复合生物材料构建小口径纳米组织工程血管的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分P(LLA-CL)静电纺丝工艺初步研究
     目的
     以聚左旋乳酸-己内酯共聚物[P(LLA-CL)]为原料,采用静电纺丝方法制备纤维膜,考察静电纺丝过程参数对纤维膜结构及纤维直径的影响规律。
     方法
     以六氟异丙醇为溶剂,通过调整P(LLA-CL)浓度、纺丝电压、电纺距离及溶液流速,分别制备了不同条件下的纺丝膜,通过扫描电镜(SEM)来观察纺丝膜的纤维形貌以考察这些参数对电纺膜形貌的影响。
     结果
     (1) P(LLA-CL)浓度为4%时,电纺纤维膜中有很多纺锤形的珠滴,而当浓度上升为6%时,P(LLA-CL)溶液的可纺性明显改善,电纺纤维直径由浓度6%时的357±127nm上升到浓度12%时的904±98nm(P<0.05),而聚合物浓度达到一定水平(14%)时,则难以在喷丝头形成喷丝细流,电纺不可行:(2)随着纺丝电压由1kV/cm增高到2kV/cm时,纤维平均直径由520±64nm减小至305±58nm(P<0.05);(3)电纺距离为由15cm减至10cm时,对电纺纤维膜形貌无明显影响(P>0.05);(4)在溶液流速为2ml/h时,可形成完好的纳米纤维形貌,但当溶液流速为4ml/h时,纤维发生明显的粘结。
     结论
     聚合物液的浓度是纺丝过程中重要影响因素,在可纺范围内,纤维直径随溶液浓度提高而增加,随着纺丝电压的增大而减小,电纺距离对纤维形貌影响不大,但电纺距离的缩小及过快的溶液流速均不利于纳米纤维膜的形成。
     第二部分P(LLA-CL)/纤维蛋白原纳米复合膜的制备与表征
     目的
     以合成高分子材料P(LLA-CL)与天然生物材料纤维蛋白原为原料,利用静电纺丝技术构建具有良好细胞亲和性与合适机械性能的纳米复合膜。
     方法
     (1) P(LLA-CL)溶解于六氟异丙醇中得到浓度为8%的溶液,纤维蛋白原溶解于六氟异丙醇和10×DMEM混合溶液中(体积比9:1)得到100mg/ml的溶液。把P(LLA-CL)溶液与纤维蛋白原溶液分别按4:1、2:1、1:1、1:2、1:4体积比进行混合,利用静电纺丝技术构建纳米复合膜;(2)采用SEM检测膜片的表面纤维形态,称重法计算孔隙率;(3)傅里叶全反射红外光谱(FITR)进行膜片表面基团分析;(4)X射线光电子能谱(XPS)对膜片表面元素组成进行表征;(5)水接触角测定膜片的亲水性;(6)拉伸试验检测复合膜片的力学性能;(7)以人脐静脉内皮细胞(HUVECs)种植在复合膜片上,WST-8试剂盒检测膜片对细胞对的粘附、增殖的影响,并以细胞活力实验检测细胞在膜片上生长情况,SEM观察HUVECs形态变化。
     结果
     (1) P(LLA-CL)/纤维蛋白原复合膜纤维平均直径约240纳米到450纳米,随着混纺液中纤维蛋白原浓度的增加,纤维直径逐渐减小,孔隙率增大,亲水性增加(P<0.05); (2) FITR及XPS证实复合膜片表面有纤维蛋白原氨基酸的存在;(3)拉伸试验表明在P(LLA-CL)中加入纤维蛋白原后,能降低断裂伸长率,增加杨氏模量(P<0.05),但拉伸强度表现不同,在体积比4:1复合膜片组增高(P<0.05),体积比2:1复合膜片组改变无差异(P>0.05),但当纤维蛋白原浓度增大到一定程度(1:1)则降低;(4)细胞粘附、增殖实验表明,疏水性的P(LLA-CL)支架有更好的细胞粘附能力(P<0.05),但含有纤维蛋白原的膜片有更好的细胞增殖能力(P<0.05)。其中,体积比2/1的膜片细胞增殖率最高。细胞活力实验及扫描电镜也证实在P(LLA-CL)/纤维蛋白原复合膜表面,HUVECs生长良好,近乎铺满支架表面。
     结论
     以P(LLA-CL)与纤维蛋白原共混后行静电纺丝,能构建具有良好力学性能及生物活性的纳米复合膜片。高分子合成材料P(LLA-CL)能够作为膜片的骨架提供良好的力学性能,天然材料纤维蛋白原增加了膜片的生物活性,作为组织工程支架有潜在的应用前途。
     第三部分小口径P(LLA-CL)/纤维蛋白原管形支架构建及生物学性能评价
     目的
     制备小口径P(LLA-CL)/纤维蛋白原管形支架,并评价支架的生物相容性和生物力学性能。
     方法
     (1)以P(LLA-CL).纤维蛋白原为原料,按体积比2:1混合后构建小口径管形支架,观察制备的小口径血管支架的大体形态并用扫描电镜观测其三维结构;(2)利用溶血试验、细胞毒性试验、皮下植入试验评价支架材料的生物相容性;(3)检测支架的爆破强度、最大缝持张力、顺应性以评价小口支架的生物力学性能。
     结果
     (1)管形支架长度在5~8cm,内径5mm左右,管壁厚度为0.4-0.5mm,支架表面呈网格状三维结构,并有大小不等、互相交通的孔隙,测算孔径的平均直径为4.56±1.23μm,表面纤维纤维平均直径318±56nm;(2)P(LLA-CL)/纤维蛋白原浸提液溶血率为2.87±0.49%。(3)细胞毒性实验示P(LLA-CL)/纤维蛋白原浸提液较阴性对照组无明显差异(P>0.05);(4)皮下植入试验P(LLA-CL)/纤维蛋白原支架炎症反应轻微,12周时种植的材料大部分已降解,材料降解区被成纤维细胞和宿主新生胶原纤维代替;(5)P(LLA-CL)/纤维蛋白原管形支架爆破强度为2970±363 mmHg,最大缝持张力为217+17g,管腔内径变化为1.36%/100mmHg,β值为43.43。
     结论
     静电纺丝法构建的P(LLA-CL)/纤维蛋白原管形支架材料具有良好的生物相容性,并具有有类似于自体动脉的爆破强度和最大缝持张力,顺应性优于ePTFE人工血管
     第四部分组织工程血管置换犬颈动脉初步试验研究
     目的
     制备小口径P(LLA-CL)/纤维蛋白原管形支架,内皮化后构建组织工程血管,并以其替代犬颈动脉缺损,观察组织工程血管的在体内的通畅及重塑情况。
     方法
     (1)采用原位插管、酶消化法分离、培养和体外扩增实验犬浅静脉内皮细胞(ECs);(2)血管内皮细胞高密度种植于P(LLA-CL)/纤维蛋白原及P(LLA-CL)管形支架内面使其内皮化;(3)以内皮化的组织工程血管修复犬颈动脉缺损,并以未种植内皮细胞的支架作为对照;(4)术后以彩色多普勒及DSA检查移植物的通畅情况;(5)组织学及免疫组织化学检测组织工程血管体内重塑情况。
     结果
     (1)成功分离、培养并在体外大规模扩增犬静脉ECs;(2)P(LLA-CL)/纤维蛋白原管形支架内面形成较完整的ECs单层,ECs覆盖率达到99.3±0.2%,而P(LLA-CL)支架ECs覆盖率只有38.2±6.5%(P<0.05);(3)犬颈动脉修复缺损手术均顺利,术后吻合口破裂死亡1例,切口感染1例;(4)试验组术后9例存活,随访7例移植物保持通畅,2例发生血栓形成;3例对照组均发生血栓形成;(5)实验组组织工程血管术后组织学检测示内膜层完整,术后8周有类似于正常动脉壁的血管平滑肌细胞及细胞外基质。
     结论
     P(LLA-CL)/纤维蛋白原管形支架有益于内皮细胞种植,体内试验证实内皮化后构建的组织工程血管能够承受体内血流冲击,并在8周左右逐渐重塑形成有类似正常动脉壁的组织结构。
PartⅠPreparation and characterization of poly(L-lactide-co-ε-caprolactone) nanofibrous membranes by electrospinning
     Objective
     To prepare P(LLA-CL) nanofibrous membranes by electrospinning process and investigate the influence of processing parameters on the structure of the membranes.
     Methods
     HFIP was used as the solvent, the P(LLA-CL) nanofibrous membranes with different surface morphology were fabricated via altering P(LLA-CL) solution concentration, applied voltage, polymer and capillary-collector distance. The morphology and diameter of the fibers were observed using a scanning electron microscope (SEM).
     Results
     (1) Beaded fibers were observed when P(LLA-CL) solution concentration was 4%, while mostly smooth fibers were obtained above this concentration, and the fiber diameter increased from 357±127nm to 904±98nm with the concentration of P(LLA-CL) increasing from 6% to 12%(P<0.05). When the solution concentration was 14%, the fibers cannot be formed due to the high viscosity. (2) The fiber diameter decreased from 520±64nm to 305±58nm while increasing the applied voltage from 1kV/cm to 2kV/cm (P<0.05). (3) The distance between capillary tip and collector played a much smaller role, there was no significant difference between the distance of 15cm and 10cm (P>0.05). (4) When polymer flow rate was 2ml/h, the smooth fibers were obtained, while polymer flow rate was 4ml/h, the fiber was bonding, and there was no apparent pore.
     Conclusions
     The diameter of fibers increases with the increasing concentration of P(LLA-CL) solution and decreases with the increasing applied voltage. There is no significant difference in the diameter with the distance between capillary tip and collector increasing, but when the distance is shorter and flow rates are higher, significant amounts of fiber bonding are noticeable.
     Part II Preparation and characterization of poly(L-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous membranes by electrospinning
     Objective
     To fabricate a novel composite fibrous membranes by electrospinning a synthetic biodegradable polymer [P(LLA-CL)] with a natural protein (fibrinogen), study the structure and properties of P(LLA-CL)/fibrinogen blended scaffolds.
     Methods
     (1) We prepared composite nanofibrous membranes by co-electrospinning blend of P(LLA-CL) (8%solution) and Fibrinogen (100mg/ml solution) at different volume ratios of 4:1,2:1,1:1,1:2,1:4. (2) The morphology of the nanofibers was observed by a scanning electron microscope (SEM). (3) Surface chemistry of the nanofibers was characterized using Fourier transform infrared spectra (FITR) and X-ray photoelectron spectroscopy (XPS). (4) Hydrophilicity was evaluated by water contact angle. (5) A mechanical testing was performed to measure the effect of Fibrinogen on the scaffold mechanical properties. (6) Adhesion, proliferation and morphology of Human umbilical vein endothelial cells (HUVECs) on the composite fibrous membranes were also studied by WST-8 assay and SEM.
     Results
     (1) The fiber diameter gradually decreased with increasing fibrinogen content (P<0.05). (2) The porosity and hydrophilicity significantly improved as the fibrinogen content increased (P<0.05). (3) Deposition of fibrinogen amino groups on the surfaces was confirmed by FTIR spectra and XPS. (4)Mechanical testing demonstrated that increasing the fibrinogen content in the blended scaffolds could decrease their tensile strength and elongation at breakage but increase the Young's modulus (p<0.05). However, the tensile strength showed different behavior. The blended scaffolds with PLCL/fibrinogen volume ratios ranging from 4:1 to 1:1 have enhanced mechanical strength and maintained a relatively high elasticity profiles. (4) The scaffolds containing P(LLA-CL) provided a better cell adhesion environment than membranes containing fibrinogen(P<0.05). However, addition of fibrinogen to P(LLA-CL) membranes enhanced the cell proliferation compared with P(LLA-CL) alone(P<0.05), with P(LLA-CL)/fibrinogen (2:1) scaffolds showing the highest cell proliferation rate assessed by cell viability assays and SEM observations.
     Conclusions
     Our results suggest that nanofibrous membranes electrospun from the combination of synthetic polymers and natural proteins have favorable mechanical and biological properties, which might be useful for tissue engineering.
     Part III Development and evaluation of a small diameter tubular scaffolds of electrospun poly(L-lactide-co-ε-caprolactone)/fibrinogen blended fibers
     Objective
     To fabricated a small diameter tubular scaffolds by electrospinning P(LLA-CL) with fibrinogen. The physico-mechanical property and biocompatibility of the P(LLA-CL)/ fibrinogen scaffolds were examined.
     Methods
     (1) A small diameter tubular scaffolds were fabricated by co-electrospinning blend of P(LLA-CL) (8%solution) and Fibrinogen (100 mg/ml solution) at volume ratios of 2:1. The 3-dimensional structure of small-small diameter tubular scaffolds was observed by a scanning electron microscope (SEM). (2) Biocompatibilities of the tubular scaffolds were evaluated in vivo and in vitro by the means of acute hemolysis test and cytotoxicity test, short-term test of subcutanous implantation. (3) The compliance, burst pressure, and suture retention strength were measured in vitro by insufflation and pull-through techniques in order to evaluate the biomechanical properties of the tubular scaffolds.
     Results
     (1)The tubular scaffolds(5~8 cm in length and approximately 5 mm in inner diameter) have randomly oriented nanofibrous structure with a well interconnected network of pores, the diameters of the fibers at the outer surfaces were 318±56 nm and the average pore diameters were 4.56±1.23μm; (2) Hemolysis rate was 2.87±0.49%; (3) There was no difference of cytotoxicity test between the P(LLA-CL)/fibrinogen tubular scaffolds and negative control group(P>0.05). (4) Upon placement in rat subcutaneous pouches, the scaffolds were gradually biodegraded with little inflammatory reaction. (5) The burst pressure and suture retention strength of P(LLA-CL)/fibrinogen tubular scaffolds were 2970±363mmHg,217±17g, respectively, which are comparable with those of native arteries. The compliance was 136%/100mmHg, stiffness (β) was 43.43, which was better than the value of ePTFE.
     Conclusions
     The P(LLA-CL)/fibrinogen tubular scaffolds are biocompatible and possess biomechanical properties which are comparable with those of native arteries.
     Part IV Initial experimental study on the replacement of canine carotid artery with tissue engineering blood vessel
     Objective:
     To evaluate the possibility of vascular endothelial cells seeding on the surface of the P(LLA-CL)/fibrinogen scaffolds, and investigate the patency and remodeling of the endothelialized scaffolds in vivo.
     Methods
     (1) Endothelial cells were harvested by the in situ application of type I collagenase to canine saphenous vein under anesthesia. The vascular endothelial cells were cultured and mass cultured. (2) In vitro endothelialization of the small-diameter tubular scaffolds were achieved by seeding ECs on the P(LLA-CL)/fibrinogen or P(LLA-CL) scaffolds. (3) Tissue engineered blood vessels were used to repair the man-made default of carotid artery in canine. The study was divided into two groups:one is the scaffold with endothelialization, the other is the scaffold without endothelial cells seeding. (4) The patency of TEBV was evaluated by Doppler and DSA postoperatively. (5) The remodeling in vivo was evaluated by histologically examination and immunohistochemistry.
     Results
     (1) The vascular endothelial cells were isolated and cultured successfully. (2) Confluent lining of vascular ECs on the inner surface of the P(LLA-CL)/fibrinogen was observed, ECs coverage was 99.3±0.2%,while ECs coverage on the P(LLA-CL) was only 38.2±6.5%(P<0.05). (3) The process of operation was satisfied, one canine died caused by anastomosis bleeding, one case of wound infection. (4) Thrombus formation was observed in all the control group. Among the 9 survival cases in experiment group, thrombus formation was observed in 2 cases, the residual 7 cases keep patency. (5) The TEBVs showed unform layered tissue with endothelial cells, the vascular smooth muscle cells and extracellular matrix were comparable to native artery in 8 weeks postoperation.
     Conclusions
     P(LLA-CL)/fibrinogen scaffolds provides structural basis for vascular ECs seeding. The endothelialized scaffolds can withstand the shear stress of blood flow, and can be transformed to similar structures of native arterial walls under the hemodynamic condition in 8 weeks postoperation.
引文
[1]LIM S S, GAZIANO T A, GAKIDOU E, et al. Prevention of cardiovascular disease in high-risk individuals in low-income and middle-income countries:health effects and costs [J]. Lancet,2007,370(9604):2054-62.
    [2]THOMAS A C, CAMPBELL G R, CAMPBELL J H. Advances in vascular tissue engineering [J]. Cardiovascular Pathology,2003,12(5):271-6.
    [3]STARK J, BULL C, STAJEVIC M, et al. Fate of subpulmonary homograft conduits:determinants of late homograft failure [J]. J Thorac Cardiovasc Surg,1998, 115(3):506-14;discussion 14-6.
    [4]LANGER R, VACANTI J P. Tissue engineering [J]. Science,1993,260(5110): 920-6.
    [5]MITCHELL S L, NIKLASON L E. Requirements for growing tissue-engineered vascular grafts [J]. Cardiovascular Pathology,2003,12(2):59-64.
    [6]吴大成.纳米纤维[M].北京:化学工业出版社,2002:19
    [7]FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning [J]. Polymer,1999,40(16):4585-92.
    [8]SHAIKH F M, CALLANAN A, KAVANAGH E G, et al. Fibrin:a natural biodegradable scaffold in vascular tissue engineering [J]. Cells Tissues Organs,2008, 188(4):333-46.
    [9]ZHAO H, MA L, GAO C, et al. A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering:fabrication, physical properties, and cell responsiveness [J]. J Biomed Mater Res B Appl Biomater,2009, 88(1):240-9.
    [10]JEONG S I, KWON J H, LIM J I, et al. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds [J]. Biomaterials,2005,26(12):1405-11.
    [11]XIE J, IHARA M, JUNG Y M, et al. Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering:Dependence of porosity on compression force-applied mechanical behaviors [J]. Tissue Engineering,2006,12(3):449-58.
    [12]PINHO E D, MARTINS A, ARAUJO J V, et al. Degradable particulate composite reinforced with nanofibres for biomedical applications [J]. Acta Biomater, 2009,5(4):1104-14.
    [13]AGARWAL S, WENDORFF J H, GREINER A. Use of electrospinning technique for biomedical applications [J]. Polymer,2008,49(26):5603-21.
    [14]QIN C X, CHENG S, WANG J J, et al. Preparation of Nano-fluorescent Polyimide Fibers by Electrospinning [J]. Textile Bioengineering and Informatics Symposium Proceedings, Vols 1 and 2,2008,667-71 1217.
    [15]ALKOY E M, DAGDEVIREN C, PAPILA M. Pb(Zr,Ti)O-3 nanofibers produced by electrospinning process [J]. Materials and Devices for Smart Systems Iii, 2009,1129(79-84 360.
    [16]ALVES A K, BERUTTI F A, CLEMENS F J, et al. Photocatalytic activity of titania fibers obtained by electrospinning [J]. Materials Research Bulletin,2009,44(2): 312-7.
    [17]ANCHEV N, PINKAS A. [Plastic surgery of blood vessels with Bulgarian alloplastic material.] [J]. Khirurgiia (Sofiia),1962,15(585-90.
    [18]DUAN B, WU L, YUAN X, et al. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array [J]. J Biomed Mater Res A, 2007,83(3):868-78.
    [19]ZHANG Y, LI J, LI Q, et al. Preparation of CeO(2)-ZrO(2) ceramic fibers by electrospinning [J]. J Colloid Interface Sci,2007,307(2):567-71.
    [20]SUBBIAH T, BHAT G S, TOCK R W, et al. Electrospinning of nanofibers [J]. Journal of Applied Polymer Science,2005,96(2):557-69.
    [21]TAYLOR G. Electrically Driven Jets [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1969,313(1515):453-&.
    [22]DEITZEL J M, KLEINMEYER J, HARRIS D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles [J]. Polymer,2001, 42(1):261-72.
    [23]MEGELSKI S, STEPHENS J S, CHASE D B, et al. Micro- and nanostructured surface morphology on electrospun polymer fibers [J]. Macromolecules,2002,35(22): 8456-66.
    [24]ZUO W W, ZHU M F, YANG W, et al. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning [J]. Polymer Engineering and Science,2005,45(5):704-9.
    [25]JEONG S I, KIM S H, KIM Y H, et al. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering [J]. Journal of Biomaterials Science-Polymer Edition,2004,15(5):645-60.
    [26]LIM J I, YU B, LEE Y K. Fabrication of collagen hybridized elastic PLCL for tissue engineering [J]. Biotechnology Letters,2008,30(12):2085-90.
    [27]HENSCHEN A H. Human Fibrinogen-Structural Variants and Functional Sites [J]. Thrombosis and Haemostasis,1993,70(1):42-7.
    [28]MCMANUS M C, BOLAND E D, SIMPSON D G, et al. Electrospun fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model [J]. Journal of Biomedical Materials Research Part A,2007,81A(2):299-309.
    [29]SIMPSON D G, BOWLIN G L. Tissue-engineering scaffolds:can we re-engineer mother nature? [J]. Expert Rev Med Devices,2006,3(1):9-15.
    [30]俞耀庭,张兴栋.生物医用材料[M],天津:天津大学出版社,2000.
    [31]姚军燕,杨青芳,秦能.生物医用高分子材料聚乳酸的成型方法研究IJ].塑料工业,2004,(10):6.
    [32]VAN DEN DOLDER J, BANCROFT G N, SIKAVITSAS V I, et al. Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells [J]. Tissue Eng,2003,9(3):505-15.
    [33]MA Z, KOTAKI M, YONG T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering [J]. Biomaterials,2005,26(15):2527-36.
    [34]HE W, YONG T, TEO W E, et al. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers:potential vascular graft for blood vessel tissue engineering [J]. Tissue Eng,2005,11(9-10):1574-88.
    [35]DOOLITTLE R F, WATT K W K, COTTRELL B A, et al. Amino-Acid Sequence of the Alpha-Chain of Human-Fibrinogen [J]. Nature,1979,280(5722): 464-8.
    [36]SALSMANN A, SCHAFFNER-RECKINGER E, KABILE F, et al. A new functional role of the fibrinogen RGD motif as the molecular switch that selectively triggers integrin alpha Ⅱb beta 3-dependent RhoA activation during cell spreading [J]. Journal of Biological Chemistry,2005,280(39):33610-9.
    [37]MAKOGONENKO E, TSURUPA G, INGHAM K, et al. Interaction of fibrin(ogen) with fibronectin:Further characterization and localization of the fibronectin-binding site [J]. Biochemistry,2002,41(25):7907-13.
    [38]SAHNI A, ODRLJIN T, FRANCIS C W. Binding of basic fibroblast growth factor to fibrinogen and fibrin [J]. Journal of Biological Chemistry,1998,273(13): 7554-9.
    [39]SAHNI A, FRANCIS C W. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation [J]. Blood,2000, 96(12):3772-8.
    [40]SAHNI A, GUO M, SAHNI S K, et al. Interleukin-1 beta but not IL-1 alpha at binds to fibrinogen and fibrin and has enhanced activity in the bound form [J]. Blood, 2004,104(2):409-14.
    [41]RYBARCZYK B J, LAWRENCE S O, SIMPSON-HAIDARIS P J. Matrix-fibrinogen enhances wound closure by increasing both cell proliferation and migration [J]. Blood,2003,102(12):4035-43.
    [42]邱林,金先庆.细胞外基质与病理性瘢痕.中华实用医学[J],2004,6(1):66-67.
    [43]CHEN R, QIU L J, K.E Q F, et al. Electrospinning Thermoplastic Polyurethane-Contained Collagen Nanofibers for Tissue-Engineering Applications [J]. Journal of Biomaterials Science-Polymer Edition,2009,20(11):1513-36.
    [44]VANWACHEM P B, BEUGELING T, MALLENS B W L, et al. Deposition of Endothelial Fibronectin on Polymeric Surfaces [J]. Biomaterials,1988,9(1):121-3.
    [45]KIM C H, KHIL M S, KIM H Y, et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation [J]. J Biomed Mater Res B Appl Biomater,2006,78(2):283-90.
    [46]LEE J, TAE G, KIM Y H, et al. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility [J]. Biomaterials,2008,29(12):1872-9.
    [47]KUMAR T R S, KRISHNAN L K. Fibrin-mediated endothelial cell adhesion to vascular biomaterials resists shear stress due to flow [J]. Journal of Materials Science-Materials in Medicine,2002,13(8):751-5.
    [48]GRASSL E D, OEGEMA T R, TRANQUILLO R T. A fibrin-based arterial media equivalent [J]. Journal of Biomedical Materials Research Part A,2003,66A(3): 550-61.
    [49]WNEK G E, CARR M E, SIMPSON D G, et al. Electrospinning of nanofiber fibrinogen structures [J]. Nano Letters,2003,3(2):213-6.
    [50]SELL S A, FRANCIS M P, GARG K, et al. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications [J]. Biomedical Materials,2008,3(4):-.
    [51]MCMANUS M C, BOLAND E D, KOO H P, et al. Mechanical properties of electrospun fibrinogen structures [J]. Acta Biomaterialia,2006,2(1):19-28.
    [52]施德,兵,符伟国,何红兵,等.小口径猪血纤维蛋白血管支架内皮化的研究[J].中华实验外科杂志,2009,26(9):1136-1138.
    [53]HAYASHI K, HANDA H, NAGASAWA S, et al. Stiffness and elastic behavior of human intracranial and extracranial arteries [J]. J Biomech,1980,13(2):175-84.
    [54]王捷,区庆嘉,陈积圣,等.普通外科手术中应用医用生物胶的体会[J].现代临床普通外科,1997,2(1):14-16.
    [55]YE Q, ZUND G, BENEDIKT P, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering [J]. European Journal of Cardio-Thoracic Surgery, 2000,17(5):587-91.
    [56]JEONG S I, KIM B S, KANG S W, et al. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds [J]. Biomaterials,2004,25(28):5939-46.
    [57]ABBOTT W M, MEGERMAN J, HASSON J E, et al. Effect of Compliance Mismatch on Vascular Graft Patency [J]. Journal of Vascular Surgery,1987,5(2): 376-82.
    [58]WESTON M W, RHEE K, TARBELL J M. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis [J]. Journal of Biomechanics,1996,29(2):187-98.
    [59]HAYASHI K, TAKAMIZAWA K, SAITO T, et al. Elastic Properties and Strength of a Novel Small-Diameter, Compliant Polyurethane Vascular Graft [J]. Journal of Biomedical Materials Research-Applied Biomaterials,1989,23(A2): 229-44.
    [60]SONODA H, TAKAMIZAWA K, NAKAYAMA Y, et al. Small-diameter compliant arterial graft prosthesis:Design concept of coaxial double tubular graft and its fabrication [J]. Journal of Biomedical Materials Research,2001,55(3):266-76.
    [61]KIDSON I G, ABBOTT W M. Low Compliance and Arterial Graft Occlusion [J]. Circulation,1978,58(3):1-4.
    [62]GREISLER H P, JOYCE K A, KIM D U, et al. Spatial and Temporal Changes in Compliance Following Implantation of Bioresorbable Vascular Grafts [J]. Journal of Biomedical Materials Research,1992,26(11):1449-61.
    [63]XU C Y, INAI R, KOTAKI M, et al. Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering [J]. Biomaterials,2004, 25(5):877-86.
    [64]KWON I K, KIDOAKI S, MATSUDA T. Electrospun nano-to microfiber fabrics made of biodegradable copolyesters:structural characteristics, mechanical properties and cell adhesion potential [J]. Biomaterials,2005,26(18):3929-39.
    [65]INOGUCHI H, KWON I K, INOUE E, et al. Mechanical responses of a compliant electrospun poly(L-lactide-co-epsilon-caprolactone) small-diameter vascular graft [J]. Biomaterials,2006,27(8):1470-8.
    [66]WANG X, LIN P, YAO Q, et al. Development of small-diameter vascular grafts [J]. World J Surg,2007,31(4):682-9.
    [67]RUBANYI G M. The role of endothelium in cardiovascular homeostasis and diseases [J]. J Cardiovasc Pharmacol,1993,22 Suppl 4(S1-14.
    [68]FURCHGOTT R F, ZAWADZKI J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine [J]. Nature,1980,288(5789): 373-6.
    [69]AUTIO I, MALO-RANTA U, KALLIONIEMI O P, et al. Cultured bovine aortic endothelial cells secrete factor(s) chemotactic for aortic smooth muscle cells [J]. Artery,1989,16(2):72-83.
    [70]CASSCELLS W. Migration of smooth muscle and endothelial cells. Critical events in restenosis [J]. Circulation,1992,86(3):723-9.
    [71]LAUBE H R, DUWE J, RUTSCH W, et al. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts [J]. J Thorac Cardiovasc Surg,2000,120(1):134-41.
    [72]ITOH H, ASO Y, FURUSE M, et al. A honeycomb collagen carrier for cell culture as a tissue engineering scaffold [J]. Artificial Organs,2001,25(3):213-7.
    [73]RAMALANJAONA G, KEMPCZINSKI R F, ROSENMAN J E, et al. The Effect of Fibronectin Coating on Endothelial-Cell Kinetics in Polytetrafluoroethylene Grafts [J]. Journal of Vascular Surgery,1986,3(2):264-72.
    [74]MCMILLAN R, MEEKS B, BENSEBAA F, et al. Cell adhesion peptide modification of gold-coated polyurethanes for vascular endothelial cell adhesion [J]. Journal of Biomedical Materials Research,2001,54(2):272-83.
    [75]WILSON J M, BIRINYI L K, SALOMON R N, et al. Implantation of Vascular Grafts Lined with Genetically Modified Endothelial-Cells [J]. Science,1989, 244(4910):1344-6.
    [76]HERRING M, GARDNER A, GLOVER J. Single-Staged Technique for Seeding Vascular Grafts with Autogenous Endothelium [J]. Surgery,1978,84(4):498-504.
    [77]ZILLA P, FASOL R, DUDECK U, et al. In situ cannulation, microgrid follow-up and low-density plating provide first passage endothelial cell masscultures for in vitro lining [J]. J Vase Surg,1990,12(2):180-9.
    [78]SEEGER J M, KLINGMAN N. Improved Endothelial Cell Seeding with Cultured-Cells and Fibronectin-Coated Grafts [J]. Journal of Surgical Research,1985, 38(6):641-7.
    [79]ZILLA P, PREISS P, GROSCURTH P, et al. In vitro-lined endothelium:initial integrity and ultrastructural events [J]. Surgery,1994,116(3):524-34.
    [80]何红兵,潘玉先,马素珍,等.ECs高密度种植于人工血管的实验研究[J].中国生物医学工程学报,1994,13(4):369-372.
    [81]涂秋芬,张怡,吴江,等.以脱细胞犬动脉为基质的血管支架体外再细胞化[J].航天医学与医学工程,2007,20(5):358-363.
    [82]施德,兵,符伟国,何红兵,等.实验犬浅静脉内皮细胞原位获取和体外培养研究[J].中国组织工程研究与临床康复杂志,2008,12(20).
    [83]MULLER-GLAUSER W, ZILLA P, LACHAT M, et al. Immediate shear stress resistance of endothelial cell monolayers seeded in vitro on fibrin glue-coated ePTFE prostheses [J]. Eur J Vase Surg,1993,7(3):324-8.
    [84]BOGATCHEVA N V, DUDEK S M, GARCIA J G, et al. Mitogen-activated protein kinases in endothelial pathophysiology [J]. J Investig Med,2003,51(6): 341-52.
    [85]FERNANDEZ P, DACULSI R, REMY-ZOLGHADRI M, et al. Endothelial cells cultured on engineered vascular grafts are able to transduce shear stress [J]. Tissue Eng,2006,12(1):1-7.
    [86]孙洪亮,方宁涛,谢尚喆,等.应用4,6-联脒-2-苯基吲哚大体染色法快速观察生物支架材料体外内皮化程度料[J].中国临床康复,2006,10(25):57-59..
    [87]RAINES E W. The extracellular matrix can regulate vascular cell migration, proliferation, and survival:relationships to vascular disease [J]. Int J Exp Pathol,2000, 81(3):173-82.
    [88]HUTCHINGS H, ORTEGA N, PLOUET J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation [J]. FASEB J,2003,17(11):1520-2.
    [89]MEREDITH J E, JR., FAZELI B, SCHWARTZ M A. The extracellular matrix as a cell survival factor [J]. Mol Biol Cell,1993,4(9):953-61.
    [90]MARTIN N D, SCHANER P J, TULENKO T N, et al. In vivo behavior of decellularized vein allograft [J]. J Surg Res,2005,129(1):17-23.
    [91]GARIN G, BERK B C. Flow-mediated signaling modulates endothelial cell phenotype [J]. Endothelium,2006,13(6):375-84.
    [92]XU Z C, ZHANG W J, LI H, et al. Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor [J]. Biomaterials,2008,29(10): 1464-72.
    [93]O'CEARBHAILL E D, MURPHY M, BARRY F, et al. Behavior of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs [J]. Ann Biomed Eng,38(3):649-57.
    [94]TAYLOR D A. From stem cells and cadaveric matrix to engineered organs [J]. Curr Opin Biotechnol,2009,20(5):598-605.
    [1]LIM S S, GAZIANO T A, GAKIDOU E, et al. Prevention of cardiovascular disease in high-risk individuals in low-income and middle-income countries:health effects and costs [J]. Lancet,2007,370(9604):2054-62.
    [2]THOMAS A C, CAMPBELL G R, CAMPBELL J H. Advances in vascular tissue engineering [J]. Cardiovasc Pathol,2003,12(5):271-6.
    [3]LANGER R, VACANTI J P. Tissue engineering [J]. Science,1993,260(5110): 920-6.
    [4]RUBANYI G M. The role of endothelium in cardiovascular homeostasis and diseases [J]. J Cardiovasc Pharmacol,1993,22 Suppl 4(S1-14.
    [5]HERRING M, GARDNER A, GLOVER J. A single-staged technique for seeding vascular grafts with autogenous endothelium [J]. Surgery,1978,84(4):498-504.
    [6]SEIFALIAN A M, TIWARI A, HAMILTON G, et al. Improving the clinical patency of prosthetic vascular and coronary bypass grafts:the role of seeding and tissue engineering [J]. Artif Organs,2002,26(4):307-20.
    [7]WAUGH J M, YUKSEL E, LI J, et al. Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model [J]. Circ Res,1999, 84(1):84-92.
    [8]CAMPBELL J H, EFENDY J L, CAMPBELL G R. Novel vascular graft grown within recipient's own peritoneal cavity [J]. Circ Res,1999,85(12):1173-8.
    [9]L'HEUREUX N, PAQUET S, LABBE R, et al. A completely biological tissue-engineered human blood vessel [J]. FASEB J,1998,12(1):47-56.
    [10]L'HEUREUX N, DUSSERRE N, KONIG G, et al. Human tissue-engineered blood vessels for adult arterial revascularization [J]. Nat Med,2006,12(3):361-5.
    [11]GRENIER G, REMY-ZOLGHADRI M, LAROUCHE D, et al. Tissue reorganization in response to mechanical load increases functionality [J]. Tissue Eng, 2005,11(1-2):90-100.
    [12]GUILLEMETTE M D, CUI B, ROY E, et al. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function [J]. Integr Biol (Camb),2009,1(2):196-204.
    [13]HUTMACHER D W. Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives [J]. J Biomater Sci Polym Ed,2001,12(1):107-24.
    [14]GOISSIS G, MARCANTONIO E, JR., MARCANTONIO R A, et al. Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking [J]. Biomaterials,1999,20(1):27-34.
    [15]WEINBERG C B, BELL E. A blood vessel model constructed from collagen and cultured vascular cells [J]. Science,1986,231(4736):397-400.
    [16]DAHL S L, KOH J, PRABHAKAR V, et al. Decellularized native and engineered arterial scaffolds for transplantation [J]. Cell Transplant,2003,12(6): 659-66.
    [17]TEEBKEN O E, BADER A, STEINHOFF G, et al. Tissue engineering of vascular grafts:human cell seeding of decellularised porcine matrix [J]. Eur J Vasc Endovasc Surg,2000,19(4):381-6.
    [18]DANIEL J, ABE K, MCFETRIDGE P S. Development of the human umbilical vein scaffold for cardiovascular tissue engineering applications [J]. ASAIO J,2005, 51(3):252-61.
    [19]SELL S A, FRANCIS M P, GARG K, et al. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications [J]. Biomedical Materials,2008,3(4):-.
    [20]MCMANUS M C, BOLAND E D, KOO H P, et al. Mechanical properties of electrospun fibrinogen structures [J]. Acta Biomaterialia,2006,2(1):19-28.
    [21]NIKLASON L E, GAO J, ABBOTT W M, et al. Functional arteries grown in vitro [J]. Science,1999,284(5413):489-93.
    [22]HOLY C E, CHENG C, DA VIES J E, et al. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering [J]. Biomaterials,2001,22(1):25-31.
    [23]VAN DEN DOLDER J, BANCROFT G N, SIKAVITSAS V I, et al. Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells [J]. Tissue Eng,2003,9(3):505-15.
    [24]MA Z, KOTAKI M, YONG T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering [J]. Biomaterials,2005,26(15):2527-36.
    [25]SUN X, FAN D, ZHU C, et al. [Characterization and biocompatibility of human-like collagen-hyaluronic acid scaffold for blood vessel] [J]. Sheng Wu Gong Cheng Xue Bao,2009,25(4):591-8(孙秀娟,范代娣,朱晨辉,等.类人胶原蛋白-透明质酸血管支架的性能及生物相容性[J].生物工程学报,2009,25(4):591-8.)
    [26]吴大成.纳米纤维[M].北京:化学工业出版社,2002:19.
    [27]ZHAO Y, TANAKA M, KINOSHITA T, et al. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release [J]. J Control Release,142(3):354-60.
    [28]LIU X, MA P X. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds [J]. Biomaterials,2009,30(25):4094-103.
    [29]PINHO E D, MARTINS A, ARAUJO J V, et al. Degradable particulate composite reinforced with nanofibres for biomedical applications [J]. Acta Biomater, 2009,5(4):1104-14.
    [30]HONG Y, YE S H, NIEPONICE A, et al. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend [J]. Biomaterials,2009,30(13):2457-67.
    [31]MCKEE J A, BANIK S S, BOYER M J, et al. Human arteries engineered in vitro [J]. EMBO Rep,2003,4(6):633-8.
    [32]SHAO R, GUO X. Human microvascular endothelial cells immortalized with human telomerase catalytic protein:a model for the study of in vitro angiogenesis [J]. Biochem Biophys Res Commun,2004,321(4):788-94.
    [33]PEICHEV M, NAIYER A J, PEREIRA D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors [J]. Blood,2000,95(3):952-8.
    [34]KAUSHAL S, AMIEL G E, GULESERIAN K J, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo [J]. Nat Med, 2001,7(9):1035-40.
    [35]OSWALD J, BOXBERGER S, JORGENSEN B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro [J]. Stem Cells,2004,22(3): 377-84.
    [36]KASHIWAKURA Y, KATOH Y, TAMAYOSE K, et al. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow [J]. Circulation,2003,107(16):2078-81.
    [37]CHO S W, LIM S H, KIM I K, et al. Small-diameter blood vessels engineered with bone marrow-derived cells [J]. Ann Surg,2005,241(3):506-15.
    [38]SHIN'OKA T, MATSUMURA G, HIBINO N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells [J]. J Thorac Cardiovasc Surg,2005,129(6):1330-8.
    [39]KERN P A, KNEDLER A, ECKEL R H. Isolation and culture of microvascular endothelium from human adipose tissue [J]. J Clin Invest,1983,71(6):1822-9.
    [40]ZUK P A, ZHU M, MIZUNO H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies [J]. Tissue Eng,2001,7(2):211-28.
    [41]FERREIRA L S, GERECHT S, SHIEH H F, et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo [J]. Circ Res,2007,101(3):286-94.
    [42]SHEN G, TSUNG H C, WU C F, et al. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells [J]. Cell Res,2003, 13(5):335-41.
    [43]OPITZ F, SCHENKE-LAYLAND K, RICHTER W, et al. Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells [J]. Ann Biomed Eng,2004,32(2):212-22.
    [44]SHI Y, LIU X, CHEN H, et al. [Effect of different cultured conditions on endothelial cell and its resistance to the fluid imposed shear stress--a comparative study] [J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2001,18(2):188-91( 石应康,刘欣,陈槐卿,等.不同条件培养的内皮细胞耐受流体剪切力的比较研究[J].生物医学工程学杂志,2001,18(2):188.)
    [45]SELIKTAR D, BLACK R A, VITO R P, et al. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro [J]. Ann Biomed Eng,2000,28(4):351-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700