influenced the runoff.
     2. The performances in soil quality recovery were quite different among vegetation types. Compared with the cropland, shrub directly increased soil organic carbon and total nitrogen in the 0-100 cm soil depth, however, grass and fallow could indirectly improve soil organic carbon and nitrogen by decreasing sediments losses and runoff. The effect of vegetation types was not significant on soil total phosphorus concentration but pronounced on soil total phosphorus distribution along the hillslopes. A downward accumulation trend of soil total phosphorus along the hillslope was observed for fallow and cropland. Pronounced influences of vegetation types on the temporal and spatial variability of soil available phosphorus and inorganic nitrogen were detected. Soil available phosphorus of shrub, grass and fallow was consistently lower than that of cropland. However, the order of soil inorganic nitrogen between shrub, grass, fallow and cropland varied with season. In contrast to cropland, soil available phosphorus was higher in August and had no downward accumulation along the hillslopes for shrub, grass and fallow. During the study period, the dominant form of soil inorganic nitrogen for shrub and grass changed frequently, however, the dominant form was NH4+-N and NO3--N for fallow and cropland, respectively. Soil inorganic nitrogen distributed randomly along the hillslopes for shrub and fallow but had downward accumulation trend in certain months for grass and cropland. Besides, fertilizer derived nitrogen leaching was at risk in this semiarid rainfed agriculture ecosystem.
     3. Vegetation phonological stage mediated the effects of vegetation types on daytime and monthly soil respiration. The soil respiration variation amplitude of fallow and cropland was comparable to that of shrub and grass in July but obviously larger than that of shrub and grass in August and October. During the study period, monthly soil respiration of fallow and cropland were comparable and significantly lower than that of shrub and grass, with an exception in August when soil respiration of cropland was as larger as shrub and grass. The main controlling factor of monthly soil respiration variation differed among vegetation types, e.g. soil temperature highly mediated the monthly soil respiration variation for the three vegetation types but contributed little when went to the cropland. The biotic factors, root biomass, leaf area index and photosynthesis rate, are mainly responsible for the monthly differences in soil respiration among vegetation types. Moreover, the dominant controlling factor varied with vegetation stage.
     4. Rock fragments changed the rain pulse characteristics and the level of soil respiration during the rain season. Rock fragment layer delayed the rain pulse peak of soil respiration, and the delay duration increased with the increase of rainfall. Average soil respiration during the study period was significantly lower than the control because of the lower root biomass and different rain pulse properties. Rock fragment coverage showed a significant effect on soil respiration following rainfall but had no influence on rain pulse rhythm of soil respiration. Soil respiration of the treatment mixed with rock fragment was quite lower than that of control. Effect of rock fragment coverage and content on average soil respiration of the study period was not significant. Additionally, rock fragment did not change the seasonal variation of soil respiration.
     5. Compared with fallow, shrub and grass had better performance in carbon sequestration. Vegetation restoration improved the carbon sequestration and photosynthetic C uptake of the vegetation in a small watershed with the area of 20 hm2. Vegetation restoration in this small watershed annually increased photosynthetic carbon uptake and carbon sequestration with the values of 25 and 2.2 Mg C, respectively.
     The results showed that shrub performed better than grass in improving soil nutrient content. The large carbon emission caused by soil respiration of shrub and grass was offset by the corresponding large photosynthetic carbon uptake. Therefore, the small watershed involved with vegetation restoration program served as carbon sink. Soil water deficit at the beginning of the rain season aggravated the soil desiccation of planting perennial vegetations. However, this problem would be alleviated by adopting instructive spatial distribution pattern of vegetation types. Because urea-derived nitrogen loss by leaching was at risk in the agroecosystem, optimized fertilizer management should be adopted instead of the traditional extensive style. The result that rock fragment significantly changed the rain pulse properties and rain season mean value of soil respiration suggests that considering soil heterogeneous is important in terrestrial ecosystem carbon emission. The conclusions of this study can be used to evaluate the eco-environmental performance of the vegetation restoration program in the wind-water erosion region and be beneficial in constructing effective management of eco-environment restoration.
引文
[1]唐克丽.黄土高原水蚀风蚀交错区治理的重要性与紧迫性[J].中国水土保持,2000,11:11,12,17.
    [2]唐克丽.黄土高原水蚀风蚀交错带小流域治理模式探讨[J].水土保持研究,1996,3(4):46-55.
    [3] Huxman TE, Snyder KA, Tissue D, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems [J]. Oecologia, 2004, 141: 254-268.
    [4]黄志霖,傅伯杰,陈利顶,等.黄土丘陵沟壑区不同退耕类型径流、侵蚀效应及其时间变化特征[J].水土保持学报,2004,18(4):37-41.
    [5]张金铭,王小平.定西黄土丘陵沟壑区不同土地利用类型水土流失研究[J].中国水土保持,2008,8:31,32,38.
    [6] Yair A, Raz-Yassif N. Hydrological processes in a small arid catchment: scale effects of rainfall and slope length [J]. Geomorphology, 2004, 61: 155-169.
    [7] Liu BY, Nearing MA, Shi PJ, et al. Slope length effects on soil loss for steep slopes [J].Soil Sci. Soc. Am. J.,2000, 64:1759–1763.
    [8]王彦辉,熊伟,于澎涛,等.干旱缺水地区森林植被蒸散耗水研究[J].中国水土保持科学,2006,4(4):19-26.
    [9]王红闪,黄明斌,张橹.黄土高原植被重建对小流域水循环的影响.自然资源学报,2004 ,19 (3) :344 350
    [10]黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域生态用水试验研究—气候和土地利用变化的影响[J].水科学进展,2006,17(1):14-19.
    [11]何福红,黄明斌,党廷辉.黄土高原沟壑区小流域综合治理的生态水分效应[J].水土保持研究,2003,10(2):33-37.
    [12]刘刚,王志强,王晓岚.吴旗县不同植被类型土壤干层特征分析[J].水土保持研究,2004,11(1):126-129.
    [13]易亮,李凯荣,张冠华,等.黄土高原人工林地土壤水分亏缺研究[J].西北林学院学报,2009,24(5):5-9.
    [14]陈海滨,孙长忠,安锋,等.黄土高原沟壑区林地土壤水分特征的研究(Ⅰ)—土壤水分的垂直变化和季节变化特征[J].西北林学院学报,2003,18(4):13-16.
    [15]陈宝群,赵景波,李艳花.黄土高原土壤干成形成原因分析[J].地理与地理信息科学,2009,25(3):85-89.
    [16]陈宝群,赵景波,李艳花.特大丰水年洛川人工林地土壤水分特征研究[J].干旱区地理,2006,29(4):532-537.
    [17]郭忠升,邵明安.人工柠条林地土壤水分补给和消耗动态变化规律[J].水土保持学报,2007,21(2):119-123.
    [18]张春霞,郝明德,魏孝荣,等.黄土高原沟壑区苜蓿地土壤水分坡面特征研究[J].植物营养与肥料学报,2004,10(6):604-607.
    [19]霍竹,邵明安.黄土高原水蚀风蚀交错带沟岸灌木林地土壤水分变化[J].农业工程学报,2005,21(6):45-49.
    [20]霍竹,张斌亮.六道沟小流域主要灌木林地土壤干化研究[J].中国人口资源与环境,2007,17(5):95-98.
    [21] Ridolfi L, D’Odorico P, Porporato A, et al .Stochastic soil moisture dynamics along a hillslope [J]. J Hydrol,2003,272 :264-275
    [22] Newman BD, Campbell AR, Wilcox BP. Lateral subsurface flow pathways in a semiarid ponderosa pine hillslope [J]. Water Resour. Res.,1998,34:3485–3496.
    [23] McNamara JP, Chandler D, Seyfried M, et al. Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment [J]. Hydrological Processes, 2005, 19: 4023-4038.
    [24]陈洪松,邵明安,王克林.黄土区荒地和裸地土壤水分的循环特征[J].应用生态学报,2005,16(10):1853-1857.
    [25]曹靖,常雅君,苗晶晶,等.黄土高原半干旱区植被重建对不同坡位土壤肥力质量的影响[J].干旱区资源与环境,2009,23(1):169-173.
    [26]王莉,张强,牛西午,等.黄土高原丘陵区不同土地利用方式对土壤理化性质的影响[J].中国生态农业学报,2007, 15(4):53-56.
    [27] Guo Z, Yan G, Zhang R, et al. Improvement of soil physical properties and aggregate-associated C, N, and P after cropland was converted to grassland in semiarid Loess Plateau [J]. Soil Science, 2010, 175(2): 99-104.
    [28]彭文英,张科利,陈瑶,等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005,20(2):272-278.
    [29]彭文英,张科利,杨勤科.黄土坡面土壤性质随退耕时间的动态变化研究[J].干旱区资源与环境,2006,20(5):153-158.
    [30]勃海锋,刘国彬,王国梁.黄土丘陵区退耕地植被恢复过程中土壤入渗特征的变化[J].水土保持通报,2007,27(3):1-5,31.
    [31]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报,2005 ,19 (1) :93-96.
    [32]郭胜利,刘文兆,史竹叶,等.半干旱区流域土壤养分分布特征及其与地形、植被的关系[J].干旱地区农业研究,2003,21(4):40-43.
    [33]马琨,何宪平,马斌,等.宁南黄土高原不同土地利用模式对土壤的影响研究[J].生态环境,2006,15(6):1231-1236.
    [34]张红,吕家珑,赵世伟,等.不同植被覆盖下子午岭土壤养分状况研究[J].干旱地区农业研究,2006,24(2):66-69.
    [35] Wei X, Shao M, Fu X, et al. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China [J]. Biogeochemistry, 2009, 96: 149-162.
    [36]张春霞,郝明德,王旭刚,等.黄土高原沟壑区小流域土壤养分分布特征[J].水土保持研究,2003, 10(1):78-80.
    [37]温仲明,焦峰,赫晓慧,等.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J].草业学报,2007,16(1):16-23.
    [38]王国梁,刘国彬,许明祥.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,22(1):1-5.
    [39]张素霞,吕家珑,杨瑜琪,等.黄土高原不同植被坡地土壤无机磷形态分布研究[J].干旱地区农业研究,2008,26(1):29-32.
    [40]岳庆玲,常庆瑞,刘京,等.黄土高原不同土地利用方式对土壤养分和酶活性的影响[J].西北农林科技大学学报,2007,35(12):103-108.
    [41]王鑫,刘建平,张希彪,等.黄土高原半干旱地区土地利用变化对土壤养分、酶活性的影响研究[J].水土保持通报,2007,27(6):50-55.
    [42]邱扬,傅伯杰,王军,等.黄土高原小流域土壤养分的时空变异及其影响因子[J].自然科学进展,2004 ,14 (3) :294-299.
    [43]秦胜金,刘景双,王国平,等.三江平原湿地土壤磷形态转化动态[J].生态学报,2007,27(9):2844-2851.
    [44]李裕元,邵明安,郑纪勇,等.黄绵土坡耕地磷素迁移与土壤退化研究[J].水土保持学报,2003, 17(4):1-7.
    [45]孟庆华,傅伯杰,邱扬.黄土丘陵沟壑区不同土地利用方式的径流及磷流失研究[J].自然科学进展,2002,12(4):393-397.
    [46]魏孝荣,邵明安.黄土高原沟壑区小流域坡地土壤养分分布特征[J].生态学报,2007,27(2):603-612.
    [47]董贵青,张养安.黄土丘陵沟壑区不同植被覆盖对土壤氮素的影响[J].水土保持学报,2009,16(5):190-193.
    [48]张兴昌,张亚丽.经流与坡面土壤矿质氮素的作用深度研究[J].科学技术与工程,2005, 5(17):1256-1259.
    [49]李艳梅,袁霞,张亚丽,等.黄绵土坡面土壤矿质氮素径流流失与入渗特征研究[J].农业环境科学学报,2007, 26(1):246-251.
    [50]魏孝荣,邵明安.黄土高原沟壑区小流域不同地形下土壤性质分布特征[J].自然资源学报,2007,22(6):946-953.
    [51]王云强,张兴昌,李顺姬,等.小流域土壤矿质氮与地形因子的关系及其空间变异性研究[J].环境科学,2007, 28(7):1567-1572.
    [52] Wedin DA, Tilman D. Species effects on nitrogen cycling: a test with perennial grasses [J]. Oecologia, 1990, 84:433-441.
    [53]李明锐,沙丽清.西双版纳不同土地利用方式下土壤氮矿化作用研究[J].应用生态学报,2005,16(1):54-58.
    [54] Yan E, Wang X, Huang J, et al. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to plantations in the subtropical area of Eastern China [J]. Biogeochemistry, 2008, 89:239-251.
    [55] Piccolo MC, Neill C, Cerri CC. Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronosequence [J]. Plant and Soil, 1994, 162:61-70.
    [56]张俊华,常庆瑞,贾科利,等.黄土高原植被恢复对土壤肥力质量的影响研究[J].水土保持学报,2003,17(4):38-41.
    [57] García-Méndez G, Maass JM, Matson PA, et al. Nitrogen transformations and nitrous oxide flux in a tropical deciduous forest in Mexico [J]. Oecologia, 1991, 88: 362-366.
    [58] Ondri?ík P, Porhaja?ováJ, UrminskáJ, et al. The effect of agrotechnical interventions on seasonal changes of inorganic nitrogen content in the soil [J]. Central European Agriculture Journal, 2009, 10(1): 101-108.
    [59] Mugasha AG, Pluth DJ. Ammonia loss following surface application of urea fertilizer to undrained and drained forested minerotrophic peatland sites in central Alberta, Canada [J]. Forest Ecology and Management, 1995, 78: 139-145.
    [60] van der Weerden TJ, Jarvis SC. Ammonia emission factors for N fertilizers applied to contrasting grassland soils [J]. Environmental Pollution, 1997, 95(2):205-211.
    [61] Nathan MV, Malzer GL. Dynamics of ammonia volatilization from turkey manure and urea applied to soil [J]. Soil Sci. Soc. Am. J., 1994, 58:985-990.
    [62] He ZL, Alva AK, Calvert DV, et al. Ammonia volatilization from different fertilizer sources and effects of temperature and soil pH [J]. Soil Science, 1999, 164(10): 750-758.
    [63] Bouwmeester RJB, Vlek PLG, Stumpe JM. Effect of environmental factors on ammonia volatilization from a urea-fertilized soil [J]. Soil Sci. Soc. Am.J., 1985, 49: 376-381.
    [64] Francis GS, Haynes RJ. The leaching and chemical transformations of surface-applied urea under flood irrigation [J]. Fertilizer Research, 1991, 28: 139-146.
    [65] Aulakh MS, Bijay-Singh. Nitrogen losses and fertilizer N use efficiency in irrigated porous soils [J]. Nutrient Cycling in Agroecosystems, 1997, 47: 197-212.
    [66] Singh M, Yadav DS, Kumar V. Leaching and transformation of urea in dry and wet soils as affected by irrigation water [J]. Plant and Soil, 1984, 81:411-420.
    [67] Aronsson PG, Bergstr?m LF. Nitrate leaching from lysimeter-grown short-rotation willow coppice in relation to N-application, irrigation and soil type [J]. Biomass and Bioenergy, 2001, 155-164.
    [68] Allaire-Leung SE, Wu L, Mitchell JP, et al. Nitrate leaching and soil nitrate content as affected by irrigation uniformity in a carrot field [J]. Agricultural Water Management, 2001, 48: 37-50.
    [69] Nielsen NE, Jensen HE. Nitrate leaching from loamy soils as affected by crop rotation and nitrogen fertilizer application [J]. Fertilizer Research, 1990, 26: 197-207.
    [70] Moreno F, Cayuela JA, Fernández JE, et al. Water balance and nitrate leaching in an irrigated maize crop in SW Spain [J]. Agricultural Water Management, 1996, 32: 71-83.
    [71] Reed RA, Finley ME, Romme WH, et al. Aboveground net primary production and leaf-area index in early postfire vegetation in Yellowstone National Park [J]. Ecosystems, 1999, 2: 88-94.
    [72] Andrade HJ, Brook R, Ibrahim M. Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica [J]. Plant Soil, 2008, 308: 11-22.
    [73] Giese LAB, Aust WM, Kolka RK, et al. Biomass and carbon pools of disturbed riparian forests [J]. Forest Ecology and Management, 2003, 180: 493-508.
    [74] Turner MG. Land use changes and net primary production in the Georgia, USA, Landscape: 1935-1982 [J]. Environmental Management, 1987, 11(2): 237-247.
    [75] Risch AC, Jurgensen MF, Page-Dumroese DS, et al. Long-term development of above- and below- ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park[J]. Can. J. For. Res., 2008, 38: 1590-1602.
    [76] Albrecht A, Kandji ST. Carbon sequestration in tropical agroforestry systems [J]. Agriculture, Ecosystems and Environment, 2003, 99:15-27.
    [77]崔林丽,史军,唐娉,等.中国陆地净初级生产力的季节变化研究[J].地理科学进展,2005, 24(3):8-16.
    [78]曹明奎,陶波,李克让,等. 1981~1998年中国陆地生态系统碳通量的年季变化[J].植物学报,2003, 45(5):552-560.
    [79] Xin Z, Xu J, Zheng W. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006): impacts of climate changes and human activities [J]. Science in China Series D: Earth Sciences, 2008, 51(1):67-78.
    [80]刘军会,高吉喜.气候和土地利用变化对北方农牧交错带植被NPP变化的影响[J].科学资源,2009,31(3):493-500.
    [81] Cernusca, A., Tappeiner, U., Agostini, A., et al. Ecosystem research on mixed grassland/woodland ecosystems [C]. First results of the EC-STEP-project INTEGRALP on Mt. Bondone Stud. Trent. Sci. Nat. Acta Biol., 1992. 67: 99–133.
    [82]许红梅,高琼,黄永梅,等.黄土高原森林草原区6中植物光合特性研究[J].植物生态学报,2004,28(2):157-163.
    [83]郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J].生态学报,2007,27(1):171-181.
    [84]宋富强,康慕谊,陈雅如,等.陕北黄土高原植被净初级生产力的估算[J].生态学杂志,2009,28(11):2311-2318.
    [85] Conant RT, Dalla-Betta P, Klopatek CC, et al. Controls on soil respiration in semiarid soils [J]. Soil Biology & Biochemistry, 2004, 36: 945-951.
    [86] Orchard, V.A., Cook, F.J., 1983. Relationship between soil respiration and soil moisture [J]. Soil Biology & Biochemistry 15, 447–453.
    [87] Liu HS, Li LH, Han XG, et al. Respiration substrate availability plays a crucial role in the response of soil respiration to environmental factors [J]. Applied soil Ecology, 2006, 32: 284-292.
    [88] Tufekcioglu A, Raich JW, Isenhart TM, et al. Soil respiration within riparian buffers and adjacent crop fields [J]. Plant and Soil, 2001, 229: 117-124.
    [89] Wang X, Zhu B, Wang Y, et al. Field measures of the contribution of root respiration to soil respiration in an alder and cypress mixed plantation by two methods: trenching method and root biomass regression method [J]. Eur. J. Forest Res., 2008, 127: 285-291.
    [90] Flanagan LB, Johnson BG. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland [J]. Agricultural and Forest Meteorology, 2005, 130: 237-253.
    [91] Lovelock CE. Soil respiration and belowground carbon allocation in mangrove forests [J]. Ecosystems, 2008, 11: 342-354.
    [92] Parkin TB, Kaspar TC. Temperature controls on diurnal carbon dioxide flux: implication for estimating soil carbon loss [J]. Soil Sci. Soc. Am. J., 2003, 67:1763–1772.
    [93] Riveros-Iregui DA, Emanuel RE, Muth DJ, et al. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content [J]. Geophysical Research Letters, 2007, 34: L17404.
    [94] Liu Q, Edwards NT, Post WM, et al. Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest [J]. Global Change Biology, 2006, 12: 2136-2145.
    [95] Fernandez DP, Neff JC, Belnap Jayne, et al. Soil respiration in the cold desert environment of the Colorado Plateau (USA):abiotic regulators and thresholds [J]. Biogeochemistry, 2006, 78: 247-265.
    [96] Kenneth AB, Kiely G, Leahy P. CO2 fluxes in adjacent new and permanent temperate grasslands [J]. Agr. Forest Meteorol., 2005, 135:82-92.
    [97] Vincent G, Shahriari AR, Lucot E, et al. Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table [J]. Soil Biology & Biochemistry, 2006, 38:2527-2535.
    [98] Han G, Zhou G, Xu Z, et al. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem [J]. Soil Biology & Biochemistry, 2007, 418-425.
    [99] Wagai R, Brye KR, Gower ST, et al. Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin [J]. Soil Biol. Biochem., 1998, 30(12): 1501-1509.
    [100] Kellman L, Beltrami H, Disk D. Changes in seasonal soil respiration with pasture conversion to forest in Atlantic Canada [J]. Biogeochemistry, 2007, 82: 101-109.
    [101] Jury WA, Bellantuoni B. Heat and water movement under surface rocks in a field soil: II.moisture effects[J]. SOIL SCI. SOC. AM. J., 1976, 40: 509-513.
    [102] Pérez FL. Conservation of soil moisture by different stone covers on alpine talus slopes (Lassen, California) [J]. Catena, 1998, 33: 155–177.
    [103] Li X. Gravel–sand mulch for soil and water conservation in the semiarid loess region of northwest China [J]. Catena, 2003, 52:105–127.
    [104] Unger PW. Soil profile gravel layers: I. effect on water storage, distribution, and evaporation [J]. SOIL SCI. SOC. AMER. PROC., 1971, 35: 631-635.
    [105] Prettyman GW, McCoy EL. Effect of Profile Layering, Root Zone Texture, and Slope on Putting-Green Drainage Rates [J]. Agron. J., 2002, 94:358–364.
    [106] Certini G, Campbell CD, Edwards AC. Rock fragments in soil support a different microbial community from the fine earth [J]. Soil Biology & Biochemistry, 2004, 36: 1119–1128.
    [107] Nobel PS, Miller PM, Graham EA. Influence of rocks on soil temperature, soil water potential and rooting patterns for desert succulents [J]. Oecologia, 1992, 92:90-96.
    [108] Martre P, North GB, Bobich EG, et al. Root deployment and shoot growth for two desert species in response to soil rockiness[J]. American Journal of Botany, 2002, 89(12): 1933-1939.
    [109] Casals P, RomanyàJ, Cortina J, et al. CO2 efflux from a Mediterranean semi-arid forest soil. I. Seasonality and effects of stoniness [J]. Biogeochemistry, 2000, 48: 261-281.
    [110] RomanyàJ, Casals P, Cortina J, et al. CO2 efflux from a Mediterranean semi-arid forest soil. II. Effects of soil fauna and surface stoniness [J]. Biogeochemistry, 2000, 48: 283-306.
    [111] Eswaran H, Reich PF, Kimble JM, et al. Global Climate Change and Pedogenic Carbonates [M]. CRC Press, 2000, Boca Raton, FL, pp. 15–26.
    [112] Schlesinger WH. Carbon storage in the caliche of arid soils: a case study from Arizona [J]. Soil Sci., 1982. 133: 247–255.
    [113] Emmerich WE. Carbon dioxide fluxes in a semiarid environment with high carbonate soils [J]. Agricultural and Forest Meteorology, 2003, 116: 91-102.
    [114] Serna-Pérez A, Monger HC, Herrick JE, et al. Carbon dioxide emission from exhumed petrocalcic horizons [J]. Soil Sci. Soc. Am. J., 2006, 70:795–805.
    [115]唐克丽,侯庆春,王斌科,等.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J].中国科学院水利部西北水土保持研究所集刊,1993,18:2-5.
    [116]侯庆春,汪有科.晋陕蒙接壤区水蚀风蚀交错带生态环境特征[J].水土保持通报,1994,14(2):8-123.
    [117]贾恒义,雍绍萍,王富乾.神木试区的土壤资源[J].中国科学院水利部西北水土保持研究所集刊,1992,18:36-46.
    [118]马东豪.黄土区土石混合介质水分运动试验研究及数据模型[D].北京:中国科学院地理科学与资源研究所,2008.
    [119]樊军.蚀风蚀交错带土壤水分运动与数值模拟研究[D].南京:中国科学院南京土壤研究所,2005.
    [120]赵护兵,刘国彬,侯喜禄.黄土丘陵区流域主要植被类型养分循环特征[J].草业学报,2006,15(3):63- 69.
    [121]张胜,张翠云,孙振华.河北平原山前地区土壤氨挥发测定试验研究[J].农业环境保护,2002, 21(6):527-529.
    [122] Hu W, Shao M, Wang Q, et al. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed [J]. Catena, 2009, 79: 72–82.
    [123] Fan J, Shao M, Wang Q, et al. Toward sustainable soil and water resources use in China’s highly erodible semi-arid loess plateau [J]. Geoderma, 2010, 155:93-100.
    [124] Chen L, Huang Z, Gong J, et al. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China [J]. Catena, 2007, 70: 200-208.
    [125] Chen H, Shao M, Li Y. Soil desiccation in the Loess Plateau of China [J]. Geoderma, 2008, 143: 91-100.
    [126] Ben-Hur M. The effects of dispersants, stabilizer and slope length on runoff and water harvesting farming [J]. Australian Journal of Soil Research, 1991, 29(4): 553-563.
    [127] Wilcox BP. Shrub control and streamflow on rangelands: a process based viewpoint [J]. Journal of Range Management, 2002, 55: 318-326.
    [128] Wang L, Wang Q, Wei S, et al. Soil desiccation for Loess soils on natural and regrown areas [J]. Forest Ecology and Management, 2008, 255 (7): 2467–2477.
    [129]李玉山.苜蓿生产力动态及其水分生态环境效应[J].土壤学报,2002,39(3):146-161.
    [130]王志强,刘宝元,张岩.不同植被类型对厚层黄土剖面水分含量的影响[J].地理学报,2008,63(7):703-713.
    [131] Li Y, Huang M. Pasture yield and soil water depleting of continuous growing alfalfa in the Loess Plateau of China [J]. Agriculture, Ecosystems and Environment, 2008, 124: 24-32.
    [132] Le Roux X, Bariac T, Mariotti A. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna [J]. Oecologia, 1995, 104:147-155.
    [133]成向荣,黄明斌,邵明安.神木水蚀风蚀交错带主要人工植物细根垂直分布研究[J].西北植物学报,2007,27(2):0321-0327.
    [134] Ehleringer JR, Phillips SL, Schuster WSF, et al. Differential utilization of summer rains by desert plants [J]. Oecologia, 1991, 88: 430-434.
    [135] Turton DJ, Barnes Jr DR, de Jesus Návar J. Old and new water in subsurface flow from a forest soil block [J]. J. Environ. Qual., 1995, 24:139–146.
    [136] Fu B, Chen L, Ma K, et al. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China [J]. Catena, 2000, 39: 69-78.
    [137] Fu B, Wang J, Chen L, et al. The effects of land use on soil moisture variation in the Dangangou catchment of the Loess Plateau, China [J]. Catena, 2003, 197-213.
    [138] She DL, Shao MA, Timm LC, et al. Impacts of land-use pattern on soil water-content variability on the Loess Plateau of China [J]. Acta Agriculturae Scandinavica, Section B - Plant Soil Science, 2009, 99999:1, To link to this Article: DOI: 10.1080/09064710903049334
    [139] Singh JS, Milchunas DG, Lauenroth WK. Soil water dynamics and vegetation patterns in a semiarid grassland. Plant Ecology, 1998, 134:77-89.
    [140] McConkey BG, Ulrich DJ, Dyck FB. Slope position and subsoiling effects on soil water and spring wheat yield [J]. Can. J. Soil Sci.,1997,77:83–90.
    [141] Kravchenko AN, Bullock DG. Correlation of corn and soybean grain yield with topography and soil properties [J]. Agron. J., 2000, 92:75–83.
    [142] Rockstr?m J, Barron J, Brouwer J, et al. On-farm spatial and temporal variability of soil and water in pearl millet cultivation [J]. Soil Sci. Soc. Am. J., 1999, 63:1308–1319.
    [143] Emmerich WE. Ecosystem water use efficiency in a semiarid shrubland and grassland community [J]. Rangeland Ecol Manage, 2007, 60: 464-470.
    [144]魏天兴,朱金兆.黄土高原人工林地水分供耗特点与林地生产力研究[J].土壤侵蚀与水土保持学报,1999,5(4):45-51.
    [145]魏天兴,朱金兆.黄土残塬沟壑区坡度和坡长对土壤侵蚀的影响分析[J].北京林业大学学报,2002,24(1):59-62.
    [146] Solomon D, Lehmann J, Zech W. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates [J]. Agric. Ecosyst. Environ., 2000, 78:203–213.
    [147] Rodríguez-Murillo JC. Organic carbon content under different types of land use and soil inpeninsular Spain [J]. Biol. Fertil. Soils, 2001, 33:53–61.
    [148] Powers JS. Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica [J]. Ecosystems, 2004, 7:134–146.
    [149] Yimer F, Ledin S, Abdelkadir A. Changes in soil organic carbon and total nitrogen contents in three adjacent land use types in the Bale Mountains, south-eastern highlands of Ethiopia [J]. Fores. Ecol. Manage. , 2007, 242: 337–342.
    [150] Smith P. Land use change and soil organic carbon dynamics [J]. Nutr. Cycl. Agroecosys., 2008, 81: 169–178.
    [151] Puget P, Lal R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use [J]. Soil Tillage Res., 2005, 80: 201–213.
    [152] Grandy AS, Robertson GP. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms [J]. Ecosystems, 2007, 10: 58–73.
    [153] Wu HB, Guo ZT, Peng CH. Land use induced changes of organic carbon storage in soils of China [J]. Glob. Change Biol., 2003, 9: 305–315.
    [154] Song G, Li L, Pan G, et al. Topsoil organic carbon storage of China and its loss by cultivation [J]. Biogeochemistry, 2005, 74: 47–62.
    [155] Chen L, Gong J, Fu B, et al. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China [J]. Ecol. Res., 2007, 22, 641–648.
    [156] Zhou Z, Sun OJ, Huang J, et al. Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China [J]. Biogeochemistry, 2007, 82: 127–138.
    [157] Lilienfein J, Wilcke W, Ayarza MA, et al. Chemical fractionation of phosphorus, sulphur, and molybdenum in Brazilian savannah Oxisols under different land use [J]. Geoderma, 2000, 96: 31– 46.
    [158] Durán ZVH, Martínez RA, Ruiz JA. Nutrient losses by runoff and sediment from the taluses of orchard terraces [J]. Water, Air, and Soil Pollution, 2004, 153: 355–373.
    [159] Meng QH, Fu BJ, Tang XP, et al. Effects of land use on phosphorus loss in the hilly area of the Loess Plateau, China. Environment Monitor Assess, 2008, 139: 195–204.
    [160] Guo Z, Yan G, Zhang R, et al. Improvement of soil physical properties and aggregate-associated C, N, and P after cropland was converted to grassland in semiarid Loess Plateau [J]. Soil Science, 2010, 175(2): 99-104.
    [161] Cheng X, Huang M, Shao M, et al. A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region, China [J]. Plant Soil, 2008, doi: 10.1007/s11104-008-9739-5.
    [162] Vesterdal L, Ritter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land [J]. Fores. Ecol. Manage., 2002, 169: 137-147.
    [163] Torn MS, Trumbore SE, Chadwick OA, et al. Mineral control of soil organic carbon storage and turnover. Nature, 1997, 389: 170-173.
    [164] Yu D, Shi X, Wang H, et al. National scale analysis of soil organic carbon storage in China based on Chinese soil taxonomy [J]. Pedosphere, 2007, 17: 11-18.
    [165] Yu DS, Shi XZ, Wang HJ, et al. Regional patterns of soil organic carbon stocks in China [J]. J. Environ. Manage., 2007, 85: 680–689.
    [166] Bationo A, Buerkert A. Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa [J]. Nutr. Cycl. Agroecosys., 2001, 61: 131–142.
    [167] Nyakatawa EZ, Mays DA, Tolbert VR, et al. Runoff, sediment, nitrogen, and phosphorus losses from agricultural land converted to sweetgum and switchgrass bioenergy feedstock production in north Alabama [J]. Biomass and Bioenergy, 2006, 30: 655–664.
    [168] Gallardo A, Covelo F. Spatial pattern and scale of leaf N and P concentration in a Quercus robur population [J]. Plant and Soil, 2005, 273: 269-277.
    [169] Falkengren GU, Brink DT, Brunet J. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils [J]. Forest ecology and management, 2006, 225: 74-81.
    [170]曾辰.水蚀风蚀交错带不同植被覆盖条件坡面土壤水分循环的实验研究[D].陕西:西北农林科技大学,2006.
    [171] Fortune S, Lu J, Addiscott TM, et al. Assessment of phosphorus leaching losses from arable land [J]. Plant and soil, 2005, 269: 99–108.
    [172]李裕元,邵明安,张兴昌.侵蚀条件下坡地土壤水分与有效磷的空间分布特征[J].水土保持学报,2001,15(2):41-44.
    [173] Jobbágy EG, Jackson RB. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry, 2001, 53: 51–77.
    [174] Ross DJ, Tate KR, Scott NA, et al. Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems [J]. Soil Biology and Biochemistry,1999, 31: 803-813.
    [175] Zhao WZ, Xiao HL, Liu ZM, et al. Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China [J]. Catena, 2005, 59: 173–186.
    [176] Oyarzun C, Aracena C, Rutherford P, et al. Effects of land use conversion from native forests to exotic plantations on nitrogen and phosphorus retention in catchments of southern Chile [J]. Water Air Soil Pollution, 2007, 179: 341–350.
    [177]李裕元,邵明安,郑纪勇,张兴昌.黄绵土坡耕地磷素迁移与土壤退化研究[J].水土保持学报, 2003, 17(4):1-7.
    [178]鲁如坤.土壤———植物营养学原理和施肥[M ].北京:化学工业出版社, 1998.
    [179] He ZL, Wu J, O’Donnell AG, et al. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture [J]. Biol. Fertil. Soils, 1997, 24:421-428.
    [180] Pote DH, Daniel TC, Nichols DJ, et al. Seasonal and soil-drying effects on runoff phosphorus relationships to soil phosphorus [J]. Soil Sci. Soc. Am. J., 1999, 63:1006–1012.
    [181] Shepherd G, Buresh RJ, Gregory PJ. Land use affects the distribution of soil inorganic nitrogen in smallholder production systems in Kenya [J]. Biol Fertil Soils, 2000, 31:348–355.
    [182] Chen CR, Condron LM, Davis MR, et al. Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand [J]. Forest Ecology and Management, 2003, 177: 539-557.
    [183] Kaneko M,Kurokawa Y, Tanaka H, et al. Seasonal changes in herbage production and soil phosphorus contents in Japanese lawgrass (Zoysia japonica Steud.) and tall fescue (Festuca arundinacea Schreb.) pastures [J]. Grassland Science, 2008, 54:17–26.
    [184] McGrath DA, Comerford NB, Duryea ML. Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest [J]. Forest Ecology and Management, 2000, 131: 167-181.
    [185] Heathwaite AL, Dils RM. Characterising phosphorus loss in surface and subsurface hydrological pathways [J]. Sci. Total Environ., 2000, 251: 523–538.
    [186] Simard RR, Beauchemin S, Haygarth PM. Potential for preferential pathways of phosphorus transport [J]. J. Environ. Qual., 2000, 29: 97–105.
    [187] Munn DA, McLean EO, Ramirez A, et al. Effect of soil, cover, slope, and rainfall factors on soil and phosphorus movement under simulated rainfall conditions [J]. Soil Sci. Soc. Amer. Proc., 1973, 37, 428-431.
    [188] Pérez CA, Carmona MR, Aravena JC, et al. Successional changes in soil nitrogen availability, nonsymbiotic nitrogen fixation and carbon/nitrogen ratios in southern Chilean forest ecosystems [J]. Oecologia, 2004, 140:617–625.
    [189]李玉强,赵哈林,李玉霖,等.科尔沁沙地不同生境土壤氮矿化/硝化作用研究[J].中国沙漠,2009,29(3):438-444.
    [190] Barrett JE, Burke IC. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient [J]. Soil Biology & Biochemistry, 2000, 32: 1707-1716.
    [191] Yan E, Wang X, Guo M, et al. Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China [J]. Plant Soil, 2009, 320: 181–194.
    [192]韩方虎,沈禹颖,王希,等.苜蓿草地土壤氮矿化的研究[J].草业学报,2009,18(2):11-17.
    [193] Marrs RH, Thompson J, Scott D, et al. Nitrogen mineralization and nitrification in terra firme forest and savanna soils on Ilha de Marac, Roraima, Brazil [J]. Journal of Tropical Ecology, 1991, 7: 123 - 137.
    [194]蔡祖聪,赵维.土地利用方式对湿润亚热带土壤硝化作用的影响[J].土壤学报,2009,46(5):795-801.
    [195] Wu T, Ma BL, Liang BC. Quantification of seasonal soil nitrogen mineralization for corn production in eastern Canada[J]. Nutr. Cycl. Agroecosyst., 2008, 81: 279-290.
    [196] Chen FS, Zheng DH, Zhou B, et al. Seasonal variation in soil nitrogen availability under Mongolian pine plantations at the Keerqin Sand Lands, China [J]. Journal of Arid Environments, 2006, 67:226–239.
    [197]王斌,周志宇,张冈.贺兰山西坡不同海拔梯度上土壤-植物系统磷相关性的研究[J].安徽农业科学,2009,37(35):17630-17634,17674.
    [198] Bauder JW, Schneider RP. Nitrate-nitrogen leaching following urea fertilization and leaching [J]. Soil Science Society of America Journal, 1979, 43: 348-352.
    [199] Roelcke M, Han Y, Li SX, et al. Laboratory measurements and simulations of ammonia volatilization from urea applied to calcareous Chinese loess soils [J]. Plant and Soil, 1996, 181: 123-129.
    [200] Rochette P. Angers DA, Chantigny MH, et al. Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison [J]. Soil & tillage research,2009, 103: 310-315.
    [201] Katyal JC, Singh B, Vlek PLG, et al. Efficient nitrogen use as affected by urea application and irrigation sequence [J]. Soil Science Society of America Journal, 1987, 51: 366–370.
    [202] Stevens RJ, Laughlin RJ, Kilpatrick DJ. Soil properties related to the dynamics of ammonia volatilization from urea applied to the surface of acidic soils [J]. Fertilizer Research, 1989, 20: 1-9.
    [203] Kissel DE, Cabrera ML, Vaio N, et al. Rainfall timing and ammonia loss from urea in a Loblolly Pine Plantation[J]. Soil Science Society of America Journal, 2004, 68: 1744–1750.
    [204] Nakamura K, Harter T, Hirono Y, et al. Assessment of root zone nitrogen leaching as affected by irrigation and nutrient management practices [J]. Vadose Zone Journal, 2004, 3: 1353–1366.
    [205] Gheysari M, Mirlatifi SM, Homaee M, et al. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates [J]. Agricultural Water Management, 2009, 96, 946-954.
    [206] Vuorenmaa J, Rekolainen S, Lepisto A, et al. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s[J]. Environment Monitoring and assessment, 2002, 76: 213-248.
    [207] Morrison IK, Foster NW. Fate of urea fertilizer added to a boreal forest Pinus banksiana Lamb. Stand [J]. Soil Science Society of America Journal, 1977, 41: 441-448.
    [208] Ottman MJ, Pope NV. Nitrogen fertilizer movement in the soil as influenced by nitrogen rate and timing in irrigated wheat [J]. Soil Science Society of America Journal, 2000, 64, 1883–1892.
    [209] Delgado JA, Riggenbach RR, Sparks RT, et al. Evaluation of nitrate-nitrogen transport in a potato–barley rotation [J]. Soil Science Society of America Journal, 2001, 65: 878–883.
    [210] Spalding RF, Watts DG, Schepers JS, et al. Controlling nitrate leaching in irrigated agriculture [J]. Journal of Environmental Quality, 2001, 30:1184–1194.
    [211] Asadi ME, Clemente RS, Gupta AD, et al. Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid– sulphate soil in Thailand [J]. Agriculture Water Management, 2002, 52: 197–213.
    [212] Rajput TBS, Patel N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments [J]. Agricultural Water Management, 2006, 79: 293–311.
    [213] Black AS, Sherlock RR, Smith NP. Effect of timing of simulated rainfall on ammonia volatilization form urea, applied to soil of varying moisture content [J]. European Journal of SoilScience, 1987, 38: 679-687.
    [214] Bacon PE, Hoult EH, McGarity JW. Ammonia volatilization from fertilizers applied to irrigated wheat soils [J]. Fertilizer Research, 1986, 10: 27-42.
    [215] Roelcke M, Li SX, Tian XH, et al. In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils [J]. Nutrient Cycling in Agroecosystems, 2002, 62: 73-88.
    [216] Fan MX, Mackenzie AF. Urea and phosphate interactions in fertilizer microsites: ammonia volatilization and pH changes[J]. Soil Science Society of America Journal, 1993, 57: 839-845.
    [217] Sipaseuth N, Attanandana T, Vichukit V, et al. Subsoil nitrate and maize root distribution in two important maize soils in Thailand [J]. Soil Science, 2007, 172: 861-875.
    [218] Edwards DM, Fischbach PE, Young LL. Movement of nitrates under irrigated agriculture [J]. Transaction of the American Society of Agricultural Engineers, 1972, 15: 73-75.
    [219] Stewart BA, Eck HV. The movement of surface-applied nitrate into soils at five moisture levels [J]. Soil Science Society of American Journal, 1958, 22: 260-262.
    [220] Sadeghi AM, Kissel DE, Cabrera ML. Estimation molecular diffusion coefficients of urea in unsaturated soil [J]. Soil Science Society of America Journal, 1989, 53: 15-18.
    [221] Bijay-Singh, Sekhon GS. Some measures of reducing leaching loss of nitrates beyond potential rooting zoneⅠ. Proper co-ordination of nitrogen splitting with water management [J]. Plant and Soil, 1976, 44, 193-200.
    [222] Cai G, Zhu Z, Trevitt ACF, et al. Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice [J]. Fertilizer Research, 1986, 10: 203-215.
    [223] Shankaracharya NB, Mehta BV. Note on the losses of nitrogen by volatilization of ammonia from loamy sand soil of Anand treated with different nitrogen carriers under field conditions [J]. Indian Journal of Agricultural Sciences, 1971, 41: 131-133.
    [224] Mosier AR, Hutchinson GL. Nitrous oxide emissions form cropped fields [J]. Journal of Environmental Quality, 1981, 10: 169-173.
    [225] Davidson EA. Sources of nitric oxide and nitrous oxide following wetting of dry soil [J]. Soil Science Society of America Journal, 1992, 56: 95-102.
    [226] Cai GX, Chen DL, Ding H, et al. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain [J]. Nutrient Cycling in Agroecosystems, 2002, 187–195.
    [227] Patra AK, Rego TJ. Measurement of nitrate leaching potential of a vertisol using bromide as a tracer under rainfed conditins of the Indian semi-arid tropics [J]. Soil Science, 1997, 162:656-665.
    [228] Rathier TM, Frink CR. Nitrate in runoff water from container grown Juniper and Alberta spruce under different irrigation and N fertilization regimes [J]. Journal of Environmental Horticulture, 1989, 7: 32–35.
    [229] Ersahin S, Karaman MR. Estimating potential nitrate leaching in nitrogen fertilized and irrigated tomato using the computer model NLEAP [J]. Agricultural Water Management, 2001, 51: 1-12.
    [230] Riley WJ, Ortiz-Monasterio I, Matson PA. Nitrogen leaching and soil nitrate, nitrite, and ammonium levels under irrigated wheat in Northern Mexico [J]. Nutrient Cycling in Agroecosystems, 2001, 61: 223-236.
    [231] Euskirchen ES, Chen J, Gustafson EJ, et al. Soil respiration at dominant patch types within a managed northern Wisconsin landscape [J]. Ecosystems, 2003, 6: 595–607.
    [232] Grogan P, Chapin FS. Arctic soil respiration: effects of climate and vegetation depend on season [J]. Ecosystems, 1999, 2: 451–459.
    [233]刘玉民.神木水蚀风蚀交错带生态环境整治技术及试验示范研究论文集[J].西北水土保持研究所集刊,1993,18:38.
    [234] H?gberg P, Nordgren A, Buchmann N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature, 2001, 411: 789-791.
    [235] Tang J, Baldocchi DD, Xu L. Tree photosynthesis modulates soil respiration on a diurnal time scale [J]. Global Change Biol., 2005, 11: 1298-1304.
    [236] Ruehr NK, Knohl A, Buchmann N, et al. Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland[J]. Biogeochemistry, 2009, 10.1007/s10533-009-9383-z.
    [237] Bahn M, Rodeghiero M, Anderson-Dunn M, et al. Soil respiration in European grasslands in relation to climate and assimilate supply [J]. Ecosystems, 2008, 11:1352–1367.
    [238] Larionova AA, Yermolayev AM, Blagodatsky SA, et al. Soil respiration and carbon balance of gray forest soils as affected by land use [J]. Biol. Fertil. Soils, 1998, 27: 251–257.
    [239] Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48: 7-20.
    [240] Lohila A, Aurela M, Regina K, et al. Soil and total ecosystem respiration in agricultural fields: effect of soil and crop type [J]. Plant Soil, 2003, 251: 303–317.
    [241] Frank AB, Liebig MA, Tanaka DL. Management effects on soil CO2 efflux in northern semiaridgrassland and cropland [J]. Soil Till. Res., 2006, 89: 78–85.
    [242] Akinremi OO, McGinn SM, McLean HDJ. Effects of soil temperature and moisture on soil respiration in barley and fallow plots [J]. Can. J. Soil Sci., 1998, 79: 5-13.
    [243] Conant RT, Klopatek JM, Klopatek CC. Environmental factors controlling soil respiration in three semiarid ecosystems [J]. Soil Sci. Soc. Am. J., 2000, 64: 383–390.
    [244] Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices [J]. Global Biogeochem. Cyl., 2003 17: 15.1-15.15.
    [245] Tanaka K, Hashimoto S. Plant canopy effects on soil thermal and hydrological properties and soil respiration [J]. Ecological Modelling, 2006, 196: 32-44.
    [246] Xu L, Baldocchi DD, Tang J. How soil moisture, rain pulses, and growth alter the response of ecosystem respiraton to temperature [J]. Global Biogeochemical Cycles, 2004, 18: GB4002, 1-10.
    [247]成向荣,黄明斌,邵明安,等.紫花苜蓿和短花针茅根系分布与土壤水分研究[J].草地学报,2008(3):170-175.
    [248] Gildon A, Rimmer DL. Soil respiration on reclaimed coal-mine spoil [J]. Biol Fertil Soils, 1993, 16: 41-44.
    [249] Inglima I, Alberti G, Bertolini T, et al. Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux [J]. Global Change Biology, 2009, 15: 1289-1301.
    [250] Miss L, Gershenson A, Tang J, et al. Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest [J]. Tree Physiology, 2006, 26: 833-844.
    [251] Lee X, Wu H-J, Sigler J, et al. Rapid and transient response of soil respiration to rain [J], Global Change Biol., 2004, 10(6): 1017–1026.
    [252] Sponseller RA. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem [J]. Global Change Biology, 2007, 13: 426-436.
    [253] DeLucia E H, Callaway R M, Schlesinger WH. Offsetting changes in biomass allocation and photosynthesis in ponderosa pine (Pinus ponderosa) in response to climate change [J]. Tree Physiology, 1994, 14: 669-677.
    [254] Montagnini F, Nair PKR. Carbon sequestration: an underexploited environmental benefit of agroforestry systems [J]. Agrogorestry Sytems, 2004, 61: 281-295.
    [255] Zhang J, Pan X, Gao Z, et al. Carbon uptake and change in net primary productivity of oasis-desert ecosystem in arid western China with remote sensing technique [J]. J Geographical Sciences, 2006, 16: 315-325.
    [256] Baptist F, Choler P. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows [J]. Annals of Botany, 2008, 101: 549–559.
    [257] Meyer WB, Turner BL. Changes in land use and land cover: a global perspective [M]. Cambridge University Press, Cambridge, p. 578, 1994.
    [258] Collins B, Wein E. Soil heterogenity effects on canopy structure and composition during early succession [J]. Pant Ecol., 1998, 138: 230–271.
    [259] Waldhardt R, Simmering D, Otte A. Estimation and predection of plant species richness in a mosaic landscape [J]. Landsc Ecol., 2004, 19: 211–226.
    [260] Muster S, Elsenbeer H, Conedera M. Small-scale effects of historical land use and topography on post-cultural tree species composition in an Alpine valley in southern Switzerland [J]. Landscape Ecol, 2007, 22: 1187–1199.
    [261] Gamper SM, Tasser E, Tappeiner U. Short-time effects of land-use changes on O-horizon in subalpine grasslands [J]. Plant Soil, 2007, 299:101–115.
    [262] Geesing D, Felker P, Bingham R L. Influence of mesquite (Prosopis glandulosa) on soil nitrogen and carbon development: Implications for global carbon sequestration [J]. J. Arid Environ., 2000, 46: 157–180.
    [263] Grünzweig JM, Gelfand I, Yakir D. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland [J]. Biogeosciences Discuss., 2007, 4: 2111–2145.
    [264] Nadelhoffer KJ, Raich JW. Fine root production estimates and belowground carbon allocation in forest ecosystems [J]. Ecology, 1992, 73:1139–1147.
    [265]张文丽,陈世苹,苗海霞,等.开垦对克氏针茅草地生态系统碳通量的影响[J].植物生态学报, 2008,32(6):1301 - 1311.
    [266] Ni J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China [J]. Plant Ecology, 2004, 174: 217-234.
    [267]查轩,唐克丽.水蚀风蚀交错带小流域生态环境综合治理模式研究[J].自然资源学报,2000, 15(1):97-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700