甲烷无氧芳构化Mo/ZSM-5催化剂的成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷无氧芳构化反应是甲烷直接催化转化过程中的一个重要反应,而进一步将该反应进行工业化应用是当前的重要研究课题。因此本论文选用Mo/ZSM-5为研究对象,从成型助剂、成型条件及方法、反应条件等方面对甲烷无氧芳构化催化剂的成型做了专门研究,并分析了成型加工对催化剂母体活性、选择性和稳定性的影响,以期为工业应用提供信息和依据。
     考察了ZSM-5分子筛的物化性质对反应性能的影响。结果表明,低硅铝比的分子筛对反应有利,而100nm~1μm的ZSM-5有利于Mo物种的适度分散及目标芳烃产物的扩散,使催化剂在反应中表现出较高的活性及较低的积碳选择性,是适宜的催化剂母体。
     采用不同粘结剂对Mo/ZSM-5进行挤条成型。结果表明,成型粘结剂的加入对催化剂母体的扩散性及Mo物种的氧化还原性均有较大的改变,进而影响了成型催化剂的甲烷芳构化反应性能。在所测试的样品中,ZnO成型样品的芳构化性能高于催化剂母体,而Si02成型样品的活性则为催化剂母体的80%,但仅Si02和A1203粘结剂提高了催化剂母体的机械强度。进一步使用Al2O3-ZnO混合氧化物为成型粘结剂时,催化剂的机械强度增加至70N/cm以上。并且Al2O3-ZnO粘结剂在反应条件下可以生成ZnAl2O4,使催化剂母体的扩散性及Mo物种的氧化还原能力得到较好的保持,从而使成型催化剂的芳烃生成量达到催化剂母体的90%。因此Si02及Al2O3-ZnO是良好的甲烷芳构化催化剂的成型粘结剂。
     挤条成型方式的研究表明,将粘结剂与ZSM-5预先成型,而后以常规浸渍法引入Mo物种是适宜的粘结剂的添加方式,可以使成型催化剂的机械强度较高,苯生成稳定性较好。同时发现,增加成型催化剂的扩散性及Mo物种分散性是提高成型催化剂反应性能的关键。采用添加分子量较小的孔结构改性剂及使用碱性的浸渍环境则对此做了进一步的证明。
     改变成型方法,采用转动成型法制备了蛋壳型的薄层Mo/ZSM-5催化剂,将催化剂厚度降至挤条成型样品的1/10-1/4。结果表明,缩短扩散路径是改善成型催化剂扩散性的有效方法,芳烃产物的选择性增加了25%,积碳含量下降了12%。而当支撑基质材料为无孔惰性瓷球,其粒径以0.5 mm左右时,薄层催化剂能最大发挥出催化剂母体的反应性能。在960 mL/gZSM-5·h的空速下,芳烃选择性可达56.2%,C2烃的含量增加至12.0%,积碳含量仅为29.3%,并在500 min内催化剂表现出了较好的稳定性。
Non-oxidative aromatization of methane is an important reaction in methane direct conversion, and further industrial application is a significant research topic at present. Mo/ZSM-5 was chosen to study the effect of the molding binder, molding procedure and method in methane non-oxidative aromatization. The influence of the reaction conditions on the activity, selectivity and the stability of the molding Mo/ZSM-5 catalyst was also investigated. It is expected to provide useful information for industrial application.
     The effect of physicochemical property of ZSM-5 on methane aromatization was investigated firstly. The results showed that the ZSM-5 with relative low nSi/nAl ratio is beneficial for the reaction. Simultaneously the ZSM-5 with the particle size of 100 nm-1μm is favorable for Mo species dispersing and goal products diffusion, and the catalysts showed high activity and low coke selectivity. Therefore it is the suitable catalyst support.
     The influence of different molding binder was studied by extrusion process. It is found that the binder changed the diffusion of the ZSM-5 and the redox of Mo species greatly, and the activity of the catalyst was affected obviously; the catalyst extruded with ZnO showed higher aromatization performance than that of the Mo/ZSM-5; the activity of catalyst extruded with SiO2 was 80% of the base. However, the mechanical strength of the catalysts was only enhanced by the introduction of SiO2 and Al2O3. When the mixed Al2O3-ZnO compounds were used as the binder, the mechanical strength of the molding catalysts was about 70 N/cm, and the diffusibility of catalyst and reducibility of Mo species was kept well due to the formation of ZnAl2O4 under the reaction conditions. The activity of the extruded catalyst with Al2O3-ZnO showed 90% of that of the base catalyst. Therefore, SiO2 and Al2O3-ZnO are good binder for molding Mo/ZSM-5 catalyst in methane aromatization.
     The study of extrusion procedure showed that the catalyst prepared with Mo species impregnation onto the extruder of binder and ZSM-5 possesed better crushing strength as well as stabilized the production of benzene. Meanwhile, it was found that both diffusibility and Mo species dispersibility are the keves to enhance the catalystic performance of the molding catalyst. This result was confirmed further by the addition of pore-forming agent with smaller molecular weight and the alkaline impregnating solution.
     The laminar Mo/ZSM-5 catalyst with a spherical shell was prepared by granulation process; the laminar thickness of the catalyst was 1/10-1/4 of the extruded one. The results indicated that the shortening of diffusion path is an effective way to improve the diffusivity of molding catalysts. The selectivity of aromatics increased 25% and the content of coke decreased 12% than that of the extruded catalysts. When the nonporous inert ceramic ball with the particle size of 0.5 mm was used as the substrate, the best performance of laminar catalyst was obtained. At 960 mL/gZSM-5·h space velocity, the selectivity of aromatics, the content of C2 and the content of coke was 56.2%,12% and 29.3%, respectively. The catalyst also showed better stability in the 500 min reaction.
引文
[1]胡杰,朱博超,王建明.天然气化工技术及利用[M].北京:化学工业出版社.2006:1-3.
    [2]Olah G A, Richard H, Shlosberg. Chemistry in superacids (I):Hydrogen exchange and polycondensation ofmethane and alkanes in FSO3H2SbF5 ("magic acid") solution [J]. Journal of the American Chemical Society.1968,90(10):2726-2727.
    [3]魏立德.有机化工原料大全[M].化学工业出版社.1998,上卷:1-140.
    [4]Keller G E, Bhasin M M. Synthesis of ethylene via oxidative coupling of methane:I. Determination of active catalysts [J]. Journal of Catalysis.1982,73(1):9-19.
    [5]Shepelev S S, Ione K G. Preparation of aromatic-hydrocarbons form methnae in the presence of O2 [J]. Reaction Kinetics and Catalysis Letters.1983,23(3-4):323-325.
    [6]Claridge J B, Green M L H, Tsang S C, et al. Oxidative oligomerization of methane to aromatics [J]. Applied Catalysis A:General.1992,89(1):103-116.
    [7]Otsuka K, Komatsu T. Conversion of methane to aromatic-hydrocarbons by combination of catalysts [J]. Chemistry Letters.1986(11):1955-1958.
    [8]Yang Q Y, Johnson A D, Maynard K J, et al. Synthesis of benzene from methane over a Ni(111) catalyst [J]. Journal of the American Chemical Society.1989,111(23):8748-8749.
    [9]Devries L, Ryason P R. Conversions of low molecular weitht hydrocarbons to higher molecular weight hydrocarons using a boron compound containing catalyst [J]. US Patent 4507517.1985.
    [10]Mitchell H L, Wanyhorne R H. US Patent 4,239,658.1980.
    [11]Bragin O V, Vasina T V, Preobrazhenskii A V, et al. Aromatization of methane on pentasil-containig catalysts [J]. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science.1989,38(3): 680-680.
    [12]Wang L, Tao L, Xie M, et al. Dehydrogenation and aromatization of methane under non-oxidizing conditions [J]. Catalysis Letters.1993,21(1):35-41.
    [13]Xu Y D, Liu S T, Wang L S, et al. Methane activation without using oxidants over Mo/ZSM-5 zeolite catalysts [J]. Catalysis Letters.1995,30(1-4):135-149.
    [14]Weckhuysen B M, Wang D, Rosynek M P, et al. Conversion of Methane to Benzene over Transition Metal IonZSM-5 Zeolites:I. Catalytic Characterization [J]. Journal of Catalysis.1998,175(2):338-346.
    [15]Zeng J L, Xiong Z T, Zhang H B, et al. Nonoxidative dehydrogenation and aromatization of methane over W/HZSM-5-based catalysts [J]. Catalysis Letters.1998,53(1-2):119-124.
    [16]Ding W P, Meitzner G D, Marler D O, et al. Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5 [J]. Journal of Physical Chemistry B.2001,105(18): 3928-3936.
    [17]Chen L Y, Lin L W, Xu Z S, et al. Promotional effect of Pt on non-oxidative methane transformation over Mo-HZSM-5 catalyst [J]. Catalysis Letters.1996,39(3-4):169-172.
    [18]Wang L S, Xu Y D, Wong S T, et al. Activity and stability enhancement of Mo/HZSM-5-based catalysts for methane non-oxidative transformation to aromatics and C2 hydrocarbons:Effect of additives and pretreatment conditions [J]. Applied Catalysis A:General.1997,152(2):173-182.
    [19]Chen L Y, Lin L W, Xu Z S, et al. Dehydro-oligomeriztion methane to ethylene and aromatics over molybdenume/ZSM-5 catalyst [J]. Journal of Catalysis.1995,157(1):190-200.
    [20]Wang L S, Ohnishi R, Ichikawa M. Novel rhenium-based catalysts for dehydrocondensation of methane with CO/CO2 towards ethylene and benzene [J]. Catalysis Letters.1999,62(1):29-33.
    [21]Wang L S, Ohnishi R, Ichikawa M. Selective dehydroaromatization of methane toward benzene on Re/HZSM-5 catalysts and effects of CO/CO2 addition [J]. Journal of Catalysis.2000,190(2):276-283.
    [22]Li S, Zhang C, Kan Q, et al. The function of Cu(Ⅱ) ions in the Mo/CuH-ZSM-5 catalyst for methane conversion under non-oxidative condition [J]. Applied Catalysis A:General.1999,187(2):199-206.
    [23]Wu P, Kan Q B, Wang X X, et al. Acidity and catalytic properties for methane conversion of Mo/HZSM-5 catalyst modified by reacting with organometallic complex [J]. Applied Catalysis A: General.2005,282(1-2):39-44.
    [24]Burns S, Hargreaves J S J, Pal P, et al. The effect of dopants on the activity of MoO3/ZSM-5 catalysts for the dehydroaromatisation of methane [J]. Catalysis Today.2006,114(4):383-387.
    [25]Kojima R, Kikuchi S, Ichikawa M. Effects of rhodium addition to Mo/HZSM-5 catalyst for methane dehydroaromatization [J]. Chemistry Letters.2004,33(9):1166-1167.
    [26]Ngobenia M W. The effects of boron and silver on the oxygen-free conversion of methane over Mo/H-ZSM-5 catalysts [J]. Journal of Molecular Catalysis A:Chemical.2008.
    [27]Liu J F, Jin L, Liu Y, et al. Methane aromatization over cobalt and gallium-impregnated HZSM-5 catalysts [J]. Catalysis Letters.2008,125(3-4):352-358.
    [28]Solymosi F, Erdohelyi A, Szoke A. Dehydrogenationof methane on suported molybdenum oxides-formation of benzene from methane [J]. Catalysis Letters.1995,32(1-2):43-53.
    [29]Wu P, Kan Q B, Wang D Y, et al. The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization [J]. Catalysis Communications.2005,6(7):449-454.
    [30]Martinez A, Peris E, Sastre G. Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts [J]. Catalysis Today.2005,107-08:676-684.
    [31]Zhang C L, Li S A, Yuan Y, et al. Aromatization of methane in the absence of oxygen over Mo-based catalysts supported on different types of zeolites [J]. Catalysis Letters.1998,56(4):207-213.
    [32]Shu Y, Ma D, Xu L, et al. Methane dehydro-aromatization over Mo/MCM-22 catalysts:a highly selective catalyst for the formation of benzene [J]. Catalysis Letters.2000,70(1):67-73.
    [33]Tan P L, Xu Z S, Zhang T, et al. Aromatization of methane over different Mo-supported catalysts in the absence of oxygen [J]. Reaction Kinetics and Catalysis Letters.1997,61(2):391-396.
    [34]Liu S, Wang L, Ohnishi R, et al. Bifunctional Catalysis of Mo/HZSM-5 in the Dehydroaromatization of Methane to Benzene and Naphthalene XAFS/TG/DTA/MASS/FTIR Characterization and Supporting Effects [J]. Journal of Catalysis.1999,181(2):175-188.
    [35]Sun C Y, Yao S D, Shen W J, et al. Hydrothermal post-synthesis of HMCM-49 to enhance the catalytic performance of the Mo/HMCM-49 catalyst for methane dehydroaromatization [J]. Microporous and Mesoporous Materials.2009,122(1-3):48-54.
    [36]Chu N B, Yang J H, Li C Y, et al. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization [J]. Microporous and Mesoporous Materials.2009, 118(1-3):169-175.
    [37]Shu Y Y, Ma D, Bao X H, et al. Methane dehydro-aromatization over a Mo/phosphoric rare earth-containing penta-sil type zeolite in the absence of oxygen [J]. Catalysis Letters.2000,66(3): 161-167.
    [38]Kan Q B, Wang D Y, Xu N, et al., Nonoxidative aromatization of methane over Mo/MCM-49 catalyst, in Natural Gas Conversion Vⅱ.2004, Elsevier Science Bv:Amsterdam, p.631-636.
    [39]Wang D, Kan Q B, Xu N, et al. Study on methane aromatization over MoO3/HMCM-49 catalyst [J]. Catalysis Today.2004,93-95:75-80.
    [40]Lu Y, Ma D, Xu Z S, et al. A high coking-resistance catalyst for methane aromatization [J]. Chemical Communications.2001(20):2048-2049.
    [41]Matus E V, Ismagilov I Z, Sukhova O B, et al. Study of methane dehydroaromatization on impregnated Mo/ZSM-5 catalysts and characterization of nanostructured molybdenum phases and carbonaceous deposits [J]. Industrial & Engineering Chemistry Research.2007,46(12):4063-4074.
    [42]Weckhuysen B M, Rosynek M P, Lunsford J H. Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts [J]. Catalysis Letters.1998,52(1-2): 31-36.
    [43]吕元,林励吾,徐竹生,等.甲烷无氧芳构化制芳烃双功能催化剂的研究[J].中国科学(B辑).2000,30(3):218-226.
    [44]Jiang H, Wang L S, Cui W, et al. Study on the induction period of methane aromatization over Mo/HZSM-5:partial reduction of Mo species and formation of carbonaceous deposit [J]. Catalysis Letters.1999,57(3):95-102.
    [45]Ma D, Wang D Z, Su L L, et al. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization:A TP technique investigation [J]. Journal of Catalysis.2002,208(2):260-269.
    [46]Ohnishi R, Liu S T,Dong Q, et al. Catalytic dehydrocondensation of methane with CO and CO2 toward benzene and naphthalene on Mo/HZSM-5 and Fe/Co-modified Mo/HZSM-5 [J]. Journal of Catalysis. 1999,182(1):92-103.
    [47]谭平连,徐竹生,张涛,等.甲烷制苯Mo/HZSM-5催化剂失活的研究[J].天然气化工.1997,22(5):17-20.
    [48]Guisnet M, Magnoux P. Deactivation by coking of zeolite catalysts. Prevention of deactivation. Optimal conditions for regeneration [J]. Catalysis Today.1997,36(4):477-483.
    [49]陈文衡.甲烷催化转化制苯及积碳过程[D].大连物理化学研究所硕士学位论文.1997.
    [50]Bhattacharya D, Sivasanker S. A comparison of aromatization activities of of the medium pore zeolitesS, ZSM-5, ZSM-22, and EU-1 [J]. Journal of Catalysis.1995,153(2):353-355.
    [51]Trombetta M, Armaroli T, Alejandre A G, et al. An FT-IR study of the internal and external surfaces of HZSM5 zeolite [J]. Applied Catalysis A:General.2000,192(1):125-136.
    [52]Li W, Meitzner G D, Borry R W, et al. Raman and X-ray absorption studies of Mo species in Mo/H-ZSM5 catalysts for non-oxidative CH4 reactions [J]. Journal of Catalysis.2000,191(2):373-383.
    [53]Solymosi F, Szoke A, Cserenyi J. Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts [J]. Catalysis Letters.1996,39(3-4):157-161.
    [54]Solymosi F, Cserenyi J, Szoke A, et al. Aromatization of methane over supported and unsupported Mo-based catalysts [J]. Journal of Catalysis.1997,165(2):150-161.
    [55]Wang D J, Lunsford J H, Rosynek M P. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene [J]. Journal of Catalysis.1997,169(1):347-358.
    [56]Wang D J, Lunsford J H, Rosynek M P. Catalytic conversion of methane to benzene over Mo/ZSM-5 [J]. Topics in Catalysis.1996,3(3-4):289-297.
    [57]Ma D, Lu Y, Su L L, et al. Remarkable improvement on the methane aromatization reaction:A highly selective and coking-resistant catalyst [J]. Journal of Physical Chemistry B.2002,106(34):8524-8530.
    [58]Ma D, Shu Y Y, Zhang W P, et al. In situ H1 MAS NMR spectroscopic observation of proton species on a Mo-modified HZSM-5 zeolite catalyst for the dehydroaromatization of methane [J]. Angewandte Chemie-International Edition.2000,39(16):2928-2931.
    [59]Ma D, Zhang W P, Shu Y Y, et al. MAS NMR, ESR and TPD studies of Mo/HZSM-5 catalysts:evidence for the migration of molybdenum species into the zeolitic channels [J]. Catalysis Letters.2000,66(3): 155-160.
    [60]Zhang W P, Ma D, Liu X C, et al. Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution 1H MAS NMR spectroscopy [J]. Chemical Communications.1999(12):1091-1092.
    [61]Xu Y D, Shu Y Y, Liu S T, et al. Interaction between ammonium heptamolybdate and NH4ZSM-5 zeolite-the location of Mo species and the acidity of Mo/ZSM-5 [J]. Catalysis Letters.1995,35(3-4):233-243.
    [62]Zhang J Z, Long M A, Howe R F. Molybdenum ZSM-5 zeolite catalysts for the conversion of methane to benzene [J]. Catalysis Today.1998,44(1-4):293-300.
    [63]Liu H M, Shen W J, Bao X H, et al. Methane dehydroaromatization over Mo/HZSM-5 catalysts:The reactivity of MoCx species formed from MoOx associated and non-associated with Brosted acid sites [J]. Applied Catalysis A:General.2005,295(1):79-88.
    [64]Zheng H, Ma D, Bao X H, et al. Direct observation of the active center for methane dehydroaromatization using an ultrahigh field Mo95 NMR spectroscopy [J]. Journal of the American Chemical Society.2008,130(12):3722-3723.
    [65]Ma D, Shu Y Y, Bao X H, et al. Methane dehydro-aromatization under nonoxidative conditions over Mo/HZSM-5 catalysts:EPR study of the Mo species on/in the HZSM-5 zeolite [J]. Journal of Catalysis. 2000,189(2):314-325.
    [66]Tessonnier J P, Louis B, Walspurger S, et al. Quantitative measurement of the Bronsted acid sites in solid acids:Toward a single-site design of Mo-modified ZSM-5 zeolite [J]. Journal of Physical Chemistry B. 2006,110(21):10390-10395.
    [67]Tessonnier J P, Louis B, Rigolet S, et al. Methane dehydro-aromatization on Mo/ZSM-5:About the hidden role of Bronsted acid sites [J]. Applied Catalysis A:General.2008,336(1-2):79-88.
    [68]Liu H M, Li T, Tian B, et al. Study of the carbonaceous deposits formed on a Mo/HZSM-5 catalyst in methane dehydro-aromatization by using TG and temperature-programmed techniques [J]. Applied Catalysis A:General.2001,213(1):103-112.
    [69]Lacheen H S, Iglesia E. Stability, structure, and oxidation state of Mo/H-ZSM-5 catalysts during reactions of CH4 and CH4-CO2 mixtures [J]. Journal of Catalysis.2005,230(1):173-185.
    [70]Lacheen H S, Iglesia E. Isothermal activation of Mo2O52+-ZSM-5 precursors during methane reactions: effects of reaction products on structural evolution and catalytic properties [J]. Physical Chemistry Chemical Physics.2005,7(3):538-547.
    [71]Szoke A, Solymosi F. Selective oxidation of methane to benzene over K2MoO4/ZSM-5 catalysts [J]. Applied Catalysis A:General.1996,142(2):361-374.
    [72]Ma D, Shu Y Y, Cheng M J, et al. On the induction period of methane aromatization over Mo-based catalysts [J]. Journal of Catalysis.2000,194(1):105-114.
    [73]Hu J Z, Kwak J H, Wang Y, et al. Studies of the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State Mo95 NMR Spectroscopy [J]. Journal of Physical Chemistry C.2009,113(7): 2936-2942.
    [74]Meriaudeau P, Tiep L V, Ha V T T, et al. Aromatization of methane over Mo/H-ZSM-5 catalyst:on the possible reaction intermediates [J]. Journal of Molecular Catalysis A:Chemical.1999,144(3):469-471.
    [75]Meriaudeau P, Ha V T T, Tiep L V. Methane aromatization over Mo/H-ZSM-5:on the reaction pathway [J]. Catalysis Letters.2000,64(1):49-51.
    [76]Ha V T T, Tiep L V, Meriaudeau P, et al. Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism [J]. Journal of Molecular Catalysis A:Chemical.2002,181(1-2): 283-290.
    [77]舒玉瑛,田丙伦,马丁,等.不同方法制备的Mo/HZSM25催化剂上甲烷的芳构化反应[J].催化学报.2001,22(2):109-112.
    [78]Sun C Y, Yao S D, Shen W J, et al. Highly dispersed molybdenum oxide supported on HZSM-5 for methane dehydroaromatization [J]. Catalysis Letters.2008,122(1-2):84-90.
    [79]Tan P L, Au C T, Lai S Y. Effects of acidification and basification of impregnating solution on the performance of Mo/HZSM-5 in methane aromatization [J]. Applied Catalysis A:General.2007,324: 36-41.
    [80]Liu H M, Shen W J, Bao X H, et al. Identification of Mo active species for methane dehydro-aromatization over Mo/HZSM-5 catalysts in the absence of oxygen:H-1 MAS NMR and EPR investigations [J]. Journal of Molecular Catalysis A:Chemical.2006,244(1-2):229-236.
    [81]苏玲玲,张贺,王祥生,等.分子筛性质对Mo/HZSM-5催化剂上甲烷无氧脱氢芳构化反应的影响[J].催化学报.2003,24(4):284-288.
    [82]Masiero S S, Marcilio N R, Perez-Lopez O W. Aromatization of Methane Over Mo-Fe/ZSM-5 Catalysts [J]. Catalysis Letters.2009,131(1-2):194-202.
    [83]王冬杰,张一平,费金华.Ni改性Mo/HZSM-5催化剂上甲烷芳构化性能研究[J].高等学校化学学报.1996,11:1776.
    [84]刘自立.稀土改性Mo/HZSM-5催化剂上甲烷直接芳构化反应的研究[D].广东:华南理工大学.1998.
    [85]Dong X F, Song Y B, Lin W M. A new way to enhance the coke-resistance of Mo/HZSM-5 catalyst for methane dehydroaromatization [J]. Catalysis Communications.2007,8(3):539-542.
    [86]Ding W P, Meitzner G D, Iglesia E. The Effects of Silanation of External Acid Sites on the Structure and Catalytic Behavior of Mo/H-ZSM5 [J]. Journal of Catalysis.2002,206(1):14-22.
    [87]Su L L, Liu L, Zhuang J Q, et al. Creating mesopores in ZSM-5 zeolite by alkali treatment:a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts [J]. Catalysis Letters.2003,91(3-4):155-167.
    [88]Shu Y Y, Ohnishi R, Ichikawa M. Pressurized dehydrocondensation of methane toward benzene and naphthalene on Mo/HZSM-5 catalyst:Optimization of reaction parameters and promotion by CO2 addition [J]. Journal of Catalysis.2002,206(1):134-142.
    [89]Sarioglan A, Erdem-Senatalar A, Savasci O T, et al. The effect of dealumination on the apparent and actual rates of aromatization of methane over MFI-supported molybdenum catalysts [J]. Journal of Catalysis.2004,226(1):210-214.
    [90]Naccache C M, Meriaudeau P, Sapaly G, et al. Assessment of the low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite:A C13 labelling investigation [J]. Journal of Catalysis.2002,205(1):217-220.
    [91]Liu S T, Wang L S, Dong Q, et al., Catalytic dehydroaromatization of methane with CO/CO2 towards benzene and naphthalene on bimetallic Mo/Zeolite catalysts:Bifunctional catalysis and dynamic mechanism, in Natural Gas Conversion V, A. Parmaliana, et al., Editors.1998. p.241-246.
    [92]Shu Y Y, Ma H T, Ohnishi R, et al. Highly stable performance of catalytic methane dehydrocondensation towards benzene on Mo/HZSM-5 by a periodic switching treatment with H2 and CO2 [J]. Chemical Communications.2003(1):86-87.
    [93]Ma H T, Ohnishi R, Ichikawa M. Highly stable performance of methane dehydroaromatization on Mo/HZSM-5 catalyst with a small amount of H2 addition into methane feed [J]. Catalysis Letters.2003, 89(1-2):143-146.
    [94]Yuan S D, Li J, Hao Z X, et al. The effect of oxygen on the aromatization of methane over the Mo/HZSM-5 catalyst [J]. Catalysis Letters.1999,63(1-2):73-77.
    [95]Li Y G, Su L L, Wang H X, et al. Combined single-pass conversion of methane via oxidative coupling and dehydroaromatization [J]. Catalysis Letters.2003,89(3-4):275-279.
    [96]Borry R W, Lu E C, Kim Y H, et al., Non-oxidative catalytic conversion of methane with continuous hydrogen removal, in Natural Gas Conversion V, A. Parmaliana, et al., Editors.1998. p.403-410.
    [97]Li L, Borry R W, Iglesia E. Design and optimization of catalysts and membrane reactors for the non-oxidative conversion of methane [J]. Chemical Engineering Science.2002,57(21):4595-4604.
    [98]Iliuta M C, Larachi F, Grandjean B P A, et al. Methane nonoxidative aromatization over Ru-Mo/HZSM-5 in a membrane catalytic reactor [J]. Industrial & Engineering Chemistry Research.2002, 41(10):2371-2378.
    [99]Kinage A K, Ohnishi R, Ichikawa M. Marked enhancement of the methane dehydrocondensation toward benzene using effective Pd catalytic membrane reactor with Mo/ZSM-5 [J]. Catalysis Letters.2003, 88(3-4):199-202.
    [100]Rival O, Grandjean B P A, Guy C, et al. Oxygen-free methane aromatization in a catalytic membrane reactor [J]. Industrial & Engineering Chemistry Research.2001,40(10):2212-2219.
    [101]储伟.催化剂工程[M].成都:四川大学出版社.2006:221.
    [102]布亚诺夫P A.催化剂生产科学原理[M].北京:中国石化出版社.1991,8:42-67.
    [103]史泰尔斯A B.催化剂载体与负载型催化剂[M].北京:中国石化出版社.1992(3):263-280.
    [104]余海清.苯与丙烯烷基化MCM-22分子筛催化剂的成型研究[D].北京:北京化工大学.2008.
    [105]张高良.工业催化剂的生产[M].上海:上海科学技术出版社.1988:50-71.
    [106]赵光,邓启刚.工业催化基础[M].哈尔滨:哈尔滨工程大学出版社.249-288.
    [107]赵九生,时其昌,马福善,et al.催化剂生产原理[M].北京:科学出版社.1986:209-233.
    [108]朱洪法.催化剂成型[M].北京:中国石化出版社.1992:1-10.
    [109]张继光.催化剂制备过程技术[M].北京:中国石化出版社.2004:185-255.
    [110]李大东,史建文,石亚华.催化剂挤出成型技术进展[J].石油化工.1987,16(2):127-133.
    [111]Ertl G, Knozinger H, Schuth F, et al. Handbook of Heterogeneous Catalysis [M]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.2009,1:676-695.
    [112]王尚弟,孙俊全.催化剂工程导论(第二版)[M].北京:化学工业出版社.2006:54-61.
    [113]De Jong K P. Synthesis of Solid Catalysts [M]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2009:173-187.
    [114]Shen W J, Xu Y D, Bao X H, et al一种双柱双检测器气相色谱的数据处理方法03107379.4[P].2004.
    [115]Guczi L. Low-Temperature Coupling of Methane [J]. Catalysis Reviews.1996,38:249.
    [116]Xu Y D, Lin L W. Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions [J]. Applied Catalysis A:General.1999,188(1-2):53-67.
    [117]Lunsford J H. Catalytic conversion of methane to more useful chemicals and fuels:a challenge for the 21st century [J]. Catalysis Today.2000,63(2-4):165-174.
    [118]Shu Y, Ichikawa M. Catalytic dehydrocondensation of methane towards benzene and naphthalene on transition metal supported zeolite catalysts:templating role of zeolite micropores and characterization of active metallic sites [J]. Catalysis Today.2001,71(1-2):55-67.
    [119]Goodman D W. Nonoxidative Activation of Methane [J]. Catalysis Reviews.2003,45:151.
    [120]Xu Y D, Bao X H, Lin L W. Direct conversion of methane under nonoxidative conditions [J]. Journal of Catalysis.2003,216(1-2):386-395.
    [121]Ismagilov Z R, Matus E V, Tsikoza L T. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen:achievements and perspectives [J]. Energy & Environmental Science. 2008,1(5):526-541.
    [122]Solymosi F, Bugyi L, Oszko A, et al. Generation and reactions of CH2 and C2H5 species on Mo2C/Mo(111) surface [J]. Journal of Catalysis.1999,185(1):160-169.
    [123]Ding W, Meitzner G D, Iglesia E. The Effects of Silanation of External Acid Sites on the Structure and Catalytic Behavior of Mo/H-ZSM5 Journal of Catalysis.2002,206(1):14-22.
    [124]Ovari L, Solymosi F. Determination of acidic centers on supported Mo2C catalysts [J]. Journal of Molecular Catalysis A:Chemical.2004,207(1):35-40.
    [125]Zhang W P, Ma D, Han X W, et al. Methane dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen:A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes [J]. Journal of Catalysis.1999,188(2):393-402.
    [126]Smieskov A, Hudec P, Kumar N, et al. Aromatization of methane on Mo modified zeolites:Influence of the surface and structural properties of the carriers [J]. Applied Catalysis A:General.2010,377(1-2): 83-91.
    [127]Sarioglan A, Erdem-Senatalar A, Savasci O T, et al. The effect of CaC2 on the activity of MR-supported molybdenum catalysts for the aromatization of methane [J]. Journal of Catalysis.2004,228(1):114-120.
    [128]王祥生,王学勤,郭新闻.超细颗粒五元环型沸石[P].中国1240193.2000.
    [129]Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylnaphthalene isomerization [J]. Zeolites.1996,17(4):334-339.
    [130]Katada N, Igi H, Kim J H, et al. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium [J]. Journal of Physical Chemistry B.1997,101(31):5969-5977.
    [131]Parry E P. An infrared study of pyridine adsorbed on acidic solids characterization of surface acidity [J]. Journal of Catalysis.1963,2(5):371-379.
    [132]Xie Z K, Chen Q L, Zhang C F, et al. Influence of citric acid treatment on the surface acid properties of zeolite beta Journal of Physical Chemistry B.2000,104(13):2853-2859.
    [133]Sarioglan A, Savasci O T, Erdem-Senatalar A, et al. The effect of support morphology on the activity of HZSM-5-supported molybdenum catalysts for the aromatization of methane [J]. Journal of Catalysis. 2007,246(1):35-39.
    [134]Williams C C, Ekerdt J G, Jehng J M, et al. A Raman and ultraviolet diffuse reflectance spectroscopic
    investigation of silica-supported molybdenum oxide [J]. The Journal of Physical Chemistry.1991,95(22): 8781-8791.
    [135]Williams C C, Ekerdt J G, Jehng J M, et al. A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide [J]. The Journal of Physical Chemistry.1991, 95(22):8791-8797.
    [136]Yang T J, Lunsford J H. Partial oxidation of methanol to formaldehyde over molybdenum oxide on silica [J]. Journal of Catalysis.1987,103(1):55-64.
    [137]Yamada M, Yasumaru J, Houalla M, et al. Distribution of molybdenum oxidation states in reduced molybdenum/alumina catalysts:correlation with benzene hydrogenation activity The Journal of Physical Chemistry.1991,95(18):7037-7042.
    [138]Guisnet M, Magnoux P, Martin D. [M]. Elsevier Science B. V.1997:1.
    [139]Ma H T, Kojima R, Kikuchi S, et al. Effective coke removal in methane to benzene (MTB) reaction on Mo/HZSM-5 catalyst by H2 and H2O co-addition to methane [J]. Catalysis Letters.2005,104(1-2): 63-66.
    [140]Honda K, Chen X, Zhang Z G. Preparation of highly active binder-added MoO3/HZSM-5 catalyst for the non-oxidative dehydroaromatization of methane [J]. Applied Catalysis A:General.2008,351(1): 122-130.
    [141]Gu L, Ma D, Yao S, et al. Template-Synthesized Porous Silicon Carbide as an Effective Host for Zeolite Catalysts [J]. Chemistry-A European Journal.2009,15(48):13449-13455.
    [142]Choudhary V R, Devadas P, Kinage A K, et al. Influence of binder on the acidity and performance of H-Gallosilicate (MFI) zeolite in propane aromatization [J]. Applied Catalysis A:General.1997,162(1-2): 223-233.
    [143]De Lucas A, Sanchez P, Funez A, et al. Influence of clay binder on the liquid phase hydroisomerization of n-octane over palladium-containing zeolite catalysts [J]. Journal of Molecular Catalysis A:Chemical. 2006,259(1-2):259-266.
    [144]Zhang Y W, Zhou Y M, Qiu A D, et al. Effect of alumina binder on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation [J]. Industrial & Engineering Chemistry Research. 2006,45(7):2213-2219.
    [145]Shihabi D S, Garwood W E, Chu P, et al. Aluminum insertion into high-silica zeolite frameworks:Ⅱ. Binder activation of high-silica ZSM-5 [J]. Journal of Catalysis.1985,93(2):471-474.
    [146]Song Y, Sun C, Shen W, et al. Hydrothermal post-synthesis of HZSM-5 zeolite to enhance the coke-resistance of Mo/HZSM-5 catalyst for methane dehydroaromatization reaction:Reconstruction of pore structure and modification of acidity [J]. Applied Catalysis A:General.2007,317(2):266-274.
    [147]Wagner C. The Mechanism of the Decomposition of Nitrous Oxide on Zinc Oxide as Catalyst [J]. J. Chem.Phys..1950,18(1):69.
    [148]Liu H M, Li Y, Shen W J, et al. A new way to obtain Mo/HZSM-5 catalyst with high activity and selectivity for methane dehydro-aromatization [J]. Chinese Journal of Catalysis.2004,25(3):175-176
    [149]Xiong Z T, Zhang H B, Lin G D, et al. Study of W/HZSM-5-based catalysts for dehydroaromatizationof CH4 in absence of O2.Ⅱ. Action of promoters Zn and Li [J]. Catalysis Letters.2001,74(3-4):233-239.
    [150]Zhang L,Gao J,Hu J, et al. Lanthanum Oxides-Improved Catalytic Performance of ZSM-5 in Toluene Alkylation with Methanol [J]. Catalysis Letters.2009,130(3):355-361.
    [151]袁志庆,许中强,谢在库HZSM-5孔道中的La物种及其定位研究[C].第十三届全国催化学术会议论文集,兰州.2006:689.
    [152]Ke J A, Wang I. Elucidation of the role of potassium fluoride in the chemical and physical nature of ZSM-5 zeolite [J]. Materials Chemistry and Physics.2001,68(1-3):157-165.
    [153]Lee M H, Cheng C F, Heine V, et al. Distribution of tetrahedral and octahedral A1 sites in gamma alumina [J]. Chemical Physics Letters.1997,265(6):673-676.
    [154]Garbowski E, Guenin M, Marion M C, et al. Catalytic properties and surface states of cobalt-containing oxidation catalysts [J]. Applied Catalysis.1990,64:209-224.
    [155]Zhang W P, Han X W, Liu X C, et al. Xenon probe for detecting the microporous structure of nanosized HZSM-5 zeolite [J]. Chemical Communications.2001(03):293-294.
    [156]Hidalgo C V, Itoh H, Hattori T, et al. Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia [J]. Journal of Catalysis.1984,85(2):362-369.
    [157]Liu H, Zhou Y M, Zhang Y W, et al. Influence of Binder on the Catalytic Performance of PtSnNa/ZSM-5 Catalyst, for Propane Dehydrogenation [J]. Industrial & Engineering Chemistry Research.2008,47(21): 8142-8147.
    [158]Berndt H, Lietz G, Volter J. Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics Ⅱ. Nature of the active sites and their activation [J]. Applied Catalysis A:General.1996,146(2):365-379.
    [159]Wakui K, Satoh K, Sawada G, et al. Cracking of n-butane over alkaline earth-containing HZSM-5 catalysts [J]. Catalysis Letters.2002,84(3-4):259-264.
    [160]Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane using double-stage reaction [J]. Applied Catalysis A:General.2002,230(1-2):195-202.
    [161]Xiong G, Li C, Feng Z, et al. Surface Coordination Structure of Molybdate with Extremely Low Loading on y-Alumina Characterized by UV Resonance Raman Spectroscopy [J]. Journal of Catalysis.1999, 186(1):234-237.
    [162]Xiong G, Feng Z, Li J, et al. UV Resonance Raman Spectroscopic Studies on the Genesis of Highly Dispersed Surface Molybdate Species on Alumina [J]. The Journal of Physical Chemistry B.2000, 104(15):3581-3588.
    [163]郭锡坤,刘庆红,林绮纯.镧改性铜基铝铈交联蒙脱土的制备及其对丙烯选择性还原NO的催化性能[J].催化学报.2004,25(12):989-994.
    [164]Datta A K, Ha J W, Regalbuto J R. The controlled dispersion of silica supported MoO3-The role of ammonia [J]. Journal of Catalysis.1992,133(1):55-82.
    [165]Bourikas K, Hiemstra T, Van Riemsdijk W H. Adsorption of molybdate monomers and polymers on titania with a multisite approach [J]. Journal of Physical Chemistry B.2001,105(12):2393-2403.
    [166]刘红梅,申文杰,刘秀梅,等.分子筛的酸处理对Mo/HZSM-5催化甲烷无氧芳构化反应性能的影响[J].催化学报.2004,25(9):688-692.
    [167]陈涛.钛硅分子筛的成型、表征及催化丙烯环氧性能的研究[D].大连:大连理工大学.2000.
    [168]成卫国.丙烯环氧化钛硅分子筛制备、水热改性及反应过程的研究[D].大连:大连理工大学.2005.
    [169]Li G, Wang X S, Yan H S, et al. Epoxidation of propylene using supported titanium silicalite catalysts [J]. Applied Catalysis A:General.2002,236(1-2):1-7.
    [170]张雄福,王金渠,殷德宏,等.用喷涂晶种法合成ZSM-5沸石膜及其影响因素考察[J].催化学报.2000,21(5):451-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700