基于ANSYS的秸秆活塞式成型特性及摩擦热分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秸秆固化成型技术能使松散的秸秆致密化,提高秸秆能量密度和燃烧特性,使其可作为清洁能源直接替代煤用于生产生活各个领域,同时也能解决秸秆储存、运输困难问题,是实现秸秆综合化、规模化利用的重要技术手段。但是目前该技术尚需在成型过程特性及成型摩擦热方面加深理论研究,揭示秸秆成型粘结机理,为成型制品品质预测和控制、设备优化提供理论依据。
     本文通过对秸秆化学组成、物理特性及常温成型机理的分析,得出影响秸秆常温固化成型品质的关键因素是压缩力和成型过程中的摩擦热。基于该结论,根据活塞式成型技术间歇式生产的特点,对活塞一次冲压成型中成型力变化和物料移动进行实验研究,提出适合活塞式成型技术的“半闭式”成型模型,即成型过程未达到推移阶段前,物料相当于在由模具和靠摩擦力作用下保持静止的已成型制品组成的闭式环境中进行压缩。运用弹塑性力学、接触力学、粘弹性和有限元理论对秸秆固化成型主压缩阶段进行限元分析,研究主压缩阶段物料形变规律、应力分布及接触应力情况,为模具设计和成型工艺改进提供方法指导和依据。
     基于摩擦学、传热学原理,结合秸秆活塞式常温成型技术的特点,对成型过程中的摩擦热问题进行研究,通过引入平均压力、当量速度等物理量推导成型过程中摩擦热产生方程,将成型过程摩擦热问题转化为第二、三类边界条件的无内热源的非稳态传热问题;建立成型摩擦热有限元分析模型,对摩擦热引起的温度场分布进行研究,并通过实验验证有限元模拟的正确性,得出摩擦热引起的温度场变化规律;通过对实验样机在不同生产率条件下的摩擦热模拟分析,研究表明模具在摩擦热作用下,温度随着时间升高并稳定在一定温度,其增长速度和稳态温度随着生产率的提高而提高。
     在摩擦热引起的温度场规律研究基础上,针对目前秸秆类生物质材料的热物性参数欠缺的现状,进行了秸秆物性参数的实验研究,得出秸秆导热系数、比热随含水率、温度和密度的变化规律,为本文研究摩擦热引起的温度场在成型制品的传导提供数据支持的同时,也能为秸秆类材料热相关的技术研究提供依据;建立秸秆成型过程中摩擦热传导模型,分析不同条件下摩擦热在制品内的分布及对木质素粘结作用进行分析,研究表明制品内温度场分布是由模具温度和制品在模具内滞留时间共同决定的;对于本文实验样机,虽然当生产率为60kg/h时,摩擦热引起的温度场能达到220~230℃,生产率为50kg/h时温度场为180~190℃,但是由于制品在模具内滞留时间的影响,生产率为50kg/h,制品中心木质素也能达到软化温度,成型品质较高;该研究能为成型生产工艺改进、提高成型品质和设备设计提供理论依据。
Straw curing briquetting technology can densify unconsolidated straws, increase the energy density, improve the combustion properties, replace coals as clean energy used in every field of production and living, and solve storage and transportation problems. It is an important technical method of integrated and large-scale use of straws. However, it still needs to be deepened on the theoretical research of briquetting process properties and briquetting frictional heat, so as to reveal briquetting adhesive mechanism of straws, and provide theory support for predicting and controlling quality of briquetting products and optimizing equipments.
     Through the analysis of chemical compositions, physical properties and normal temperature briquetting mechanism of straws, it can be concluded that the key factor of impacting curing briquetting qualities under normal temperature is compression force and frictional heat in the briquetting process. Based on this conclusion, changes of riquetting forces and transportation of materials in the piston one-time stamping molding process are studied according to properties of piston-type briquetting technologies. Semi-closed briquetting model that suits to the piston-type briquetting technologies is built:materials are compressed in the closed environment equivalent to be made up of mould and briquetted products which remains stationary by the action of friction. The finite element analysis method is established in the primary compression stage of straw curing briquetting using the plastoelasticity, contact mechanics, viscoelastic and finite element theory. With this method, material deformation law, stress distribution and contact stress situation in the primary compression stage are studied, which provides method guideline to mold design and briquetting process improvement.
     Research on frictional heat in the briquetting process is carried out combing with piston-type nomal tempreture briquetting technologies based on tribology and heat transfer theroy. By introducing physical quantity such as average pressure and equivalent velocity, the equation of the frictional heat generation in the briquetting process is derived, which converts the frictional heat problem in the briquetting process into transient heat transfer problems without inner heat source under the second and third boundary condition. The finite element analysis model of briquetting frictional heat is built, and then the temperature field distribution caused by frictional heat is researched. The rule of temperature field variation caused by frictional heat is drawn through validating the correctness of finite element simulation by experiments. Based on the frictional heat simulation and analysis of prototype under different productivities conditions, it is shown that the tempreture of the mould is increasing and remain stable at a certain tempreture over time under the action of frictional heat, and the growth rate and steady temperature go up with the increasing productivities.
     On the basis of research on the rule of temperature field distribution caused by frictional heat, the experimental study of straw thermophysical parameters is carried out according to lack of thermophysical parameters of biomass materials currently. The change rule of thermal conductivity and specific heat with the changes of moisture content, tempreture and density is obtained. It can not only provide data support for the research on conduction of temperature field caused by frictional heat in briquetting products, but also provide basis for research on technologies related to heat of straws. The model of friction heat transfer in the straw briquetting process is built. And the distribution of frictional heat in briquetting products under different conditions is analyzed; aslo the cohesive action of lignin is studied. It is revealed that temperature field distribution in briquetting products is determined by both mold temperature and residence time that the briquetting products stay in the mold. With regard to the prototype in this paper, when the productivity is 60kg/h, the temperature field caused by frictional heat can reach 220-230℃, and when the productivity is 50kg/h, the temperature field is 180~190℃. However, because of the impact of residence time that the briquetting products stay in the mold, when the productivity is 50kg/h, the lignin in the center of briquetting products can also be softened, and the briquetting quality is high. This research can provide theoretical basis for improving briquetting process, briquetting quality and eqipment design.
引文
[1]上久臣,黛林,田宜水,等.中国生物质能产业发展现状及趋势分析[J].农业工程学报,2007,23(9):276-282.
    [2]曾麟,王革华.世界主要发展生物质能国家的目的与举措[J].可再生能源,2005,(2):53-55.
    [3]Heinimo J, Junginger M. Production and Trading of Biomass for Energy-- An Overview of the Global Status[J]. Biomass and Bioenergy,2009,33(9):1310-1320.
    [4]Wit M D, Faaij A. European Biomass Resource Potential and Costs [J]. Biomass and Bioenergy, 2010,34(2):188-202.
    [5]Vassilev S V, Baxter D, Andersen L K, et al. An Overview of the Chemical Composition of Biomass[J]. Fuel,2010,89(5):913-933.
    [6]刘国华.生物质成型燃料技术及应用前景[J].应用能用技术,2011,(1):44-47.
    [7]刘石彩.蒋剑春.生物质能源转化技术与应用(Ⅱ)——生物质压缩成型燃料生产技术和设备[J].生物质化学工程,2007,41(4):59-63.
    [8]刘延春,张英楠,刘明,等.生物质固化成型技术研究进展[J].世界林业研究,2008,21(4):41-47.
    [9]李美华,俞国胜.生物质燃料成型技术研究现状[J].木材加械机械,2005,16(2):36-40.
    [10]陈永生,沐森林,米德文,等.生物质成型燃料产业在我国的发展[J].太阳能,2006,(4):16-18.
    [11]Purohit P. Tripathi A K, Kandpal T C. Energetics of Coal Substitution by Briquettes of Agricultural Residues [J]. Energy,2006,31 (8-9):1321-1331.
    [12]Mewes E, Presstopfversuchen V N. Compression Relationships as a Result of Experiments in Pressure Chambers [J]. Landtechnische Forschung,1959,9(3):68-76.
    [13]杨明昭,李旭英,杨红蕾.牧草压缩过程的研究[J].农业工程学报,1996,12(1):60-64.
    [14]马彦华,刘伟峰,杨明昭,等.喂入量对新鲜玉米秸秆压缩规律影响的试验研究[J].农机化研究,2004,(]):187-189.
    [15]回彩娟.生物质燃料常温高压致密成型技术及成型机理研究[D].北京:北京林业大学,2006.
    [16]李在峰,胡建军.秸秆颗粒冷态压缩成型过程的比能耗回归分析[J].可再生能源,2010,(2):29-35.
    [17]Adapa P, Tabil L, Schoenau G. Compaction Characteristics of Barley, Canola, Oat and Wheat Straw [J]. Biosystems Engineering,2009,104(3):335-344.
    [18]Peleg K. A Rheological Model of Nonlinear Viscoplastic Solids [J]. The Journal of Rheology, 1983,27(5):411-431.
    [19]Mohsenin N. Zaske J. Stress Relaxation and Energy Requirements in Compassion of Unconsolidated Materials [J]. Journal of Agricultural Engineering Research,1976,21(1): 193-205.
    [20]Bock R G, Puri V M, Manbeck H B. Modeling Stress Relaxation Response of Wheat En Masse Using the Triaxial Test [J]. Transactions of the ASABE,1989,35(5):1701-1708.
    [21]盛尘川,吴杰.生物质成型燃料的物理品质和成型机理的研究发展[J].农业工程学报,2004,20(2):242-245.
    [22]杨明昭,张永,李旭英.粗纤维物料压缩过程的一般规律的探讨[J].农业工程学报,2002,18(1):135-137.
    [23]王春光.杨明昭,高焕文.等.牧草在高密度压捆时的应力松弛研究[J].农业工程学报.1997,9(3):49-52.
    [24]邓波.生物质固化成型特性及有限元研究[D].济南:山东大学.2008.
    [25]高名旺.松散生物质热压成型有限元模拟与分析[D].济南:山东大学,2004.
    [26]高建辉.基于ANSYS的生物质成型关键部件动静态特性研究[D].济南:山东大学,2009.
    [27]孙启新.董玉平.基于ANSYS的秸秆类生物质冷成型仿真分析[J].农业机械学报,2009,40(12):130-134.
    [28]刘超,董玉平.基于ANSYS的生物质液压成型模具锥角优化[J].农业机械学报,2009,40(12):125-129.
    [29]Demirbas A. Physical Properties of Briquettes from Waste Paper and Wheat Straw Mixtures [J]. Energy Conversion and Management,1999,40 (4):437-445.
    [30]O'Dogherty M J, Gilbertson H G, Gale G E. Measurements of the Physical and Mechanical Properties of Wheat straw [C]. Adrian R J, Durao D F G, Durst F, et al.4th International Conference on the Physical Properties of Agricultural Materials, Libon,1989. Berlin: Springer-Verlag,1989:608-613.
    [31]回彩娟,俞国胜.影响生物质块状燃料常温高压致密成型因素的研究[J].林业机械与木工设备,2005,33(11):10-15.
    [32]Kaliyan N, Morey R V. Factors Affecting Strength and Durability of Densified Biomass Products [J]. Biosystems Engineering,2009,33 (3):337-359.
    [33]陈晓青,陆萍,董玉平.生物质固化成型制品表面裂纹试验研究[J].农机化研究,2010,32(2):185-190.
    [34]Yumak H., Ucar T., Seyidbekiroglu N. Briquetting soda weed (Salsola tragus) to be used as a rural fuel source[J]. Biomass and Bioenergy,2010, (34):630-636.
    [35]李大中,朱文杰.生物质稻壳压缩成型过程建模及优化[J].可再生能源,2010,28(5):124-127.
    [36]孙亮,孙清,接鑫,等.稻壳热压成型工艺参数试验[J].农业机械学报,2010,41(1): 96-100.
    [37]徐学耘.棉杆原料的初步分析[J].建筑人造板,1994,(3):24-30.
    [38]Demirbas A. Physical Properties of Briquettes from Waste Paper and Wheat Straw Mixtures [J]. Energy Conversion and Management.1999,40 (4):437-445.
    [39]Fasina O O. Physical Properties of Peanut Hull Pellets [J]. Bioresource Technology,2008.99 (5):1259-1266.
    [40]优福列娃M M,倪棠棣.纤维素结构与性能的某些现代认识[J].人造纤维,1995.(]):33-37.
    [41]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [42]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001.
    [43]浮爱青,何宏康,卢小海,等.小麦秸秆粘结剂燃烧特性的试验研究[J].环境科学与技术,2010,33(12F):157-158.
    [44]冉景烂,曾艳,张力,等.几种典型农作物生物质的热解及动力学特性[J].重庆大学学报,2009,32(1):76-81.
    [45]李思蓓,解玉红,罗晶.等.秸秆预处理中木质纤维物质含量测定方法的研究进展[J].安徽农业科学,2011,39(3):1620-1622,1626.
    [46]张志强.秸秆压块饲料机成型区的研究与分析[D].河北农业大学,2007.
    [47]赵东.玉米秆粉粒体模压成形的试验研究及有限元分析[D].中国农业大学,2007.
    [48]Mani S, Tabi L G, Sokhansanj S. Effects of Pompressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Pellets from Grasses [J]. Biomass and Bioenergy, 2006,30 (7):648-654.
    [49]Lindley J A. Vossoughi M. Physical Pproperties of Biomass Briquets [J]. Transactions of the ASAE,1989,32 (2):361-366.
    [50]张洪信,赵清海ANSYS有限元分析完全自学手册[M].北京:机械工业出版社,2008:22-27.
    [51]李明瑞.梁板壳的几何大变形[J].力学与实践,2003,25(3):1-7.
    [52]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007:22-27.
    [53]吴勇军,王建军,韩勤锴,等.基于接触有限元分析的斜齿轮齿廓修形与实验[J].航空动力学报,2011,26(2):409-414.
    [54]杨嵘,孙明礼,蔡海鹏,等.有限元法在分析接触问题中的应用[J].机械工程师,2011,(1):50-51.
    [55]郭坤,孙远涛,段诚,等.基于有限元法的刮板输送机圆环链接触强度分析[J].矿山机械,2011,39(1):22-27.
    [56]杨咸启,李晓玲.现代有限元理论技术与工程应用[M].北京:北京航空航天大学出版社,2007:8-225.
    [57]董玉平,高明旺.孙启新.秸秆类生物质固化成型有限元模拟[J].山东大学学报(工学版).2005,35(5):9-13.
    [58]侯红亮,任学平.可压缩材料挤压过程有限元模拟[J].金属成形工艺.2011.19(3):4-8.
    [59]林芸,柴东朗.粉未冶金烧结工艺研究中的原位观察法[J].福建分析与测试,2011,20(1):50-53.
    [60]周明智,薛克敏,李萍.静水压力对粉末多孔材料等径角挤压过程的影响[J].锻压技术,2007.32(2):53-56.
    [61]龚晓南.上塑性力学[M].北京:人民交通出版社,1993.
    [62]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.
    [63]马景槐,李秀莲.拉压异性线性等向强化材料厚壁球壳极限分析[J].力学与实践,2004.26(4):18-20.
    [64]原园,刘凯,张宝锋.非线性随动强化条件下的安定定理[J].应用力学学报,2010,27(4):664-670.
    [65]赵均海,王敏强,魏雪英.高等有限元[M].武汉:华中理工大学出版社,2004.
    [66]宋天彼,郭建生.非线性固体计算力学[M].武汉:华中理工大学出版社,2002.
    [67]Chang K H, Joo S H. Design Parameterization and Tool Integration for CAD-Based Mechanism Optimization [J]. Advances in Engineering Software,2006,37 (12):779-796.
    [68]成大先.机械设计手册[M].北京:化学工业出版社,2004.
    [69]尾花英朗.热交换器设计手册(下册)[M].北京:烃加工出版社,1987.
    [70]中国机械工程学会中国机械设计大典编委会.中国机械设计大典2[M].南昌:江西科学技术出版社,1987:17-18.
    [71]Choi J H, Lee I. Physical Properties of Briquettes from Waste Paper and Wheat Straw Mixtures [J]. Wear,2004,257 (1-2):47-58.
    [72]Afferrante L, Ciavarell M, Decuzzi P, et al. Transient Analysis of Frictionally Excited Thermoelastic Instability in Multi-disk Clutches and Brakes [J]. Tribology International,2003, 254(1-2):136-146.
    [73]Yevtushenko A, Ivanyk E. Determination of Temperatures for Sliding Contact with Applications for Braking Systems [J]. Wear,1997,206 (1-2):53-59.
    [74]Chang L, Zhang Z, Ye L, et al. Tribological Properties of High Temperature Resistant Polymer Composites with Fine Particles [J]. Tribology International,2007,40 (7):1170-1178.
    [75]Voldrich J. Frictionally Excited Thermoelastic Instability in Disc Brakes-- Transient Problem in the Full Contact Regime [J]. International Journal of Mechanical Sciences,2007,49 (2): 129-137.
    [76]Majcherczak D, Dufrenoy P, Berthier Y. Tribological, Thermal and Mechanical Coupling Aspects of the Dry Sliding Contact [J]. Tribology International,2007,40 (5):834-843.
    [77]赵镇南.传热学(第二版)[M].北京:高等教育出版社,2008.
    [78]周仲荣.摩擦学发展前沿[M].北京:科学出版社.2006.
    [79]Demirbas A. Physical Properties of Briquettes from Waste Paper and Wheat Straw Mixtures [J]. Energy Conversion and Management,1999,40 (4):437-445.
    [80]韩东太.杜雪平.矿井提升机摩擦热分析及衬垫温度场数值模拟[J].矿山机械,2007,35(12):78-81.
    [81]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [82]王泽鹏,张秀辉,胡仁喜.ANSYS 12.0热力学有限元分析从入门到精通[M].北京:机械工业出版社,2010
    [83]贾力,方肇洪.高等传热学(第二版)[M].北京:高等教育出版社,2008.
    [84]上海电站辅机厂.常用金属材料性能手册[M].北京:清华大学出版社,1987.
    [85]Cheng S X, Jiang Y F, Liang X G. A Tiny Heat Probe for Measuring the Thermal Conductivities of Non-rigid Materials [J]. Tribology International.1994.5 (11):1330-1344.
    [86]Mohsenin N N. Thermal properties of food and agricultural materials [M], New York:Goroden and Breach Science Publishers.1980.
    [87]易维明,郭超,姚宝刚.生物质导热系数的测定[J].农业工程学报,1996,12(3):38-41.
    [88]金文,张来林,李光涛,等.稻谷导热系数的测定研究[J].粮油食品科技,2010,18(2):1-3.
    [89]周美香.木材径向导温系数的理论推导[J].干燥技术与设备,2010,8(6):271-276.
    [90]钟云志,钟义山.木材导温系数模型的研究[J].两北林学院学报,2003,18(2):84-86.
    [91]杨庆贤.木材比热的统计热力学研究[J].化学物理学报,1991,4(6):464-468.
    [92]侯祝强.木材导热系数的研究[J].林业科学,1992,28(2):]53-160.
    [93]蔡从中,温玉锋,朱星键,等.木材导热系数的支持向量回归预测[J].重庆大学学报,2009,32(8):960-964.
    [94]曹建明,李跟宝.高等工程热力学[M].北京:北京大学出版社,2010.
    [95]易维明,郭超,姚宝刚.生物质导热系数的测定方法[J].农业工程学报,1996,12(3):38-41.
    [96]杨庆贤.木材热学参数的理论表达式[J].福建林学院学报,2001,21(4):329-331.
    [97]俞自涛,胡亚才,洪荣华,等.温度和热流方向对木材传热特性的影响[J].浙江大学学报(工学版),2006,40(1):123-125.
    [98]苏国锋,袁宏永,赵建华,等.热探针法测定烟草导热系数的实验研究[J].消防科学与技术,2002,21(2):25-27.
    [99]张忠进,金文桂.探针法测量农副产品导热系数的研究[J].农业机械学报,1997,28(1):94-97.
    [100]Chen H S, Yang W. He Y R. et al. Heat transfer and flow behavior of aqueous suspensions of titanate nanotubes (nanofluids) [J]. Powder Technology,2007.183 (1):63-72.
    [101]Ko G H, Heo K, Lee K,etal. An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube [J]. International Journal of Heat and Mass Transfer,2007,50 (23-24):4749-4753.
    [102]弗兰克 P.英克鲁佩勒,大卫P.德维特.狄奥多尔L.伯格曼,等.传热和传质基本原理[M].葛新石,叶宏.北京:化学工业出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700