高效固氮芽孢杆菌的选育及其效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从105个不同生态环境下的植物根际土中筛选得到11株固氮酶活性高的固氮芽孢杆菌菌株,并对其形态特征、生理生化特征、16S rDNA序列、对环境的适应性及其对植物的促生效果和植物根际土壤细菌群落特征作了系统研究,结果如下:
     固氮芽孢杆菌的筛选与鉴定:首先利用芽孢杆菌中芽孢的抗热性将土壤溶液在100℃沸水中煮10-15分钟,然后用选择性无氮培养基进行初筛,得到347株菌落形态不同的菌株;接着用乙炔还原法测定固氮酶活性,结果表明170株能测出固氮酶活性,其中12株比参比菌株圆褐固氮菌(Azotobocter chroococcum)固氮酶活性高,这12株菌的编号依次为:Y1、C2、B3、D4、E5、Y6、S7、S8、S9、N10、Y11和Y12。结合形态学特征、生理生化特征和16S rDNA序列分析对这12株进行了初步鉴定,结果表明其中菌株Y12属于微杆菌属(Miclvbacterium sp.),菌株Y1、S9、N10属于类芽孢杆菌属(Paenibacillus sp.),其余8株属于芽孢杆菌属(Bacillus sp.)。
     对小白菜的接种效应:筛选的11株固氮酶活性高的芽孢杆菌在小白菜上进行接种试验,试验结果表明,接种固氮芽孢杆菌菌液对小白菜的生长起到促进作用,而且植株的鲜重、干重都有明显的提高,其中鲜重增幅38.2%~69.8%,干重增幅25.9%~69%。同时,植株的全氮量也有明显的提高,其中10个接种菌液处理分别达到0.05显著水平。测定接种B3、S9菌株根际土壤的全氮、有效磷、速效钾含量发现,根际土壤的全氮、有效磷、速效钾含量都有一定程度的提高。
     对根际土壤细菌多样性的影响:采用PCR-DGGE方法分析Y1、B3、D4、S7、S8、S9、N10、Y11等8株固氮芽孢杆菌接种小白菜根际后,对根际土壤细菌多样性的影响。结果表明,与不接种菌液的对照土壤相比,接种菌液后的土壤细菌多样性提高,而且不同接种菌的处理对土壤细菌多样性的影响也不同。
     环境因子的适应性:无氮培养条件下,测定温度、酸碱度、铵盐对B3、S9菌株固氮能力的影响,结果表明,在15~40℃下均能生长并表达固氮酶活性;在偏酸和偏碱的条件下(pH4~9)均能保持较高的固氮酶活性;能耐受环境中的一定浓度的铵,B3和S9分别在0.5mmol/L和1mmol/LNH_4~+时有最高固氮酶活性。由此可知,B3和S9菌株对环境具有较广的适应性。
In this thesis, eleven strains of nitrogen-fixing bacillus with high nitrogenase activity were selected from 105 samples of rhizosphere soil. At the same time, the further studies for them were conducted. The results obtained are as follows:
     The selection and identification of nitrogen-fixing bacillus: A total 347 isolates were selectively obtained, based on their growth on nitrogen-free medium and their resistance to 100℃for 10-15 min. These isolates were tested for their nitrogenase activity using acetylene reduction assay (ARA). The result suggested that 170 isolates showed nitrogenase activity. The nitrogenase activities of 12 isolates were higher than the reference strain (Azotobocter chroococcum). These 12 isolates were Y1, C2, B3, D4, E5, Y6, S7, S8, S9, N10, Y11 and Y12. They were identified based on configuration, physiological and biochemical characterization, 16S rDNA sequence. Isolates Y12 was identified as Microbacterium sp. Isolates Y1, S9 and N10 were identified as Paenibacillus sp. Isolates C2, B3, D4, E5, Y6, S7, S8 and Y11 were identified as Bacillus sp.
     The effect of inoculation on the pakchoi: The pakchoi was inoculated with 11 bacillus strains of high nitrogenase activity respectively. The results indicated that the treatments with nitrogen-fixing bacillus had positive effect on pakchoi's seedling growth and led to the significant increase in fresh, dry plant weights of pakchoi. The plant fresh weight was increased by 38.2%~69.8% and the plant dry weight was increased by 25.9%~69%. Meanwhile, the total nitrogen content of pakchoi seeding was also increased considerablely, reaching significant level for 10 strains of them respectively. In addition, the experiment showed that both B3 and S9 strains had slight influence on total nitrogen, available phosphorus and quick-acting potassium contents of the rhizosphere soil.
     The impact of bacterial diversity in rhizosphere soil: With PCR-DGGE method, it was detected the fluctuation of bacterial community diversity in pakchoi rhizosphere soil, which was influenced by nitrogen-fixing bacillus. The results showed that the bacterial community diversity increased as the treatment with nitrogen-fixing bacillus, and the different treatments had different impact of the diversity.
     The applicability to diverse environmental factors: Effects of diverse environmental factors on nitrogenase activity (ARA) of both B3 and S9 strains in nitrogen-free culture were investigated in our experiments. The results implied that these two strains could easily adapt to different cultural conditions: it could propagate quickly and fix nitrogen at a temperature range of 15℃to 40℃and at a pH range of 4 to 9. Moreover, low NH_4~+ concentration had little effect on its nitrogenase activity. When the NH_4~+ concentration was about 0.5mmol/L and 1mmol/L respectively, their highest nitrogenase activities could be detected.
引文
[1]丁延芹.固氮芽抱杆菌的分离、鉴定及其glnB基因的初步研究[博士学位论文].北京:中国农业大学,2004.
    [2]陈子聪,蔡海松,林戎斌.等.固氮芽孢杆菌N117的筛选及应用效果初报.福建农业学报,2001,16(3):42-44.
    [3]张纪忠.微生物分类[M].上海:复旦大学出版社,1990,44-45.
    [4]Hino S.and Wilson P.W.Nitrogen-fixation by a facultative Bacillus.J Bacterial.1958,75:405-408.
    [5]顾宗滚等译、EA波尔,FE克拉克(美)编著.土壤微生物学与生物化学[M].北京科学技术文献出版社,1993,62-64.
    [6]Rovira,A.D.Microbial inoculation of plants.I.Establishment of free-living nitrogen-fixing bacteria in the rhizosphere and their effects on maize,tomato and wheat.Plant soil,1963,19:304-314.
    [7]Probanza A.Mateos J.L.,Lucas Garcia J.A.,et al.Effects of Inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L.Growth,Bacterial rhizosphere Colonization,and Mycorrhizal Infection.Micro Ecolog.2001,41(2):140-148.
    [8]顾小平,吴晓丽.接种联合固氮菌对毛竹实生苗生长的影响.林业科学研究,1999,12(1):7-12.
    [9]邹准,喻晓,李瑶,等.URM-菌肥的土壤有效性和保存期.氨基酸和生物资源,2002,24(2):22-25.
    [10]喻晓,冯其林,李瑶,等.URM-菌肥有效性试验研究.环境卫生工程,2002,10(3):106-109.
    [11]方新,王志学,冯健.BA-生物种衣剂在番茄上的应用效果.山东农业科学,2005,(1):55-56.
    [12]李兰晓,王海鹰,杨涛,等.土壤微生物菌肥在盐碱地造林中的作用.西北林学院学报,2005,20(4):60-63.
    [13]林代炎,叶美锋,林琰,等.~(15)N示踪法研究固氮芽孢杆菌应用效果.生态环境,2006,15(6):1310-1312.
    [14]Timmusks S.,Wanger E.G.The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abitiobic stress responses.Mol Plant Microbe Interact.1999,12(11):951-959.
    [15]Vonder Weid I,Alviano D.S.,Santos AL,et al.Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi.JAppl Microbiol.2003,95(5):1143-1151.
    [16]Ash,C.,Priest,F.G.and Collins,M.D.Molecular identification of rRNA group 3 bacilli (Ash,Farrow,Wallabanks and Collins)using a PCR probe test.Proposal for the creation of a new genus Paenibacillus.Antonie van Leeuwenhoek 1993,64:253-260.
    [17]Achouak W.Comparative phylogeny of rrs and niJH genes in the Bacillaceae,Int J Syst Bacteriol.1999,49:961-967.
    [18]Choo,Q.C.,Samian,M.R.&Najimudin,N.Phylogeny and characterization of three nifl-homologous genes from PaeniBacillus azotofixans.Appl Environ Microbiol.2003, 69,3658-3662.
    [19]Priest,F.G.,Goodfellow,M.and Todd,C.The genus Bacillus:a numberical analysis.In The Aerobic Endospore forming Bacteria.Classification and Identification,1981,pp.91-103.
    [20]Elo,S.,Suominen,I.,Kampfer,P.,et al.PaeniBacillus borealis sp.nov.,a nitrogen-fixing species isolated from spruce forest humus in Finland.Int JSyst Evol Microbiol.2001,51,535-545.
    [21]焦振泉,刘秀梅.16S rDNA序列同源性分析与细菌系统分类鉴定.国外医学卫生学分册,1998,25(1):12-16.
    [22]李阜棣,胡正嘉.微生物学[M].北京:中国农业出版社,2001.
    [23]王春霞,王道本,周启.棉花根际促生菌筛选菌株的分类鉴定[J].华中农业大学学报,1997,16(1):29-32.
    [24]赵秀云,韩素芬.杨树根际固氮菌的分离、筛选和鉴定[J].南京林业大学学报,2000,24(3):17-20.
    [25]来航线,杨保伟.邱学礼,等.9株芽孢杆菌的初步分离鉴定与拮抗性试验.西北农林科技大学学报(自然科学版),2004,32(7):93-96.
    [26]王燕,王开梅,杨自文.地衣芽孢杆菌1801的分离鉴定及其活性研究.湖北农业科学,2007,46(3):393-395.
    [27]阎东辉,许淑珍,马纪平.等.Vitek-AMS在临床细菌鉴定中的应用[J].中华实用医学,2000,(10):9-10.
    [28]Roger F,Roger A.Evaluation of the ATB 32 E system for automated identification of Enterobacteriaceae[J].Pathol Biol,1992,(1):78-80.
    [29]李星洪,李大捷,李薇,等.对从甘蔗根部分离的固氮成团泛菌的研究[J].北京大学学报(自然科学版),1998,34(6):741-745.
    [30]顾金刚,方敦煌,李大飞,等.BioMerieuxATB系统对烟草根围促生菌的初步鉴定[J].西南农业大学学报,2002,24(6):512-514.
    [31]姜远良.化学分类法在细菌和真菌系统分类中的应用和发展[J].辽宁师范大学学报(自然科学版),1995,(2):152-155.
    [32]丁延芹,王建平,刘元,等.几株固氮芽孢杆菌的分离与鉴定.农业生物技术学报,2004,12(6):690-697.
    [33]江月,周建刚,邹煜平,等.一种有固氮能力的节杆菌菌株的分离和初步鉴定.华中师范大学学报,2004,2(38):210-214.
    [34]Hussain A,Arsshad M,Hussain,et al.Response of maize to Azotobacter inculation under fertilized and unfertilized conditions.Bio Fertil soils,1987,4:73-77.
    [35]Emma Frandberg,Schnurer J.Chitinolytic properties of Bacillus pabull[J].K.J AppL.Bacteriol,1994,76:361-367.
    [36]Bottini R,Reis V,Baldani J I.Effect of inoculation of Azospirillum spp.on the nitrogen assimilation of field grown wheat[J].Plant Soil,1986,95:109-121.
    [37]沈德龙,冯永君.成团肠杆菌的生物功能多样性及分类最新进展[J].微生物学报,2002,22(1):40-43.
    [38]Zhan X-H,Jiang Y-H,Xu Y-C,etal.1999.Advances in researches on mechanism of microbial inoculants on promoting plant growth.Plant Nutr Fert Sci,5(2):97-105.
    [39]张美琴,马建华,赵月英,等.植物联合固氮菌及其促生作用研究进展.内蒙古农业科技,2007,(4):80-83.
    [40]Ikram,Karim Sudin,Napi.Role of plant growth-promoting rhizobacteria in influencing the early growth of Pueraria phaseoloides-strain and soil factor.J.of Natural Rubber Reseat.,1994,9(1):48-55.
    [41]梁绍芬,姜瑞波.细菌解磷作用的初步研究.微生物肥料的生产应用及其发展,中国农业科技出版社,1996,61-65.
    [42]Duijff,De Kogel,Bakker,Schippers.Influence of pseudobactin 358 on the iron nutrition of barley.Soil Biol.Biochem.1994,26(12):1681-1688.
    [43]刘荣昌等.生物钾肥在农业生产中的作用.微生物肥料的生产应用及其发展,中国农业科技出版社,1996,66-74.
    [44]Ikram,Karim Sudin,Napi.Role of plant growth-promoting rhizobacteria in influencing the early growth of Pueraria phaseoloides-strain and soil factor.J.of Natural Rubber Resear.1994,9(1):48-55.
    [44]Marschner,Ascher,Graham.Effect of manganese-reducing rhizosphere bacteria on the growth of Gaeuman-nomyces graminis var.tritici and on manganese uptake by wheat (Triticum aestiv um L.).Biol.and Fertility of Soils,1991,12(1):33-38.
    [45]Briro D E.Effect of compost on rhizospere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria[J].Applied and Environmental Microbiology,1995,61(1):194-199.
    [46]Bashan Y,Levanony H and Mitiku G.Changes in prton effiux of intact wheat roots induced by Azospirillum brasilense Cd.Can J Microbiol,1989,35:691-697.
    [47]Bashan Y and Levanony H.Current status of Azospirillum inoculation technology:Azospirillum as a challenge for agriculture.Can J Microbiol,1990,36:591-608.
    [48]Joshida,T.,Ann.Report of IRRI.Losbanos.1972.
    [49]Shamoot,S.etal.,Proc.Soi.Sri.AN.,1968,32:817-820.
    [50]Coleman,D.A.,in "the Role of Terrestrial & Squatic Organismsin in Decomposition Processes",1976:411.
    [51]Smith,V.,Ecology.1976,57:324-326.
    [52]常恒一郎:自然,1977,32(7):50-56.
    [53]Day,JH.,etal.,Soil Biol.Biochem.,1975,7:107-112.
    [54]Neal,J.L.& Ril.Larson:Soil Biol.Biochem,1976,8:151-155.
    [55]Sano Y,Fujii T.Nitrogen fixation in the rhizosphere of cultivated and wild rice strains.Crop Science.1981,21:758-760.
    [56]王子芳.细菌-植物联合固氮研究进展[J].微生物学通报.1982,9(4):176-181.
    [57]Balandreau J.,Non-symbiotic nitrogen fixtion in rhizosphere of rice maize and different.Nitrogen Fixation.1980,2:275-302.
    [58]Ljones,T.:The Biology of Nitrogen Fixation(ed.by Quispel,A.),North-Holland Publ.,Amsterdam,1974,pp.617-638.
    [59]Day,J.M.&J,Dobereiner:Soil Biol.Biochem.,1976,8:45-50.
    [60]Trolldenier,G.:Plant & Soil,1977,47:203.
    [61]Berestetsk Ⅱ,D.A..Shvytov,I.A.,Kravehenko,L.,Soviet Agricultural Science,1986,7:5-8.
    [62]海伟力.水稻根际联合固氮菌的研究[J].微生物学报.1993,33(3):79-85.
    [63]罗孝扬,等.固氮螺菌突变株CWV-22对提高小麦固氮量的初步研究.微生物学报.1989.
    [64]梅笑漫.生物吲氮研究中的几个热点问题.生物学杂志.2002,19(4):7-10.
    [65]席琳乔.三种禾本科牧草高效联合固氮菌的筛选和微生物接种剂的研制[硕士论文].甘肃:甘肃农业大学,2005.
    [66]Myers RM,Fischer S G,Lerman L S,et al.Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis.Nucleic Acids Res,1985,13:3131-3145.
    [67]Muyzer G,Waal E C,Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA.Appl Environ Microbiol,1993,59:695-700.
    [68]Fischer,S.G.,and L.S.Lerman.DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory.Proc Natl Acad Sci U S A.1983,80:1579-1583.
    [69]Myers,R.M.,S.G.Fischer,T.Maniatis,and L.S.Lerman.Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis.Nucleic Acids Res.1985,13:3111-3129.
    [70]Bai Y F,Han X G,Wu J G,et al.Ecosystem stability and compensatory effects in the InnerMongolia grassland.Nature,2004,431:181-184.
    [71]Muyzer.G.DGGE/TGGE a method for identifying genes from natural ecosystems.Curr.Microbiol.1999,2:317-322.
    [72]Lottmann J,Heuer H,De Vries J,et al.Establishment of introduced antagonistic bacteria in rhizosphere of transgenic potatoes and their effect on the bacterial community.FEMS Microbiol.Ecol.2000.33(1):41-49.
    [73]马悦欣.Carola Holmstrom 等.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报,2003,(8):1561-1569.
    [74]Duineveld B M,Rosado A Elsas J D,et al.,Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via Detnaturing gradient gel electrophoresis and substrate utilization patterns[J].Appl Environ Microbiol.1998,64(12):4950-4957.
    [75]Erb RW,Wagner DI.,Detection of polychlorinated biophenyl degradation genes in polluted sediments by direct DNA extraction and Polymerase Chain Reaction.Appl Environ.Microbiol.1993,59:4065-4073.
    [76]Plays T,Nakamura L K,Cohan F M.Discovery and classification of ecological diversity in the bacterial world:the role of DNA sequence data.Int.J.Syst.Bacteriol.1997,47(4):1145-1156.
    [77]Santegoeds,C.M.,S.C.Nold,and D.M.Ward.Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat.Appl Environ Microbiol,1996,62:392-398.
    [78]Ward,D.M.,C.M.Santegoeds,S.C.Nold,N.B.Ramsing,M.J.Ferris,and M.M.Bateson.Biodiversity within hot spring microbial mat communities:molecular monitoring of enrichment cultures.Antonie Van Leeuwenhoek,1997,71:143-150.
    [79]Kowalchuk,G.A.,J.R.Stephen,W.De Boer,J.I.Prosser,T.M.Embley,and J.W.Woldendorp.Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments.Appl Environ Microbiol.1997,63:1489-1497.
    [80]Muyzer,G.,and K.Smalla.Application of denaturing gradient gel electrophoresis(DGGE)and temperature gradient gel electrophoresis(TGGE)in microbial ecology.Antonie Van Leeuwenhoek 1998,73:127-141.
    [81]吴鑫.DGGE指纹图谱分析太湖富营养化水体中细菌群落结构的变化[硕士学位论文].上海:上海交通大学,2007.
    [82]Salles J F,De Souza F A.Van Elsas J D.Molecular method to assess the diversity of Burkolderia species in environmental samples.Appl.Environ.Microbiol.2002,6:1595-1603.
    [83]Duineveld B M,Kowalchuk G A,Keijzer A.et al.Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16SrRNA as well as DNA fragments coding for 16SrRNA.Appl.Environ.Microbiol.2001,67(1):172-178.
    [84]Rowan A K,Snape J R,Fearnside D,et al.Composition and diversity of ammoniaoxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater.FEMS Microbiol Ecol,2003,43:195-206.
    [85]宋亚娜,李隆,包兴国,等.应用DGGE技术研究间、轮作对根际氨氧化细菌和固氮菌群落结构的影响.江西农业大学学报,2006,28(4):506-511.
    [86]刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物量碳氮变化及细菌群落 16S rDNA V3片段PCR产物的DGGE分析.生态学报,2007,27(3):1081-1085.
    [87]Smit E,Leeflang P,Gommans S,et al.Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods.Appl.Environ.Microbiol.2001,67:2284-2291.
    [88]Renouf V,Claisse D,Miot-Sertier C,et al.Lactic bacterial evolution during winemaking:Use of rpoB gene as a target for PCR-DGGE analysis[J].Food Microbiology,2005,23:136-145.
    [89]王慧,王远鹏,林琦,等.应用PCR-DGGE研究铜冶炼厂附近根际土壤微生物生态变化.农业环境科学学报,2006,25(4):903-907.
    [90]师晓爽,刘德立,郎志宏,等.PCR-DGGE技术在农村户用沼气发酵微生物研究中的初步应用.山东师范大学学报(自然科学版).2007,22(2):120-122.
    [91]苏俊峰,马放,王弘宇,等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态.环境科学学报,2007,27(3):368-390.
    [92]Santegoeds C M,Nold S,Ward D M.Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacterial from a hot spring cyanobacterial mat[J].Appl Environ Microbiol,1996,62(11):3922-3928.
    [93]Teske A,Sigalevich P,Cohen Y,et al.Molecular identification of bacteria from a coculture by DGGE of 16S rDNA as a tool for isolation in pure cultures[J].A ppl.Environ Microbiol.,1996,62:4210-4215.
    [94]孙晓棠,姚青,刘琼光,等.利用DGGE评价不同培养基回收番茄根际细菌类群的能力.微生物学报.2006,46(3):482-486.
    [95]Kozdroj J,Elsas J D.Application of polymerase chain reaction-denaturing gradient gel electrophoresis for comparison of direct and indirect extraction methods of soil DNA used for microbial community fingerprinting.Biol.Fertil.Soils.2000,31:372-378.
    [96]徐晓宇,闵航,刘和,等.士壤微生物总DNA提取方法的比较.农业生物技术学报.2005,13(3):377-381.
    [97]周小奇,王艳芬,蔡莹,等.内蒙占典型草原细菌群落结构的PCR-DGGE检测.生态学报,2007,27(5):1684-1689.
    [98]中国微生物菌种保藏管理委员会农业微生物中心编.中国农业菌种目录.北京:中国农业科技出版社,2001.
    [99]沈萍,范秀容,李广武,等主编.微生物学实验.北京:高等教育出版社,2005.
    [100]许齐放,黄秀梨,陈廷伟.八株芽孢杆菌菌株的分类及固氮活性的测定.微生物学通报,1998,25(5):25-258.
    [101]东秀珠主编.常见细菌系统鉴定手册.北京:科学出版社,2001.
    [102]赵斌主编.微生物学实验.北京:科学出版社,2002.
    [103]Young,J.P.W.Phylogenetic classification of nitrogen-fixing organisms.In Biological Nitrogen Fixationed.Stacey,G.,Burris,R.H.and EVANS,H.J.pp.New York,NY,USA:Chapman & Hall.1992,43-86.
    [104]鲁如申主编.士壤农业化学分析方法.北京:中国农业科技出版社,1999.
    [105]Miller,R.H.,S.Kaneko,C.T.Chung,R.Girones,and R.H.Purcell.Compact organization of the hepatitis B virus genome.Hepatology 1989,9:322-327.
    [106]Zhou J Z,Bruns MA,Tiedje J M.DNA recovery from soils of diverse composition.Appl Environ Microbiol,1996,62:316-321.
    [107]Bassam B.J.,Gaetano-Anolles G.,Gresshoff P.M.Fast and sensitive silver straining of DNA in polyacrylamide gels.Analytical Biochemistry,1991,196:80-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700