一株新的水稻植物内生固氮细菌Delftia tsuruhatensis HR4的鉴定及其生物学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文鉴定了从水稻根面分离的一个植物内生固氮新菌株Delftia tsuruhatensis HR4,并对其在系统发育上的地位和生物学特性进行了的研究。
     对HR4进行了形态特征和生理生化特性鉴定,PCR扩增了16S rDNA全序列共1498 bp并进行了系统发育学分析。结果表明HR4与Delftia tsuruhatensis(ATCC BAA-554~T)的相似性达到99%,是Delftia tsuruhatensis的一个新菌株。
     筛选了HR4利福平突变株HR4A和HR4B,并对其进行了gfp基因标记。标记菌株HR4A∷gfp同野生型菌株相比,其生长只受到较小的影响,并且有较高的标记稳定性。激光共聚焦显微镜观察了HR4A∷gfp在水稻根部的定殖,发现幼根伸长区和侧根发生处是其侵染和定殖的重要部位,从而证明HR4是一株兼性植物内生细菌。
     HR4具有较广的拮抗谱,对实验的14株植物病原菌,尤其是水稻三大病害病原菌(稻瘟病菌、白叶枯病菌和纹枯病菌)都表现出了较强的平板拮抗活性。但对黄瓜黑星病原菌、黄瓜枯萎病原菌、辣椒疫霉病原菌和辣椒立枯病原菌的温室生防功能比较低,还有待于进一步的研究。
     用地高辛标记的nifHDK探针进行的斑点杂交实验将HR4的固氮酶基因定位于染色体DNA上。PCR扩增了全长3715bp的部分固氮酶结构基因,得到nifD基因的完整序列、nifH和nifK基因的部分序列以及nifH-nifD的IGS和nifD-nifK的IGS序列。氨基酸序列系统发育学分析表明固氮酶具有很强的保守性,与HR4亲缘关系最近的是Klebsiella pneumoniae。
     本文还首次将非培养方法(变性梯度凝胶电泳,DGGE)应用于水稻植物内生细菌研究,进行了初步的探索。
     本文是第一次报道Delftia属菌株具有固氮活性并可以拮抗多种植物病原
    
    首都师范大学博l一学位论文
    菌等生物学功能,同时本文也第一次报道从水稻植株中分离到可以固氮的
    Delftia)禹菌株。
A novel endophytic strain Delftia tsuruhatensis HR4 with N2-fixing activity isolated from rice rhizoplane were systematically studied on classification and identification, phylogenetic systematic status as well as its biological characteristics.
    Based on the phenotypic, physiological, biochemical and phylogenetic studies, strain HR4 could be classified as a member of Delftia tsuruhatensis. The complete 16S rDNA of strain HR4 in length 1498 bp were sequenced and a phylogenetic tree was constructed based on a consensus of length 1368 bp of 16S sequences homology. It is shown HR4 was most closed to Delftia tsuruhatensis (ATCC BAA-554T) with 16S rDNA similarity 99%. However, comparisons of characteristics with other known species of the genus Delftia suggested that strain HR4 was a novel dizotrophic strain.
    The rifampicin resistant mutant strains HR4A and HR4B were screened and used to mark with green fluorescent protein gene. Compared with the wild type strain, the growth of HR4A::gfp was little influenced and the marking stability of the labeled strain was high. Microscopic observation of colonization of Delftia tsuruhatensis HR4A::gfp on rice roots using laser scanning confocal microscope showed that the elongation region of young roots and the lateral root junctions were important infection and colonization sites. Moreover, it was demonstrated that strain HR4 was a facultative endophytic bacteria.
    The in vitro antagonism assays showed that strain HR4 has a wider
    
    
    
    antagonistic spectrum to all 14 plant pathogens tested in this work, especially exhibited strong anti-fungal activity against to the three main rice pathogens: Pyricularia grisea, Xanthomonas oryzae pv. oryzae and Rhizoctonia Solani. But after treatment of Cucumis sativus L. cv. Jinyan 2 and Capsicum frutescens L. cv. Qiemen with strain HR4 culture, strong biocontrol activity to Cladosporium cucumerinum Ellis et Arthur, Fusarium oxysporium (Schl.) f. sp. cucumerinum Qwen, Phytophthora capsici Leonian and Rhizoctonia solani in the greenhouse was not showed, and further studies are needed.
    HR4 genomic DNA and nifHDK-plasmid DNA spot blotting with labeled probe showed that the nifHDK gene located in chromosome of HR4. The partial nz/HDK gene of strain HR4 in length 3 715 bp was sequenced, which included partial nifH gene and nifK. gene, complete nifD gene, two IGS sequences. Phylogenetic trees were constructed based on amino acid sequence homology of Fe protein, Fe-Mo protein a subunit and B subunit. It was shown HR4 was most closed to Klebsiella pneumoniae.
    A preliminary study on rice endophytic bacteria using culture-independent method (DGGE) was done in this paper.
    This is the first report about genus Delftia with strong antagonistic activity in vitro to a variety of fungal plant pathogens and high nitrogen-fixing activity. Moreover, this paper is also the first report for a new diazotroph genus isolated from rice plant.
引文
1. Achouak W, et al. Root colonization by symplasmata-forming Enterobacter agglomerans, FEMS Microbiol. Ecol. 1994, 13:287-294.
    2. Achouak W, et al. Specificity of root colonization by symplasmata-forming Pantoea agglomerans. In: Nitrgen Fixation with Rice Production. Rahaman M. (eds.). Kluwer Academic Publishers. 1996, 191-201.
    3. Adhikari T B, Joseph C M, Yang G, Phillips D A, Nelson L M. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol. 2001, 47:916-924.
    4. Agarwhai S and Shende S T. Tetrazolium reducing microorganisms inside the root of Brassica species. Curr. Sci. 1987, 56:187-188.
    5. Alabouvette C. et al. Recent advances in the biological control of Fusarium wilts. Pestic. Sci. 1993, 37:365-373.
    6. Alvarez M I, Sueldo R J, Barassi C A. Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal Research Communications. 1996, 24:101-107.
    7. Antonyuk L P, Fomina O R, Galkin M A and Ignatov V V. The effect of wheat germ agglutinin on dinitrogen fixation glutamine synthetase activity and ammonia excretion in Azospirillum brasilense Sp245. FEMS Microbiol. Lett. 1993, 110:285-289.
    8. Antonyuk L P, Fomina O R, Kalinina A, Semnov S, Nesmeyanova M, and Ignatov V. Wheat lectin possibly serves as a signal molecule in the Azospirillum-wheat association. NATO ASI Ser. Ser. G. 1995, 37:319-324.
    9. Araujo W L, Marcon L, Maccheroni W, Jr., Jan Dirk van Elsas, Jim W L van Vuurde, Azevedo J L. Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants. Appl. Enviro. Microbiol. 2002, 68:4906-4914.
    10. Arshad M and Frankenberger W T. Microbial production of plant hormones. In: The rhizosphere and plant growth. Keister D L and Cregan P B. (eds.). Kluwer Academic Publishers. Dordrecht, The Netherlands. 1991, 327-334.
    11. Asis C A, Kubota M, Ohta H, Arima Y, Chebotar V K, Tsuchiya K, Akao S. Isolation and partial characterization of endophytic diazotrophs associated with Japanese sugarcane cultivar. Soil Science and Plant Nutrition. 2000, 46:759-756.
    12. Baldani J I, Baldani V L D, Seldin L, and Dbereiner J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 1986, 36: 86-93.
    13. Baldani J I, Pot B, Kirchhof G, Falsen E, Baldani V L D, Olivares F L., Hsote B, Kersters K, Hartmann A, Gillis M and Dbereiner J. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int. J. Syst. Bacteriol. 1996, 46: 802-810.
    14. Baldani V L D, Baldani J I, and Dbereiner J. Inoculation of field-grown wheat (Triticum aestivum) with Azospirillum spp. Brazil. Biol. Fertil. Soils. 1987, 4:37-40.
    15. Baldani V L D, Baldani J I, Olivares F, Dbereiner J. Identification and ecology of Herbaspirillum
    
    seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis. 1992, 13:65-73.
    16. Baldermann, C, Engelhardt, H. Expression, two-dimensional crystallization, and three-dimensional reconstruction of the beta8 outer membrane protein Omp21 from Comamonas acidovorans. J. Struct. Biol. 2000, 131:96-107.
    17. Bally R, Thomas-Bauzon D, Heulin R and Balandreau J. Determination of the most frequent N_2-fixing bacteria in a rice rhizosphere. Can. J. Microbiol. 1983, 29:881-887.
    18. Bangera M G, Thomashow L S. Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol. Plant-Microbe Interact. 1996, 9:83-90.
    19. Barak R, Nur Y, Okon Y. Detection of chemotaxis in Azospirillum brasilense. J. Appl. Bacteriol. 1983, 53:399-403.
    20. Barbieri P and Galli E. Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res. Microbiol. 1993,144:69-75.
    21. Barbieri P, Baggio C, Bazzicalupo M, Galli E, Zanetti G and Nuti M P. Azospirillum-gramineae interaction: effect of indole-3-acetic acid. Dev. Plant Soil. 1991, 48:161-168.
    22. Barbieri P, Trambaioli C, Zanetti G and Galli E. Inoculation with Azospirillum brasilense Cd affects the root system development of Sorghum bicolor. NATO ASI Ser. Ser. G. 1995, 37:335-340.
    23. Bashan Y and Dubrovsky J G. Azopirillum spp. participation in dry matter patitioning in grasses at the whole plant level. Biol. Fertil. Soils. 1996, 23:435-440.
    24. Bashan Y and Holguin G. Anchoring of Azospirillum brasilense to hydrophobic polystyrene and wheat roots. J. Gen. Microbiol. 1993,139:379-385.
    25. Bashan Y and Holguin G. Azospirllum-plant relationships: environmental and physiological advances (1990-1996). Can. J. Microbiol. 1997, 43:103-121.
    26. Bashan Y and Levanony H. Alterations in membbrane potential and in proton efflux in plant roos induced by Azospirillum brasilense. Plant Soil. 1991, 137:99-103.
    27. Bashan Y and Levanony H. Current status of Azospirillura inoculation technolgy: Azospirillura as a challenge for agriculture. Can. J. Microbiol. 1990, 36:591-608.
    28. Bashan Y, Alcaraz-Melendez L and Toledo G. Responses of soybean and cowpea root membranes to inoculation with Azospirillum brasilense. Sym. Biosis. 1992, 13:217-228.
    29. Bashan Y, de-Bashan L E. Protection of tomato seedlings against infection by Pseudoraonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 2002, 68:2637-2643.
    30. Bashan Y, Holguin G. Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 1994, 60:2120-2131.
    31. Bashan Y, Levanony H and Mitiku G. Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Can. J. Microbiol. 1989a, 35:691-697.
    32. Bashan Y, Levanony H and Whitmoyer R E. Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd attachment to sand. Plant Soil. 1991,132:73-83.
    33. Bashan Y, Ream Y, Levanony H and Sade A. Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inculation with Azospirillum brasilense Cd. Can.J.Bot. 1989b, 67:1317-1324.
    34. Begonia M F, Kremer, R J. Chemotaxis of deleterious rhizobacteria to birdsfoot trefoil. Appl. Soil Ecol. 1999, 11:35-42.
    35. Bell C R, Dickie G A, Harvey W L G and Chan J W Y F. Endophytic bacteria in grapevine. Can. J.
    
    Microbiol. 1995, 41:46-53.
    36. Benhamou N., Belanger R.R., and Paulitz T. Ultrastructural and cytochemical aspects of the interaction between Pseudomonas fluorescens and Ri T-DNA transformed pea roots: host response to colonization by Pythium ultimum Trow. Planta. 1996. 199:105-117.
    37. Biological Control of Soil-Borne Plant Pathogens. Hornby, D. (eds). CAB International, Wallingford. 1990.
    38. Biological Nitrogen Fixation. Stacey G, Burris R H, Evans H J. (eds). Routtedge, Chapman and Hall, Inc. 1992.
    39. Bird L S, Leverman C, Thaxaton P and Percy R G. Evidence that microorganisms in and on tissues have a role in a mechanism of multi-adversity resistance in cotton. In: Proceedings of Beltwide Cotton Production Research Conferences. J M Brown. (eds.). Noational Cotton Council. Memphis, Tenn. 1980, 40:283-285.
    40. Bird L S. The MAR (multi-adversity resistance) system of genetic improvement of cotton. Plant Dis. 1982, 66:172-176.
    41. Blair D F. How bacteria sense and swim. Annu. Rev. Microbiol. 1995, 49:489-522.
    42. Boddey R M, et al. Biological nitrogen fixation associated with sugar cane and rice: Contributions and prospects for improvement. Plant and soil. 1995,174:195-209.
    43. Boddey R M, Urquiaga S S, Dbereiner J. Biological nitrogen fixation associated with sugarcane. Sugar Journal. 1995, 58:34-35.
    44. Boddey R M. Biological nitrogen fixation in sugar cane: A key to energetically biable bio-fuel production. CRC. Crit. Rev. Plant Sci. 1995, 14:263-279.
    45. Boer S H and Copeman RJ. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot disease. Can. J. Plant Sci. 1974, 54:115-122.
    46. Boon N, Goris J, De Vos P, Verstraete W, Top E M. Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl. Environ. Microbiol. 2001, 67:1107-1115.
    47. Boulygina E S, Kuznetsov B B, Marusina A I , Tourova T P, Kravchenko I K, Bykova S A, Kolganova T V, Galchenko V F. A Study of Nucleotide Sequences of nifH Genes of Some Methanotrophic Bacteria. Microbiology. 2002, 71:425-43Z
    48. Brigle K E, Netwon W E, Dean D R. Complete nucleotide sequence of the Azotobcter vinelundii nitrogenase structural gene cluster. Gene. 1985, 37:37-44.
    49. Bugbee W M, Gudmestad N C, Sector G A, Nolte P. Sugar beet as a symptomless host for Corynebacterium sepedonicum. Phytopathology. 1987, 77:765-770.
    50. Cariello N F, Skopek T R. Mutational analysis using denaturing gradient gel electrophoresis-and PCR. Mutat. Res. 1993, 288:103-12.
    51. Cavalcante V A, Dbereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil. 1988,108:23-31.
    52. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, De Lajudie P, Dreyfus B. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl. Environ. Microbiol. 2000, 66:5437-5447.
    53. Chalfie M, Tu Y, Euskirchen G, Ward W W and Prasher D C. Green fluorescent protein as a marker for gene expression. Science. 1994, 263:802-805.
    54. Chelius M K, Triplett E W. The Diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 2001, 41:252-263.
    55. Chen C, Banske E M, Musson G, Kloepper J W. Biological control potential and population
    
    dynamics of endophytic bacteria in a cotton/Fusarium wilt system. In: Improving plant productivity with rhizosphere Bacteriol. Ryder M H, Stephens P M, Bowen G D. (eds.). CSIRO, Australia. 1994, 191-193.
    56. Chen C, Bauske E M, Musson G, Rodriguez-kabana R and Kloepper J W. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol. Control. 1995, 5:83-91.
    57. Chernin L S, L de la Fuente, Sobolev V, Haran S, Vorgias C E, Oppenheim B A and Chet I. Molecular cloning, structural analysis and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl. Environ. Microbiol. 1997, 63:834-839.
    58. Chernin L, Ismailov Z, Haran S, Chet I. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 1995, 61:1720-1726.
    59. Conn K L, Nowak J, Lazarovits G. Agrotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can. J. Microbiol. 1997, 43:801-808.
    60. Cook R J. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol. 1993, 31:53-80.
    61. Cormack B P, Valdivia R H, Falkow S. FACS optimized mutants of the green fluorescent protein (GFP). Gene. 1996,173:33-38.
    62. Creus C M, Sueldo R J, Barassi C A. Shoot growth and water status in Azospirllum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry. 1997, 35:934-944.
    63. Creus C M, Sueldo R J, Barassi C A. Water relations in Azospirillum-inoculated seedings under osmotic stress. Canadian Journal of Botany. 1998, 76:238-344.
    64. Croes C L, Moens S, Van Bastelaere E, Vanderleyden J and Michiels K W. The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J. Gen. Microbiol. 1993,139:2261-2269.
    65. Cubitt A B, Heim R, Adams S R, Boyd A E, Gross L A and Tsien R Y. Understanding, improveing and using green fluorescent proteins. TIBS. 1995, 20:448-456.
    66. De Bruijn F J, et al. Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants, such as_rice. Plant Soil. 1995, 174:225-240.
    67. De Weger L A, van der Vlugt C Y M, Wijfjes A H M, Bakker P A H M, Schippers B, Lugtenberg B. Flagella of a plant growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol. 1987,169:2769-2773.
    68. Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Hofte M, De Vos P, Verstraete W, Top E M. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl. Environ. Microbiol. 2003, 69:1532-1541.
    69. Dekkers L C, Bloemendaal C J P, De Weger L A, Wijffelman C A, Spaink H P, Lugtenberg-Ben J. A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol. Plant-Microbe Interact. 1998,11:45-56.
    70. Del Gallo M and Haegi A. Characterization and quantification of exocellular polyhsaccharides in Azospirillum brasilense and Rhizobium leguminosarum bv. ciceri. Plant Soil. 1990,137:171-175.
    71. De-Polli, et al. Conformation of nitrogen fixation in two tropical grasses by ~(15)N_2 incorporation. Soil. Biol. Biochem. 1977, 9:181-182.
    72. Di Fiore S, del Gallo M. Azospirilluum Ⅵ and Related Microorganisms. Fendrik, et al (eds.). NATO ASI Series G37. Springer-Verlag Berlin Heidelberg. 1995,169-187.
    73. Di Fiore S, et al. Endophytic bacteria their possible role in the host plant. In: Azospirillum Ⅵ
    
    and Related Microorganisms: Genetics, Physiology, Ecology. Istvan F, et al. (eds.). Heidelberg: Springer. 1995, 169-187.
    74. Dimock MB, Beach R M and Carlson P S. Endophytic bacteria for the delivery of crop protection agents. In: Biotechnology, biological pesticides and novel plant-pest resistance for insect pest management. Roberts D W and Granados R R. (eds.). Boyce Thompson Institute for Plant Research. Ithaca, N.Y. 1988, 88-92.
    75. Dixon R, et al. Extension of nitrogen fixation to other crops. In: New Horizons in Nitrogen Fixation. Palacios R, et al. (eds). Kluwer Academic Publishers, Dordrecht. The Netherlands. 1993, 765-778.
    76. Dobbelaere S, Croonenborghs A, Thy A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre J F, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S and Okon Y. Responses of agrononmically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol. 2001, 28:871-879.
    77. Dobbelaers S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J. Analysis and relevance of the phytostimulatory effect of genetically modified Azospirillum Brasilense strains upon wheat inoculation. Plant and Soil. 1999, 212:155-164.
    78. Dbereiner J and Day J M. Associative symbioses in tropical grasses: characterization of microorganisms and dirdtrogen-fixing sites. In: Proceedings of the 1st International symposium on Nitrogen Fixation. Vol2. Newton W E and Nyman C J. (eds). Washington State University Press, Pullman, Wash. 1976, 518-538.
    79. Dbereiner J, Day J M, Dart P J. Nitrogenase activity and oxygen sensitivity of the Paspalum notatum - Azotobacter paspali association. J. Gen. Microbiol. 1972, 71:103-116.
    80. Dbereiner J, et al. Endophytic diazotrophs: The key to BNF in agramineous plants. In: Nitrogen Fixation with Non-legumes: 6th International Symposium. Hegazi N A, et al. (eds.). New York: The American University in Cairo Press. 1994, 395-408.
    81. Dbereiner J. Recent changes in concepts of plant bacteria interactions: endophytic N_2 fixing bacteria. Cienciae cultura. Sao Paulo. 1992, 44:310-313.
    82. Dong Y M, et al. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago trunkatula. Appl. Environ. Microbiol. 2003, 69:1783-1790.
    83. Dong Z, Canny M J, McCully M E, Roboredo M R, Ortega E and Rodes R. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiol. 1994,105:1139-1147.
    84. Dubrovsky J G, Puente M E and Bashan Y. Arabidopsis thaliana as a model system for the study of the effect of inoculation by Azospirillum brasilensse sp-245 on root hairs growth. Soil Biol. Biochem. 1994, 26:1657-1664.
    85. Dufrene Y F and Rouxhet P G. Surface composition, surface properties, and adhesiveness of Azospirillum brasilense variation during growth. Can. J. Microbiol. 1996, 42:548-556.
    86. Duineveld B M, Kowalchuk G A, Keijzer A, van Elsas J D, van Veen J A. Analysis of Bacterial Communities in the Rhizosphere of Chrysanthemum via Denaturing Gradient Gel Electrophoresis of PCR-Amplified 16S rRNA as Well as DNA Fragments Coding for 16S rRNA. Appl. Enviro. Microbiol. 2001, 67:172-178.
    87. Dunbar J, Takala S, Barns S M, Davis J A, Kuske C R. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 1999, 65: 1662-1669.
    88. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K.
    
    Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl. Environ. Microbiol. 2001, 67:5285-5293.
    89. Falik E, Sarig S, Okon Y. Morphology and physiology of plant roots associated with Azospirillum. In: Azospirillum/plant associations. Okon Y. (eds.) CRC Press. Boca Raton, F.L. 1994, 77-86.
    90. Fani R, Bandi C, Bazzicalupo M, Ceccherini M T, Fancelli S, Gallori E, Gerace L, Grifoni A, Miclaus N and Damiani G. Phylogeny of the genus Azospirillum based on 16S rDNA sequence. FEMS. Microbiol. Lett. 1995, 129:195-200.
    91. Fenton A W, Stephens P M, Crowley J, O'Callaghan M, O'Gara F. Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 1992, 58:3873-3878.
    92. Fisher P J, Petrini O and Scott H M L. The distribution of some fungi and bacterial endophytes in maize (Zea mays L.). New Phytol. 1992,122:299-305.
    93. Fox G E, et al. The phylogeny of prokaryotes. Science. 1980, 209:457-463.
    94. Fravel D R. Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol. 1988, 26:75-91.
    95. Frommel M I, Nowak J, Lazarovits G. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp tuberosum) as affected by a non fluorescent Pseudomonas sp. Plant Physiol. 1991, 96: 928-936.
    96. Fulchieri M, Lucangeli C and Bottini R. Inoculation with Azospirillum lipoferum affects growth and gibberellin status on corn seedling roots. Plant Cell Physiol. 1993, 34:1305-1309.
    97. Gagne S, Richard C, Rousseau H and Antoun H. Xylem-residing bacteria in alfalfa roots. Can. J. Microbiol. 1987, 33:996-1000.
    98. Gantar M, Kerby N W and Rowell P. Colonization of wheat (Triticum vulgare L.) by N_2-fixing cyanobacteria. Ⅱ. an ultrastructural study. New Phytol. 1991, 118:485-492.
    99. Garbeva P, van Overbeek L S, van Vuurde J W L, van Elsas J D. Analysis of endophytic bacteria communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbiol. Ecol. 2001, 41:369-383.
    100. Garcia de Salomone I and Dbereiner J. Maize genotype effects on the response to Azospirillum inoculation. Biol. Fert. Soils. 1996, 21:193-196.
    101. Gardner J M, Feldman A W, Zablotowicz R M. Identity and behavior of xylem-residing bacteria in rough lemon of Florida citrus trees. Appl. Environ. Microbiol. 1982, 43:1335-1342.
    102. Gillis M, Dbereiner J, Pot B, Goor M, Falsen E, Hoste B, Reinhold B, Kersters K. Taxonomic relationship between (Pseudomonas) rubricsubalbicans, some clinical isolates (ef group 1), herbaspirillum seropedicase and (Aquaspitillum) autotrophicum. In: Nitrgen fixation. Polsinelli M, Materassi R, Vincenzini M (eds). Kluwer Academic Publishers, Dordrecht Boston and London. 1991, 293-294.
    103. Gillis M. Economics, ecology, and ethics: mending the broken circle for tropical forests. In: Ecology, Economics, Ethics: The Broken Circle. Bormann F and Kellert S. (eds.) New Haven: Yale University Press. 1991.
    104. Glick B R, Bashan Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances. 1998, 15: 353-378.
    105. Glick B R, Patten C L, Holguin G, Penrose D M. In: Biochemical and genetic mechanisms used by plant growth-promoting bacteria. London, Imperial College Press. 1999.
    106. Glick B R. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 1995,
    
    41:109-117.
    107. Graff A, Stubner S. Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Syst. Appl. Microbiol. 2003, 26:445-452.
    108. Grundler F M W and Wyss U. Strategies of root parasitism by sedentary plant parasitic nematodes. In: Pathogenesis and host specificity in plant diseases. Histopathological. Bio-chemical. Genetic and molecular basese. Vol.Ⅱ. K Kohmot N S Singh and Singh R P. (eds). Elsevier Science Ltd., New York. 1995, 309-319.
    109. Gyaneshwar P, James E K, Mathan N, Reddy P M, Reinhold-Hurek B, Ladha J K. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 2001, 183: 2634-2645.
    110. Hallmann J, Kloepper J W and Rodriguez-Kabana R. Application of the Scholander pressure bomb to studies on endophytic bacteria of plants. Can. J. Microbiol. 1997, 43:411-416.
    111. Hallmann J, Kloepper J W. Rodriguez-Kabana R and Sikora R A. Endophytic rhizobacteria as antagonists of Meloidogyne incognita on cucumber. Phytopathology. 1995, 85:1136.
    112. Hallmann J, Quadt-Hallmann A, Rodriguez-Kábana R and Kloepper J W. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol. Biochem. 1998, 30:925-937.
    113. Haukka K, Lindstrom K, J Peter W Young. Three Phylogenetic Groups of nodA and nifH Genes in Sinorhizobium and Mesorhizobium Isolates from Leguminous Trees Growing in Africa and Latin America. Appl. Enviro. Microbiol. 1998, 64:419-426.
    114. Heim R, Prasher D C and Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA. 1994, 91:12501-12504.
    115. Heuer H, Hartung K, Wieland G, Kramer I, Smaalla K. Polynucleotide Probes That Target a Hypervariable Region of 16S rRNA Genes To Identify Bacterial Isolates Corresponding to Bands of Community Fingerprints. Appl. Enviro. Microbiol. 1999, 65:1045-1049.
    116. Heulin T, Rahman M Omar A M N, Rafidison Z, Pierra J C, Balandreau J. Experimental and mathematical procedures for comparing N_2-fixing efficiencies of rhizosphere diazotrophs. J. Microbiol. Meth. 1989, 9:163-173.
    117. Hinton D M and Bacon C W. Enterobacter cloacae is an endopphytic symbiont of corn. Mycopathologia. 1995,129:117-125.
    118. Hiroyuki F, Masao S, Hidenori O, Yasufumi U, Tadayoshi S, Tatsuhiko M. Chemotactic response to amino acids of Fluorescent pseudomonas isolated from spinach roots grown in soils with different salinity levels. Soil Sci. Plant Nutr. 1998, 44:1-7.
    119. Hoffmann D, Kleinsteuber S, Muller R H, Babel W. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology. 2003,149: 2545-2556.
    120. Hoflich G, Wiehe W and Kuhn G. Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Exprientia. 1994, 50:897-905.
    121. Hollender J, Dreyer U, Kornberger L, Kampfer P, Dott W. Selective enrichment and characterization of a phosphorus-removing bacterial consoutium from activated sludge. Appl. Microbiol. Biotechnol. 2002, 58:106-111.
    122. Howard B. Nitrogenase: a nucleotide-dependent molecular switch. Ann Rew Biochem, 1994, 63:64-235
    123. Huang J S. Ultrastructure of bacterial penetration in plants. Annu. Rev. Phytopathol. 1986, 24:141-157.
    
    
    124. Hurek T, Reinhold-Hurek B, Van Montagu M and Kellen-berger E. Root colonization and systemic spreading of Azoarcus sp. Strain BH72 in grasses. J. Bacteriol. 1994, 176:1913-1923.
    125. Jacobs M J, Bugbee W M, Gabrielson D A. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 1985, 63:1262-1265.
    126. James E K, Reis V M, Olivares F L, Baldani J I and Dbereiner J. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J. Exp. Bot. 1994, 45:757-766.
    127. Jimenez S T, et al. Coffea Arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl. Environ. Microbiol. 1997, 63:3676-3683.
    128. Karpati E, Kiss P, Afsharian M, Marini F, Buglioni S, Fendrik I and Del Gallo M. Molecular studies of the interaction of Azospirillum lipoferum with wheat germ agglutinin. NATO ASI Ser. Ser. G. 1995, 37:213-221.
    129. Katsivela K, Bonse D, Krger A. Strmpl C, Livingston A, Wittich R M. An extractive membrane biofilm reactor for degradation of 1, 3-dichloropropene in industrial wastewater. Appl. Microbiol. Biotechnol. 1999, 52:853-862.
    130. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G. Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacteriaI secondary metabolite 2,4-diacetylphloroglucionl. Mol. Plant-Microbe. Interact. 1992, 5:4-13.
    131. Kirchhof G, Baldani J I, Reis V M and Hartmann A. Molecular assay to identify Acetobacter diazotrophicus and detect its occurrence in plant tissues. Can. J. Microbiol. 1998, 44:12-19.
    132. Kirk G J D. Modelling root-induced solubilization of nutrients. Plant and Soil. 2002, 255:49-57.
    133. Kloepper J W, Schippers B and Bakker P A H M. Proposed elimination of the term endorhizophere. Phytopathology. 1992a, 82:726-727.
    134. Kloepper J W, Wei G and Tuzun S. Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. In: Biological control of plant diseases. Tjamos E S. (eds.). Plenum press. New York. 1992b, 185-191.
    135. Kobayashi D Y, Palumbo J D. Bacterial endophytes and their effects on plant and uses in agriculture. In: Microbial Endophytes. Charles W B and James F W Jr. (eds.). New York: Marcel Dekker. 2000,199-233.
    136. Ladha J K, Barraquio W L and Watanabe I. Immunological techniques to identify Azospirillum associated with wetland rice. Can. J. Microbiol. 1982, 28:478-485.
    137. Lalande R, Bissonnette N, Coutlee D and Antoun H. Identification of rhizobacteria from maize and determinatin of their plant-growth promoting potential. Plant Soil. 1989,115:7-11.
    138. Lamb T G, Tonkyn D W and Kluepfel D A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can. J. Microbiol. 1996, 42:1112-1120.
    139. Lampel J S, Canter G L, Dimock M B, Kelly J L, Anderson J J, Uratani B B, Foulke J S, Jr Turner J T. Integrative cloning, expression, and stability of the cryIA, gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp, cynodontis. Appl. Environ. Microbiol. 1994, 60:501-508.
    140. Lane D, et al. Rapid detemination of 16S RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA. 1985, 82:6955-6959.
    141. Lazarovits G, Nowak J. Rhizobacteria for improvement of plant growth and establishment. Hortscience. 1997, 32:188-192.
    142. Leifert C, Morris C E and Waites W M. Ecology of microbial saprophytes and pathogens in tissue
    
    culture and field-grown plants: reasons for contamination problems in vitro. Crit. Rev. Plant Sci. 1994, 13:139-183.
    143. Lessner D J, Johnson G R, Parales R E, Spain J C, Gibson D T. Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl. Environ. Microbiol. 2002, 68:634-641.
    144. Li J P, You C B. The associative nitrogen fixation in the rice rhizosphere. In: The Associative Nitrogen Fixation in the Rice Rhizosphere. You C B. (eds.). Agricultural Publishing House. Beijing. 1990,1-12.
    145. Lin M, You C B. Root exudates of rice (Oryza sativa L.) and its interaction with Alcaligenes faecalis. Agriculture Sciences in China. 1989, 22:6-12.
    146. Liu L, Kloepper J W and Tuzun S. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology. 1995c, 85:1064-1068.
    147. Liu L, Kloepper J W and Tuzun S. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizaogbacteria. Phytopathology. 1995a, 85:695-698.
    148. Liu L, Kloepper J W and Tuzun S. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology. 1995b. 85:843-847.
    149. Liu Z, Yang H, Huang Z, Zhou P, Liu S J. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl. Microbiol. Biotechnol. 2002, 58:679-682.
    150. Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D. The effect of recombinant heavy metal resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremed. 2001, 3:173-187.
    151. Lodewyckx E, et al. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences. 2002, 21:583-597.
    152. Loon L V, Bakker P A H M, Pieterse C M J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. St. Paul, M N: American Phytopathological Society, 1998. 36:453-583.
    153. Lynch J M, Whipps J M. Substrate flow in the rhizosphere. Plant Soil. 1990,129:1-10.
    154. Macario B J, Sara A F, Elsa V Z, Eduardo P C, Stephane B, Edgar Z. Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil. 2003, 249:271-277.
    155. Mahaffee W F and Kloepper J W. Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Can. J. Microbiol. 1997a, 43:344-353.
    156. Mahaffee W F, Kloepper J W, Van Vuurde J W L, Van der Wolf J M and Van den Brink M. Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22. In: Improving plant productivity in rhizosphere bacterial. Ryder M H, Stephens P M Bowen G D. (eds.). CSIRO. Melbourne, Australia. 1997b, 180.
    157. Margaret E McCully. Niches for bacterial endophytes in crop plants: a plant bioglogist's view. Aust. J. Plant Physiol. 2001, 28:983-990.
    158. Marmur J. A procedure for the isolation of DNA form micro-organism. J. Mol. Biol. 1961, 3:208-218.
    159. Marmur J, Doty P. Determination of the base composition of DNA from its thermal denaturation temperature. J. Mol. Biol. 1962, 5:109-118.
    160. Masterson R V, Russell P V, Ahcerly A G. Nitrogen fixation (nif) gene and large plasmids of Rhizobium japonicum. J. Bacteriol. 1982. 152:928-932.
    
    
    161. Mavingui P, et al. Genetic and phenotypic diversity of Acillus polymyxa in soil and in the wheat rhizosphere. Appl. Environ. Microbiol. 1992, 58: 1894-1903.
    162. McInory J A and Kloepper J W. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can. J. Microbiol. 1995b, 41:895-901.
    163. McInroy J A and Kloepper J W. Studies on indigenous endophytic bacteria of sweet corn and cotton. In: Molecular ecology of rhizosphere microorganisms. F O'Gara, D N Dowling and B Boesten. (eds.) VCH Verlagsgesellschaft, Weinheim, Germany. 1994, 19-28.
    164. McInroy J A and Kloepper J W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil. 1995a, 173:337-342.
    165. Meikle A, Glover L A, Killbam K and Prosser J I. Potential lumenscence as an indicator of activiation of genetically-modified Psendomonas fluorescens in liquid culture and in soil. Soil Biol. Biochem. 1994, 26:747-755.
    166. Michiels K W, Croes C L and Vanderleyden J. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 1991,137:2241-2246.
    167. Michiels K, Verreth C and Vanderleyden J. Azospirillum lipoferum and Azospirillum brasilense surface polysacchride mutants that are affected in flocculation. J. Appl. Bacteriol. 1990, 69:705-711.
    168. Miklos de Zamaroczy, Fre deric Delorme, et al. Regulation of transcription and promoter mapping of the structure genes for nitrogenase (nifHDK) of Azosprillum brasilense Sp7. MGG, 1989, 220:88-94
    169. Miller R W. Molybacterium nitrogencase. In: Bioglogy and Biochemistry of Nortogen Fixation. Dilworth E, Glenn A. (eds.). New York: Elsevier, 1991.
    170. Minerdi D, Fan R, Gallo R, Andra A, Arino B, Bonfante P. Nitrogen Fixation Genes in an Endosymbiotic Burkholderia Strain. Appl. Envir. Microbio. 2001, 67:725-732.
    171. Misaghi I J and Donndelinger C R. Endophytic bacteria in symptom-free cotton plants. Phytopathology. 1990, 80:808-811.
    172. Molecular microbial ecology manual. Antoon D L Akkermans, Jan Dirk Van Elsas and Frans J DE Bruijn. (eds.) Kluwer Academic Publishers, London, 1995.
    173. Moller A, Gustafsson K and Jsnsson J K. Specific monitoring by PCR amplification and bioluminescence of firefly lucfferase gene-tagged bacteria added to environmental samples. FEMS Microbiol. Ecol. 1994,15:193-206.
    174. Mordasky M. Detection of ribosomal nucleic acid homologies In: Chemical Methods in Bacterial Systematics. Goodfellow M and Minnikin D E. (eds.). Academic Press. 1985, 41-66.
    175. Mukhopadhyay N K, Garrison N K, Hinton D M, Bacon C W, Khush G S, Peck H D and Datta N. Identification an characterization of bacterial endophytes of rice. Mycopathologia. 1996, 134:151-159.
    176. Muller R H, Jorks S, Kleinsteuber S, Babel W. Comamonas acidovorans strain MCI: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol. Res. 1999,154:241-246.
    177. Muller R H, Kleinsteuber S, Babel W. Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Microbiol. Res. 2001, 156:121-131.
    178. Mundt J O, Hinkle N F. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 1976, 32:694-698.
    
    
    179. Musson G, et al. Development of delivery systems for introducing endophytic bacteria into cotton. Biocontrol Sci. Technol. 1995, 5: 407-416.
    180. Neal J L, Atkinson T G, Larson R I. Changes in the rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome. Can. J. Microbiol.1970, 16:153-158.
    181. Nierzwicki-Bauer S A. Azolla-Anabaena symbiosis: use in agriculture. In: Handbook of Symbiotic Cyanobacteria. Rai A N. (eds.). CRC Press, Boca Raton, FL. 1990, 119-136.
    182. Nowak J, Asiedu S K, Lazarovits G, Pillay V, Stewart A, Smith C and Liu Z. Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth promoting pseudomonad bacterium. In: Ecophysiology and photosynthetic in vitro cultures. Carre F and Chagvardieff P. (eds.). Commisssariata I'energie atomique. France. 1995, 173-179.
    183. Nowak J. Benefits of in vitro "biotization" of plant tissue cultures with microbial inoculants. In Vitro Cell Develop Biol Plant. 1998, 34:122-130.
    184. Nuleic Acid Techniques in Bacteria Systematics. Stackebrandt E and Goodfellow M, (eds.). New Yord, John Wiley & Sons Ltd. 1991.
    185. O'Connell K P, Goodman R M, Handelsman J. Engineering the rhizosphere: expressing a bias. Trends Biotechnol. 1996,14:83-88.
    186. O'Sullivan D J and O'Gara F. Traits of Fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiological Reviews. 1992, 56: 662-676.
    187. Ohta H and Hattori T. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Leeuwenhoek. 1983, 49:429-446.
    188. Olivares F L, Baldani V L D, Reis V M, Baldani J I, Dbereiner J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils. 1996, 21,197-200.
    189. Ortega E, Rodes R, Enrique de la Fuente and Loiret Fernandez. Does the routine heat treatment of sugarcane stem pieces for xylem pathogen control affect the nitogenase activity of an N_2-fixing endophyte in the cane? Aust. J. Plant. Physiol. 2001, 28:907-912.
    190. verl L, Torsvik V. Microbial diversity and community structure in two different agricultural soil communities. Microb. Ecol. 1998, 36:303-315.
    191. Patiquin D G and Dbereiner J. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol. 1978, 24:734-742.
    192. Patriquin D G, Dbereiner J and Jain D K. Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 1983, 29:900-915.
    193. Perotti R. On the limits of biological enquiry in soil science. Proc. Int. Soc. Soil Sci. 1926, 2:146-161.
    194. Peterson C A, Emanuel M E and Humphreys G B. Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea Mays) and broad bean (Vicia faba). Can. J. Bot. 1981, 59:618-625.
    195. Philipson M N and Blair I D. Bacteria in clover root tissue. Can. J. Microbiol. 1957, 3:125-129.
    196. Phillips D A and Streit W. Legume signals to rhizobial symbionts: A new approach for defining rhizosphere colonization. In: Plant-Microbe Interactions. Stacey G and Keen N T. (eds.). Chapman and Hall. New York. USA. 1996, 236-271.
    197. Plazinski J, Dart P J, Rolte B. Plasmid visualization and nif gene location in nitrogen fixing Azospirillum strains. J B acteriol, 1983. 155:1429-1433
    
    
    198. Pleban S, Chernin L, Chet I. Chitinolytic activity of an endophytic strain of Bacillus cereus. Letters in Applied Microbiology,. 1997, 25: 284-288.
    199. Pleban S, Ingel F, Chet I. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. European J Plant Pathol. 1995, 101:665-672.
    200. Prasher D C, Eekenrode V K, Ward W W, Prendergast F G and Cormier M J. primary structure of the Aequorea victoria green fluorescent proteins. Gene. 1992, 111:229-233.
    201. Prosser J I. Molecular marker systems for detection of genetically microorganisms in the environment. Microbiology. 1994, 140: 5-17.
    202. Quadt-Hallmann A and Kloepper J W. Immunolgical detction and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can. J. Microbiol. 1996, 42:1144-1154.
    203. Quadt-Hallmann A, Hallmann J and Kloepper J W. Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria. Can. J. Microbiol. 1997b, 43:254-259.
    204. Quadt-Hamann A, Benhamou N and Kloepper J W. Bacterial endophytes in cotton: mechanisms of entering the plant. Can. J. Microbiol. 1997a, 43:577-582.
    205. Qui Y S, Zhou S P and Mo X Z. Study of nitrogen fixing bacteria associated with rice root. 1. Isolation and identification of organisms. Acta Microbiol. Sinica. 1981,21: 468-472.
    206. Quispel A A. Molec. Signals Plant-microbe Commun. Verma P S. (eds.).1992, 475-491.
    207. Reinhold B and Hurek T. Location of diazotrophs in the interior with special attention to the kallar grass association. Plant Soil. 1988, 110:259-268.
    208. Reinhold-Hurek B, Hurek T. Life in grasses diazotrophic endophytes. Trend Microbiol. 1998, 6:139-144.
    209. Reiter B, et al. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp, atroseptica. Appl. Environ. Microbiol. 2002, 68:2261-2268.
    210. Revsbech N P, Pedersen O, Reichardt W, Briones A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol. Fertil. Soils. 1999, 29:379-385.
    211. Robson R, Jones R, Kennedy C K. Aspects of genetics of Azotobacter. In: Advances in Nitrogen Fixation Research. Veeger C, Newton W E. (eds.). The Hague. 1984, 643-651.
    212. Ruppel S, Hecht-Buchholz C, Remus R, Ortmann U and Schmelzer R. Settlement of the diazotrophic phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmissing electron microscopy. Plant Soil. 1992,145:261-273.
    213. S.E-Boltenstern. Nitrogenase activity by ~(15)N_2-fixation. In: Methods in soil biology. F.schinner et al (eds.) Springer. 1995.
    214. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4:406-425.
    215. Samish Z, Etinger-Tulczynska R and Bick M. Microflora within healthy tomtoes. Appl. Microbiol. 1961, 9:20-25.
    216. Samish Z, Etinger-Tulczynska R, Boick M. The microflora within the tissue of fruits and vegetables. J. Food Sci. 1963, 28:259-266.
    217. Sarig S, Blum A, Okon Y. Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. Journal of Agricultrual Science. 1988, 110:271-277.
    218. Schloter M, et al. Immunological studies of the wheat-root-colonization by the Azospirillum Grasilense strain Sp7 and Sp245 using strain-specific monoclonal antibodies. In: Nitrogen Fixation
    
    with Non-legumes: 6th International Symposium. Hegazi N A, et al. (eds.). The American University in Cairo Press. New York. 1994, 291-297.
    219. Schulz S, Dong W, Groth U, Cook A M. Enantiomeric degradation of 2-(4-Sulfophenyl) Butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Appl. Environ. Microbiol. 2000, 66:1905-1910.
    220. Sessitsch A, et al. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and actinomycetes-spesific PCR of 16 S rRNA genes. FEMS Microbiol. Ecol. 2002, 39:23-32.
    221. Sharrock K R, Parkes S L, Jack H K, Rees-George J and Hawthorne B T. Involvement of bacterial endophytes in storage rots of buttercup squash (Cucurbita maxima D. hybrid 'Delia'). N. Z. J. Crop Hortic. Sci. 1991,19:157-165.
    222. Shigematsu T, Yumihara K, Ueda Y, Morimura S, Kida K. Purification and gene cloning of the oxygenase component of the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7. FEMS Microbiol. Lett. 2003b, 220.255-260.
    223. Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K. Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2003a, 53:1479-1483.
    224. Shishido M, Loeb B M, Chanway C P. External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated form different root microsites. Can. J. Mocrobiol. 1995, 41:707-713.
    225. Siciliano S D, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouelette D, Roy R, Whyte L G, Banks M K, Schwab P, Lee K, Greer C W. Selection of specific endophytic bacterial genotypes byplants in response to soil contamination. Appl. Environ. Microbiol. 2001, 67:2469-2475.
    226. Singh M, Kleeberger A, Klingmuller W. Location of nitrogen fixation; nif gene on indigenous plasmids of Enterbacter agglomerans. Mol. Gen. Genet. 1983,190:373-378
    227. Skvortsov I, Konnova S, Makarov O, Prokhorova R and Ignatov V. Azospirillum brasilense exopolysacchride complexes, their possible involvement in bacteria-wheat roots interactions and the suggested nature of these interactions. NATO ASI Ser. Ser. G. 1995, 37:279-290.
    228. Smit E, Leeflang P, Gmmans S, van den Broek J, van Mil S, Wernars K. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 2001, 67:2284-2291.
    229. Smith D. Regulation and change in symbiosis. Ann. Bot. 1987, 60:115.
    230. Smith E F. Bacteria in relation to plant diseases. Vol.2. Carnegie Institution of Washington. Washinton. D. C. 1991.
    231. Sota M, Endo M, Nitta K, Kawasaki H, Tsuda M. Characterization of a classⅡ defective transposon carrying two haloacetate dehalogenase genes from Delftia acidovorans plasmid pUO1. Appl. Environ. Microbiol. 2002, 68:2307-2315.
    232. Sprebt J I, et al. N_2-fixation by endophytic bacteria: Question of entry and operation. In: Azospirillum Ⅵ and related microorganisms. Istvan Fendrik, et al. (eds.). Springer-Verlag. 1995, 15-30.
    233. Sprent J I and de Faria S M. Mechanisms of infection of plants by nitrogen fixing organisms. Plant Soil. 1988,110:157-165.
    234. Stoltzfus J R, So R, Malarvithi P P, Ladha J K, de Bruijn F J. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant and Soil. 1997, 194:25-36.
    
    
    235. Sturz A V, Christie B R, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 2000, 19:1-30.
    236. Sturz A V, Christie B R. Endophytic bacteria of red clover as causal agents of allelopathic clover-maize syndromes. Soil Biol Biochem. 1996, 28:583-588.
    237. Sturz A V, et al. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliages and their influence on host growth. Biol. Fertil. Soils. 1997, 25: 13-19.
    238. Sturz A V, Matheson B G. Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato rubbers. Plant Soil. 1996,184:265-271.
    239. Sturz A V. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil. 1995, 175:257-263.
    240. Tan Z, Hurek T, Gyaneshwar P, Ladha J K, Reinhold-Hurek B. Novel endophytes of rice form a taxonomically distinct subgroup of Serratia marcescens. Syst. Appl. Microbiol. 2001, 24: 245-251.
    241. Tehara S K, Keasling J D. Gene cloning, purification, and characterization of a phosphodiesterase from Delfltia acidovorans. Appl. Environ. Microbiol. 2003, 69: 504-508.
    242. Tholozan J L, et al. Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Appl. Environ. Microbiol. 1999, 65:1110-1116.
    243. Thomas W D and Graham R W. Bacteria in apparently healthy pinto beans. Phytopathology. 1952, 42:214.
    244. Tomasino S F, Leister R T, Dimock M B, Beach R M, Kelly J L. Field performance of Clavibacter xyli subsp, cynodontis expressing the insecticidal protein gene cryIA, of Bacillus thuringiensis against European corn borer in field corn. Biol. Con. 1995, 5:442-448.
    245. Tomblini R, Unge A, Davey M E, de Bruijn F J, Jansson J K. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol. 1997, 22:17-28.
    246. Tran V V, et al. Selection of bacteria for enhanced plant growth and results of field tests. In: Improving Plant Productivity with Rhizosphere Bacteria. Ryder M H, et al. (eds.). Clayton: CSIRO Australia. 1994, 14-17.
    247. Urquiaga S, Cruz K H S, Boddey R M. Contribution of nitrogen fixation to sugarcane nitrogen-15 and nitrogen balance estimates. Soil Science Society of America Journal. 1992, 56:105-114.
    248. Vaisanen O, Hashtela K, Bask L. Diversity of nif gene location and nitrogen fixation among root-associated Enterobacter and Klebsiella-strains. Arch. M icrobiol. 1985,141:123-127
    249. van Buren A M, Andre C, Ishimaru C A. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated form potato. Phytopathology. 1993, 83:1406.
    250. van der Lelie D. Biological interactions: The role of soil bacteria in the bioremediation of heavy metal-polluted soils. In: Metal-Contaminated Soils: In Situ Inactivation and Phytorestoration. Vangronsveld J, et al. (eds.). Austin: Landes Bioscience. 1998, 31-50.
    251. Van Peer R and Schippers B. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic culture. Can. J. Mcrobiol. 1989, 56:2462-2470.
    252. Vasse J, Frey P and Trigalet A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microb. Interact. 1995, 8:241-251.
    253. Verma S C, Ladha J K, Tripathi A K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep-water rice. J. Biotechnol. 2001, 91:127-141.
    254. Webster G, et al. Interactions of rhizobia with rice and wheat. Plant and Soil. 1997,194:115-122.
    
    
    255. Weller D M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 1988, 26:379-407.
    256. Wen A, Fegan M, Hayward C, Chakraborty S, Sly L. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int. J. Syst. Bacteriol. 1999, 49:567-576.
    257. White J F Jr, Sharp LT, Martin T I, Glenn A E. Endophyte-host associateions in grasses. ⅩⅪ. Studies on the structure and development of Balansia obtecta. Mycologia. 1995, 87:172-181.
    258. Xi C, Lambrecht M, Vanderleyden J, Michiels J. Bi-functional gfp-and gus A-containning mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J. Microbiol. Meth. 1999, 35:85-92.
    259. Yahalom E, Okon Y and Dovrat A. Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic (Medicago polymorpha): Can. J. Microbil. 1990, 36:10-14.
    260. Yamada Y, Hoshino K, Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16s ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Bioscience Biotechnology and Biochemistry. 1997, 61:1244-1251.
    261. Yang C H, Crowley D E. Rhizosphere Microbial Community Structure in Relation to Root Location and Plant Iron Nutritional Status. Appl. Enviro. Microbiol. 2000, 66:345-351.
    262. Yong J P W. Phylogenetic classification of nitrogen fixation organisms. In: Biological Nitorgen Fixation. Evans H, Burrivs R H, Stacey G. (eds.). New York: Chapman & Hall. 1991, 211-257.
    263. You C and Zhou F. Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can. J. Microbiol. 1989, 35:403-408.
    264. You C B, Lin M, Fang X J and Song W. Attachment of Alcaligenes to rice roots. Soil Biol. Biochem. 1995, 27:463-466.
    265. Zaady E and Okon Y. Cultural conditions affecting Azospirillum brasilense cell aggregation and adsorption to maize roots. Soil Biochem. 1990, 22:1103-1107.
    266. Zaady E, Okon Y and Perevolotsky A. Growth reponse of Mediterranean herbaceous swards to inocullation with Azospirillum brasilense. J. Range Manage. 1994, 47:12-15.
    267. Zachariae U, Koumanov A, Engelhardt H, Karshikoff A. Electrostatic properties of the anion selective porin Omp32 from Delftia acidovorans and of the arginine cluster of bacterial porins. Protein Sci. 2002,11:1309-19.
    268. Zeth K, Diederichs K, Welte W, Engelhardt H. Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1A resolution. Structure Fold Des. 2000, 8:981-892.
    269. Zheng X Y, Sinclair J B. Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol. Mol. Plant Pathol. 1996, 48:21-35.
    270. Zhulin I B, Armitage J P. The role of taxis in ecology of Azospirillum. Symbiosis. 1992, 13:199-206.
    271. Zou W X, Tan R X. Biological and chemical diversity of endophytes and their potential applications. In: Advances in Plant Sciences. Vol.2. Li G S. (eds.). China Higher Education Press, Beijing. 1999,183-190.
    272.陈灏,唐小树,林洁,张伯生,任大明.不经培养的农田土壤微生物种群构成及系统分类的初步研究.微生物学报.2002.42:478-483.
    273.慈恩,高明.生物固氮的研究进展.中国农学通报.2004,20:25-28.
    274.胡楷,吴庆书.单细胞生物进化研究的进步.遗传.2002,24:104-110.
    
    
    275.黄培堂等译,PCR技术实验指南.北京:科学出版社,2002a.PCR primer: a laboratory manual. Dieffenbach and Dveksler. (eds.). Cold spring harbor laboratory press. 1995.
    276.黄培堂等译,分子克隆试验指南(第三版).北京:科学出版社,2002b.Mloecular Cloning: A Laboratory Manual. 3rd. Sambrook J, Russell D W. (eds.). Cold Spring Harbor: Cold Spring Harbor Press. 2001.
    277.单卫星.植物附生微生物与叶部病害生物防治研究进展.生态学杂志.1992,11:48-53.
    278.冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学.中国生物化学与分子生物学报.2002,18:85~91.
    279.冯永君.水到内生优势成团泛菌YS19对宿主侵染和定殖机制的研究.中国农业科学院博士学位论文.2001.
    280.何红等.辣椒内生生细菌的分离及拮抗菌的筛选.中国生物防治.2002,18:171-175.
    281.何新华,陈力耕,胡西琴,张建业.杨梅根瘤内生菌超微结构及其固氮酶结构基因的研究.果树学报.2003,20:206-210.
    282.李阜棣,胡正嘉主编.微生物学.中国农业出版社,北京:2000.
    283.李久蒂,靳红帆.固氮酶结构基因在联合固氮菌Kebsiella planticola 19-1细胞中的定位.植物学报.1994,36:755-758
    284.李湘民,胡白石,许志刚,MEW T W.拮抗细菌菌株Pseudomonas fluorescens 7214在水稻植株上的时间、空间定殖型.植物病理学报.2003,33:468-473.
    285.李雪玲,厉云,张天宇.利用拮抗真菌防治棉花黄萎病.棉花学报.2003,15:26-28.
    286.林万明主编,细菌分子遗传学分类鉴定法.上海科学技术出版社,上海:1990.
    287.刘上峰,傅俊江.变性梯度凝胶电泳的原理、应用及其进展.国外医学遗传学分册.2002,25:74-76.
    288.刘云霞.植物内生细菌的研究与应用.植物保护.1994,20.30-32.
    289.楼兵干,张炳欣.黄瓜苗期猝倒病生物防治.植物保护学报.2002,29:109-113.
    290.鲁素芸,植物病害生物学防治.北京农业大学出版社,北京:1993.
    291.吕泽勋,宋未.培养条件对产酸克雷伯氏菌SG—11生物合成IAA影响的研究.分析测试学报.1999,18:42-44.
    292.沈德龙,冯永君,宋未.内生成团泛菌YS19对水稻乳熟期光合产物在其叶、穗分配中的影响.自然科学进展,2002,18:863-865.
    293.沈德龙,水稻内生成团肠杆菌的分类鉴定及其生物学特性研究.博士学位论文.中国农业科学院原子能所.1999.
    294.沈德龙等.水稻内生优势菌—成团泛菌的鉴定及其系统发育学分析.自然科学进展.2000,10:949-952.
    295.宋敏,张云孙,胡卫红.4种提取水稻基因组DNA方法的比较.云南大学学报(自然科学版).2001,23:74-76.
    296.宋铁英,包晓东,郑伟文,Rasmussen Ulla.DGGE法检测稻田蓝细菌及硅藻的遗传多态性.厦门大学学报(自然科学版).2002,41:669-673
    297.孙晓璐.水稻根面植物促生细菌的研究.中国农业科学院硕士学位论文.1997.
    298.王惠贤,范红丽,尤崇.水稻联合固氮菌质粒的鉴定及固氮nif基因定位.核农学报.1989,3:213-220.
    299.王玉明,段勇,宋滇平,赵淮,刘华,杨惠英.PCR-DGGE检测GCG-R基因第二外显子.临床检验杂志.1999,17:209-211.
    300.许志刚主编,普通植物病理学(第二版).中国农业出版社,北京:1997.
    301.杨海莲,孙晓璐,宋未,王云山.植物促生细菌诱导水稻对白叶枯抗性的初步研究.植物病理学报.1999,29:286-287.
    302.杨海莲等.水稻内生联合固氮菌的筛选、鉴定及其分布特性.植物学报.1999,41:927-931.
    303.杨苏声主编,细菌分类学.中国农业大学出版社,北京:1997.
    304.杨永辉,徐冲,廖军,周敏毓,朱国萍,牛立文,王玉珍.单点突变葡萄糖异构酶(GIGl38P)基因在变
    
    铅青霉素链霉菌中的高效表达及其稳定性研究.中国生物化学与分子生物学报.2000,16:77-81.
    305.赵跃然,游力,贾玉华,高春义,田志刚.人Leptin的基因克隆及在大肠杆菌中的表达.中国生物化学与分子生物学报.2000,16.:742-745.
    306.周德庆著.微生物学教程.高等教育出版社,北京:1993.
    307.朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化.微生物学报.2003,43:503-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700