复杂曲面加工运动创成与加工区域研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,世界经济正以惊人的速度迅速发展,人们对各种产品的性能要求越来越高。随着科技的不断进步,具有复杂曲面特征的产品相继出现,并且大量地应用在航空航天、模具、工具等领域。因此复杂曲面已经成为近年来的研究热点。本文在国家重点基础研究发展计划(973计划)项目的支持下,以轴对称非球面和自由曲面为研究对象,分别对轴对称非球面加工机床运动创成、自由曲面加工机床运动创成以及抛物面和双曲面的加工范围开展研究工作,并进行了相关仿真实验来验证理论分析的正确性。
     采用解析法研究了轴对称非球面加工机床运动创成。从轴对称非球面构型特征出发,应用坐标变换方法,获得刀具和工件的数学描述,解析刀具与工件的位姿关系,建立刀具相对于工件的位姿矩阵,提出所需的运动单元,创成设计轴对称非球面加工机床运动功能方案,优化设计结果,并给出对应运动结构式的机床结构布局图。在满足刀具轴线始终保持铅垂方向的情况下,得到30种轴对称非球面加工机床运动构型;而在满足刀具轴线与工件切削点法线方向始终保持一致的情况下,得到18种轴对称非球面加工机床运动构型。
     采用解析法研究了自由曲面加工机床运动创成。根据自由曲面的特征,将其划分为八种基本型面,从八种基本型面构型出发,解析刀具与工件的位姿关系,建立刀具相对于工件的位姿矩阵,提出所需的运动单元,创成设计各基本型面加工机床运动功能方案。针对包含多种基本型面的自由曲面,综合必要的运动方案,明确了自由曲面对应的运动构型,给出了自由曲面加工机床构型的选择原则及方法,提出并优化可能的机床结构布局。
     详细研究了面向机床构型的轴对称非球面加工范围。采用坐标变换方法,建立了加工轴对称非球面的数学模型。针对轴对称非球面中最典型的抛物面,分析了工件参数、刀具参数、刀具切削状态参数以及机床构型参数之间的函数关系,从而推导了刀具位于铅垂方向的位置、抛物面最大矢高、最大口径、摆角范围及刀杆伸出最小长度等关键技术指标的变化规律。提出了一种面向机床构型的轴对称非球面加工范围的典型算法,通过输入非球面基本结构参数和机床运动范围参数,在加工之前便能很快捷地判断出机床是否能够完成所选轴对称非球面的加工任务。仿真实验验证了该算法的有效性。
     详细分析了双曲面加工干涉区域。建立了加工双曲面的数学模型,通过对双曲面参数特征的分析,发现了双曲面上任意点的切线斜率极限值以及刀具轴线斜率极限值的变化规律,据此推导出双曲面参数、刀具参数与偏心率平方之间的函数关系,推演了加工双曲面不发生干涉的参数准则,同时明确了切削角与偏心率平方满足不同函数关系对应的干涉区域。当参数位于可能干涉的区域时,计算出保证加工不发生干涉所允许的双曲面最大口径和最大矢高,通过仿真实验,验证了理论分析的正确性,为加工双曲面的参数选取提供依据。
Nowadays, development speed of world economy is surprising. The performancerequirements of products are becoming higher and higher. With the scientific andtechnological progress, the products with complex surface have come into world,which were applied in the fields of aerospace, die, tool, etc.. Therefore, complexsurface becomes research focus in recent years. Under financial support of theprojects named National Basic Research Program of China, this thesis investigatesmotion generation for machining axisymmetric aspheric surface, motion generationfor machining free-form surface, dimensional range of machining parabolic surfaceand hyperboloidal surface. And the simulation experiment is accomplished, whichshows the validity of theoretical analysis.
     Based on analysis method, motion generation for machining axisymmetricaspheric surface is researched. Based on the configuration characteristic ofaxisymmetric aspheric surface, the mathematical description of tool and workpiece isobtained with coordinate transformation method. The relationship of position andorientation between tool and workpiece is analyzed. The matrix of positon andorientation between tool and workpiece is set up. The essential movement units areproposed. The movement function scheme of the machine tool for machiningaxisymmetric aspheric surface is generated. The results of design are optimized andthe structural configurations of the machine tool are obtained according to theexpression of movement structure. As the rotational axis of the tool is always vertical,30optimized structural configurations are obtained. And as the rotational axis of thetool coincides with the normal at cutting point of workpiece,18optimized structuralconfigurations are obtained.
     Based on analysis method, motion generation for machining free-form surface isresearched. Free-form surface is divided into eight basic surfaces by differentcurvature. Based on the configuration characteristic of eight basic surfaces, therelationship of position and orientation between tool and workpiece surface isanalyzed. The matrix of position and orientation between tool and workpiece surfaceis set up. The essential movement units are proposed. The motion schemes of themachine tool for machining eight basic surfaces are generated. The motion schemesare synthetized for machining free-form surface with multiple basic surfaces. Thebasic modules and the necessary motions for generating free-form surface are clarified. Selection principle and method of motion configuration for machining free-formsurface is presented. And the possible structural configurations of the machine tool areproposed and optimized.
     The dimensional range of machining axisymmetric aspheric surface for machinetool is researched. Based on coordinate transformation method, the mathematicalmodel for machining axisymmetric aspheric surface is set up. Parabolic surface isstudied. The functional relationships between workpiece parameter, tool parameter,cutting state parameter and machine tool performance parameter are analyzed. Thevariation laws of key technical indexes such as the position of tool locating in verticaldirection, the maximum vector height and aperture of parabolic surface, swing rangeof tool, the minimum arbor distance of tool locating tool carrier in lateral are deduced.An algorithm on dimensional range of machining axisymmetric aspheric surface formachine tool is presented. It can be estimated swiftly that whether the machine toolcould do it before machining axisymmetric aspheric surface by means of inputtingstructure parameters of axisymmetric aspheric surface and motion ranges of machinetool. The simulation experiment results show the validity of the algorithm.
     Interference area for machining hyperboloidal surface is discussed. Themathematical model for machining hyperboloidal surface is set up. Based on theanalysis of parameter characteristics of hyperboloidal surface, the variation law of theslope limit value of tangent at arbitrary point on hyperboloidal surface and the slopelimit value of the axis of tool is discovered. Based on the discovery, the functionalrelationship between parabola parameter, tool parameter and the square of eccentricityis obtained. The parameter criterion that there is no interference as machininghyperboloidal surface is deduced. The interference areas corresponding to differentfunctional relationships between cutting angle and the square of eccentricity areclarified. As the parameters are in the possible interference area, the maximum vectorheight and aperture of hyperboloidal surface are calculated. The simulationexperiment results showed the validity of theoretical analysis, which facilitates theparameter selection for machining hyperboloidal surface.
引文
[1]周志雄,周秦源,任莹晖.复杂曲面加工技术的研究现状与发展趋势[J].机械工程学报,2010,46(17):105-113.
    [2]樊成,张雷,袁俊等.基于粗糙集和模糊聚类的复杂曲面零件可制造型评价[J].农业机械学报,2013,44(10):253-259.
    [3]马骊溟,徐毅,李泽湘.基于旋量理论的复杂曲面定位算法[J].农业机械学报,2007,38(11):129-132.
    [4]周波,赵吉宾,刘伟军.复杂曲面五轴数控加工刀轴矢量优化方法研究[J].机械工程学报,2013,49(7):184-192.
    [5]高健,陈岳坪,邓海祥等.复杂曲面零件加工精度的原味检测误差补偿方法[J].机械工程学报,2013,49(19):133-143.
    [6]贾振元,王永青,王福吉等.高性能复杂曲面零件测量-再设计-数字加工一体化加工方法[J].机械工程学报,2013,49(19):126-132.
    [7]杨建华,张定华,张娟等.基于公差约束的复杂曲面宽行加工方法[J].机械工程学报,2013,49(3):130-136.
    [8]明加,朱才朝,冉险生.基于特征线的复杂曲面重构技术[J].农业机械学报,2008,39(6):179-183.
    [9]刘自成,舒发龙,张为民.整体叶盘叶片加工变形控制技术研究[J].航空制造技术,2011(9):88-90.
    [10]钟诗胜,杨晓钧,王知行.七轴并联机床加工汽轮机叶片技术及其工作空间干涉检查研究[J].组合机床与自动化加工技术,2005(6):62-64.
    [11]杨方飞,阎楚良,林洪义.五轴数控加工叶片无干涉刀位轨迹的计算[J].农业机械学报,2003,34(2):97-100.
    [12] H. Park. A solution for NURBS modeling in aspheric lens manufacture[J]. TheInternational Journal of Advanced Manufacturing Technology,2004,23:1-10.
    [13]林晓辉,郭隐彪,王振忠等.大尺寸轴对称非球面磨削精度建模和分析[J].机械工程学报,2013,49(17):65-72.
    [14]周旭光.非球面轨迹包络磨削加工机理研究[D].广州:广东工业大学,2013.
    [15] T. M. Lee, E. K. Lee, M. Y. Yang. Precise bi-arc curve fitting algorithm formachining an aspheric surface[J]. The International Journal of AdvancedManufacturing Technology,2007,31:1191-1197.
    [16]张学忱,陈锦昌,申艺杰.基于轴对称非球面子午线的步长不变式双圆弧插补算法[J].机械工程学报,2013,49(9):144-150.
    [17] Z. Q. Yin, Y. F. Dai, S. Y. Li, et al. Fabrication of off-axis aspheric surfacesusing a slow tool servo[J]. International Journal of Machine Tools&Manufacture,2011,51:404-410.
    [18] H. B. Cheng, Z. J. Feng, K. Cheng, et al. Design of a six-axis high precisionmachine tool and its application in machining aspherical optical mirrors[J].International Journal of Machine Tools&Manufacture,2005,45:1085-1094.
    [19]李锐钢,郑立功,张峰等.大口径高陡度离轴非球面精磨阶段的数控加工[J].光学精密工程,2007,15(5):633-639.
    [20]姚运萍,王素梅.基于VERICUT的虚拟机床建模与复杂曲面加工的研究[J].新技术新工艺,2010(1):37-39.
    [21]杨志鹏.螺杆精加工机床构型与误差分析研究[D].大庆:东北石油大学,2013.
    [22]周玲丰.机床结构静动力分析与典型部件构型设计[D].大连:大连理工大学,2011.
    [23]张永存,崔雷,周玲丰等.基于拓扑优化的机床床鞍创新构型设计[J].固体力学学报,2011,32(S1):335-342.
    [24]张广鹏,黄玉美,苏菊宁等.基于解析方法的机床运动创成[J].西安理工大学学报,1998,3(4):242-246.
    [25]张广鹏,黄玉美,刘永超等.机床运动功能方案的创成式设计方法[J].组合机床与自动化加工技术,1999,(2):38-41.
    [26]廖德岗,熊晓红.非圆等宽截型零件的车铣加工运动设计[J].制造技术与机床,2003,(10):40-41.
    [27]廖德岗,车晓毅,蔡悦华.异型柱面车铣组合加工机床运动功能创成研究[J].长沙电力学院学报(自然科学版),2005,20(2):89-92.
    [28] F. C. Chen. On the structural configuration synthesis and geometry ofmachining centres[C]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2001,215:641-652.
    [29] O. Remus Tutunea-Fatan, H. Y. Feng. Configuration analysis of five-axismachine tools using a generic kinematic model[J]. International Journal ofMachine Tools&Manufacture,2004,44:1235-1243.
    [30]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004.
    [31] X. Jiang, P. Scott and D. Whitehouse. Freeform Surface Characterisation–AFresh Strategy[J]. Annals of the CIRP,2007,56(1):553-556.
    [32]刘云珠.非球面车削加工装置设计及刀具轨迹规划[D].南京:南京农业大学,2012.
    [33]雷华.非球面铣磨机的设计及其数控加工轨迹算法模块的开发[D].南京:南京理工大学,2004.
    [34]王磊.非球面研抛机床关键部件结构设计及仿真分析[D].长春:长春工业大学,2012.
    [35] M. J. Chen, D. Li and S. Dong. Research on a large depth-to-diameter ratioultra-precision aspheric grinding system[J]. Journal of Materials ProcessingTechnology,2002,129:91-95.
    [36]周旭升.非球面复合加工机床结构设计与分析[D].北京:国防科学技术大学,2002.
    [37] F. J. Chen, S. H. Yin, H. Huang, et al. Profile error compensation inultra-precision grinding of aspheric surfaces with on-machine measurement[J].International Journal of Machine Tools&Manufacture,2010,50:480-486.
    [38]张效栋,房丰洲,程颖.自由曲面超精密车削加工路径优化设计[J].天津大学学报,2009,42(3):278-282.
    [39] X. J. Wu, Y. Kita, K. Ikoku. New polishing technology of free form surface byGC[J]. Journal of Materials Processing Technology,2007,187-188:81-84.
    [40]徐佳宁.环形刀具高速铣削自由曲面轨迹规划[D].长春:吉林大学,2009.
    [41]谢晋,阮兆武.光学自由曲面反射镜模芯的镜面成型磨削[J].光学精密工程,2007,15(3):344-349.
    [42]李荣彬,杜雪,张志辉.光学自由曲面的超精密加工技术及应用[J].制造技术与机床,2004(1):17-19.
    [43] D. Dragomatz, S. Mann. A classified bibliography of literature on NC millingpath generation[J]. Computer-Aided Design,1997,29(3):239-247.
    [44] M. Balasubramaniam, S. Ho, S. Sarma, et al. Generation of collision free5-axistool path using haptic surface[J]. Computer-Aided Design,2002,34:267-279.
    [45] T. J. Kim, S. Sarma. Toolpath generation along directions of maximumkinematic performance; a first cut at machine-optimal paths[J].Computer-Aided Design,2002,34:453-468.
    [46] Y. J. Tseng, Y. R. Sur. Machining of free-form solids using an octree volumedecomposition approach[J]. International Journal of Production Research,1999,37(1):49-72.
    [47] G. C. Loney, T. M. Ozsoy. Machining of free form surfaces[J]. Computer-AidedDesign,1987,19(2):85-90.
    [48] B. K. Choi, C. S. Jun. Ozsoy. Ball-end cutter interference avoidance in NCmachining of sculptured surfaces[J]. Computer-Aided Design,1989,21(6):371-378.
    [49] G. Elber, E. Cohen. Toolpath generation for freeform surface models[J].Computer-Aided Design,1994,26(6):490-496.
    [50] Y. Huang, J. H. Oliver. Non-constant parameter NC tool path generation onsculptured surfaces[J]. International Journal of Advanced ManufacturingTechnology,1994(9):281-290.
    [51] X. Zhang, K. Bernd, K. Klaus. An efficient method for solving the Signoriniproblem in the simulation of free-form surfaces produced by belt grinding[J].International Journal of Machine Tools&Manufacture,2005(45):641-648.
    [52] N. Fusaomi, K. Yukihiro, F. Yoshihiro, et al. Robotic sandign system for newdesigned furniture with free-formed surface[J]. Robotics andComputer-Integrated Manufacturing,2007(23):371-379.
    [53] J. M. Zhan, J. Zhao, S. X. Xu, et al. Study of the contact force infree-form-surfaces compliant EDM polishing by robot[J]. Journal of MaterialsProcessing Technology,2002(129):186-189.
    [54] D. C. H. Yang, J. J. Chuang, T. H. Oulee, et al. Boundary-conformed toolpathgeneration for trimmed free-form surfaces[J]. Computer-Aided Design,2003(35):127-139.
    [55] Y. K. Choi, A. Baneriee. Tool path generation and tolerance analysis forfree-form surfaces[J]. International Journal of Machine Tools&Manufacture,2007(47):689-696.
    [56] I. Lazoglu, C. Manav, Y. Murtezaoglu. Tool path optimization for free formsurface machining[J]. CIRP Annals–Manufacturing Technology,2009(58):101-104.
    [57] H. Tam, O. C. Lui, A. C. Mok. Robotic polishing of free-form surfaces usingscanning paths[J]. Journal of Materials Processing Technology,1999(95):191-200.
    [58] D. C. H. Yang, Z. Han. Interference detection and optimal tool selection in3-axis NC machining of free-form surfaces[J]. Computer-Aided Design,1999(31):303-315.
    [59] S. Ding, M. A. Mannan, A. N. Poo. Oriented bounding box and octree basedglobal interference detection in5-axis machining of free-form surfaces[J].Computer-Aided Design,2004(36):1281-1294.
    [60] C. J. Julien, G. Poulachon, E. Duc. New approach to5-axis flank milling offree-form surfaces:Computation of adapted tool shape[J]. Computer-AidedDesign,2009(41):918-929.
    [61] Q. Li, Y. Budong, L. Shuting. Comparing and combining off-line feedraterescheduling strategies in free-form surface machining with feedrateacceleration and deceleration[J]. Robotics and Computer-IntegratedManufacturing,2008(24):796-803.
    [62] C. C. Lo. CNC machine tool surface interpolator for ball-end milling offree-form surfaces[J]. International Journal of Machine Tools&Manufacture,2000(40):307-326.
    [63] E. J. Wei, M. C. Lin. Study on general analytical method for CNC machiningthe free-form surfaces[J]. Journal of Materials Processing Technology,2005(168):408-413.
    [64]杨辉.光学自由曲面的先进制造技术[C].提高全民科学素质、建设创新型国家——2006中国科协年会论文集(下册),2006,北京:86-93.
    [65]关朝亮,戴一帆,尹自强.自由曲面光学元件的慢刀伺服车削加工技术[J].激光与光电子学进展,2010,47(2):022202-1-022202-6.
    [66]闫家赟.复杂曲面五轴数控加工中干涉问题的研究[D].兰州:兰州理工大学,2006.
    [67]张和明,张玉云,熊光楞.复杂曲面五坐标数控加工干涉检查及刀位修正[J].清华大学学报(自然科学版),1998,38(2):67-70.
    [68]乐英,韩庆瑶,贾军.复杂曲面数控加工刀具轨迹的生成技术[J].机床与液压,2008,36(6):25-27.
    [69]彭芳瑜,周云飞,周济.复杂曲面的无干涉刀位轨迹生成[J].华中科技大学学报(自然科学版),2002,30(2):1-4.
    [70]杜娟,闫献国,田锡天.复杂曲面五轴加工局部干涉处理技术研究[J].图学学报,2012,33(1):113-121.
    [71]虞启凯,徐永军,蔡华.复杂曲面加工干涉避免及轨迹的规划[J].工具技术,2009,43(2):68-70.
    [72]曾志迎,贾育秦,袁金鹏等.复杂曲面的五轴加工无干涉刀具路径生成技术研究[J].组合机床与自动化加工技术,2012,(10):5-9.
    [73]李万军.基于分形中Hilbert曲线的复杂曲面加工刀具规划算法研究[D].南京:南京航空航天大学,2011.
    [74] Y. J. Lin, T. S. Lee. An adaptive tool path generation algorithm for precisionsurface machining[J]. Computer-Aided Design,1999(31):237-247.
    [75]谢叻,周儒荣,阮雪榆.自由曲面参数线加工算法[J].模具技术,2001(1):62-65.
    [76]王水来,周云飞,阮雪榆.曲面沿参数线加工的实时轨迹生成[J].机械工业自动化,1997,19(3):29-31.
    [77]吴福忠,柯映林.组合曲面参数线五坐标加工刀具轨迹的计算[J].计算机辅助设计与图形学报,2003,15(10):1247-1252.
    [78]周云飞,李国其.CNC曲面直接插补算法和系统[J].华中理工大学学报,1993,21(4):7-12.
    [79] S. M. Stanislav. Optimization and correction of the tool path of the five-axismilling machine[J]. Mathemathics and Computers in Simulation,2007,75(5):210-230.
    [80] J. P. Duncan, S. G. Mair. The anti-interference features of polyhedralmachining[M]. McPherson: Advances in Computer-Aided Manufacturing,1977.
    [81]杨建中.复杂多曲面数控加工刀具轨迹生成方法研究[D].武汉:华中科技大学,2006.
    [82] J. S. Hwang, T. C. Chang. Three-axis machining of compound surfaces usingflat and filleted endmills[J]. Computer-Aided Design,1998,30(8):641-647.
    [83] A. Hansen, F. Arbab. Fixed-axis tool positioning with built-in globalinterference checking for NC path generation[J]. IEEE Journal of Robotics andAutomation,1988,4(6):610-621.
    [84]陈文亮,曾建江,李卫国等.复杂曲面刀具轨迹干涉的消除算法[J].东南大学学报,2000,30(6):44-46.
    [85]刘磊,周艳红,周云飞.基于仿形测量数据的曾切法数控加工[J].华中理工大学学报,1999,27(2):10-12.
    [86]徐后强,罗宏志.一种三轴曲面NC加工干涉检查的新方法[J].华中科技大学学报,2001,29(3):70-72.
    [87]廖文和,刘状,周儒荣.裁剪曲面的三轴铣削加工刀具轨迹的干涉处理[J].南京航空航天大学学报,1996,28(6):818-824.
    [88]应维云,周来水,周儒荣.曲面离散法数控加工干涉处理[J].机械工艺师,1998(10):12-13.
    [89]谢叻,周儒荣,阮雪榆.裁剪NURBS曲面数控加工刀轨干涉处理[J].中国机械工程,2001,12(10):1129-1132.
    [90]孙克豪,陈文亮,乔新.用任意空间曲线控制的复杂组合曲面数控加工算法研究[J].南京航空航天大学学报,1998,30(3):248-253.
    [91]陈涛,陈刚,汤进等.组合曲面NC加工刀具轨迹的生成[J].应用科学学报,2001,19(1):62-65.
    [92]倪炎榕,马登哲.圆环面刀具五坐标加工复杂曲面优化刀位算法[J].机械工程学报,2001,37(2):87-91.
    [93]吴光琳,倪其民,李从心等.曲面实时插补无干涉刀轨的生成方法[J].机械工程学报,2001,37(5):93-96.
    [94]吴光琳,林建平,李从心等.参数曲面的快速实时插补[J].机械制造,2002,40(1):33-35.
    [95]刘壮,程筱胜,廖文和.裁剪NURBS组合曲面的数控加工算法研究[J].南京航空航天大学学报,1997,29(3):257-261.
    [96]周凯,陆启建.自由曲面数控加工的直接插补控制方法[J].组合机床与自动化加工技术,1998(5):7-10.
    [97]单岩,金涛,谭建荣.基于MODM模型的自由曲面NC加工刀位计算[J].中国机械工程,2002,13(17):1445-1449.
    [98]徐啸峰,周儒荣,周来水.基于实体的三轴数控精加工研究[J].南京航空航天大学学报,2001,33(6):550-554.
    [99]谢叻,胡建华,周来水等.裁剪NURBS组合曲面精加工方法[J].中国机械工程,1999,10(7):742-745.
    [100]李际军,柯映林,程耀东.基于复合三角Bezier曲面/平面交线的裁剪[J].中国机械工程,1999,10(7):765-769.
    [101] S. C. Park, B. K. Choi. Tool-path planning for direction-parallel area milling[J].Computer-Aided Design,2000,32(1):17-25.
    [102] Y. S. Lee, B. Koc. Ellipse-offset approach and inclined zig-zag methodformulti-axis roughing of ruled surface pockets[J]. Computer-Aided Design,1998,30(12):957-971.
    [103] S. Marshall, J. G. Griffiths. A new cutter-path topology for milling machines[J].Computer-Aided Design,1994,26(3):204-214.
    [104] A. C. Lin, H. T. Liu. Automatic generation of NC cutter path from massive datapoints[J]. Computer-Aided Design,1998,30(1):77-90.
    [105] C. Lartigue, F. Thiebaut, T. Maekawa. CNC tool path in terms of B-splinecurves[J]. Computer-Aided Design,2001,33(4):307-319.
    [106] S. E. Sarma. The crossing function and its application to zig-zag tool paths[J].Computer-Aided Design,2000,31(4):881-890.
    [107] B. K. Choi, C. S. Lee, J. S. Hwang, et al. Compound surface modeling andmachining[J]. Computer-Aided Design,1998,20(3):127-136.
    [108] J. J. Cox, Y. Takezaki, H. R. P. Ferguson, et al. Space-filling curves in tool-pathapplications[J]. Computer-Aided Design,1994,26(3):215-224.
    [109] J. Yang, H. Bin, X. Zhang. Fractal scanning path generation and control systemfor selective laser sintering(SLS)[J]. International Journal of Machine Tools&Manufacture,2003,43:293-300.
    [110]张大卫,袁大春,杨志永.基于填充曲线刀具路径的数控铣削过程物理仿真[J].中国机械工程,2001,12(4):379-383.
    [111] J. G. Griffiths. Toolpath based on Hilbert’s curve[J]. Computer-Aided Design,1994,26(11):839-844.
    [112]张文博.基于填充曲线的曲面数控刀具轨迹自动生成算法研究[D].长春:长春理工大学,2006.
    [113] C. Z. Chen, Y. S. Juang, W. Z. Lin. Generation of fractal toolpaths for irregularshapes of surface finishing areas[J]. Journal of Materials ProcessingTechnology,2002,127(2):146-150.
    [114] B. H. Kim, B. K. Choi. Guide surface based tool path generation in3-axismilling: an extension of the guide plane method[J]. Computer-Aided Design,2000,32(3):191-199.
    [115] S. Takafumi, T. Tokiichiro. NC machining with G-buffer Method[J]. ComputerGraphics,1991,25(4):207-216.
    [116] K. Morishige, Y. Takeuchi, K. Kase. Tool path generation using C-space for5-axis control machining[J]. Transactions of the ASME,1999,121(1):144-149.
    [117] C. J. Chiou, Y. S. Lee. A machining potential field approach to tool pathgeneration for multi-axis sculptured surface machining[J]. Computer-AidedDesign,2002,34(5):357-371.
    [118] C. C. Lo. Efficient cutter-path planning for five-axis surface machining with aflat-end cutter[J]. Computer-Aided Design,1999,31(9):557-566.
    [119]王太勇,张志强,王涛等.复杂参数曲面高精度刀具轨迹规划算法[J].机械工程学报,2007,43(12):109-114.
    [120]吴福忠,华小洋,连晋毅.测量点数据等残留高度刀具路径规划[J].计算机辅助设计与图形学学报,2007,19(12):1618-1623.
    [121]吴福忠.基于包络面构建的等残留高度刀具路径规划[J].农业机械学报,2009,40(1):217-221.
    [122] R. Sarma, D. Dutta. An integrated system for NC machining of multi-patchsurfaces[J]. Computer-Aided Design,1997,29(11):741-749.
    [123]闫兵,刘碧波,邓志云等.基于Voronoi图理论的自由便捷型腔加工路径规划[J].计算机辅助设计与图形学学报,1999,11(1):66-69.
    [124]李琼砚,陆际联.平头铣刀加工曲面的无干涉路径规划[J].机械工程学报,1998,34(1):75-80.
    [125]张力,张云海,邓稼噙.环切区域加工分步式刀具轨迹生成算法研究[J].计算机辅助设计与图形学学报,1999,11(6):500-503.
    [126]张云庆.非球面光学加工——日益增长的需求和面临的工艺挑战[J].光机电信息,2005(11):14-21.
    [127]陈钦芳,徐昌杰.轴对称非球面透镜光轴共轴度的测量研究[J].应用光学,2008,29(6):870-873.
    [128]王洪祥,宋兴永,张龙江.非球面超精密加工机床的发展状况[J].机械工程师,2005(5):14-15.
    [129]王洪臣,王大宇.法线等距离线法加工轴对称非球面光学零件几何模型研究[J].机械制造,2010,48(5):28-30.
    [130]张立敏,吴道峰.刀具摆动法加工轴对称非球面光学零件新技术的研究[J].机械设计与制造,2010(6):238-240.
    [131] M. Saeki, T. Kuriyagawa, J. S. Lee, et al. Machining of aspherical opto-deviceutilizing parallel grinding method[C]. ASPE Annual,2001, USA:433-436.
    [132] W. K. Chen, T. Kuriyagawa, H. Huang, et al. Machining of micro asphericalmould inserts[J]. Precision Engineering,2005,29(3):315-323.
    [133] T. Kuriyagawa, M. S. S. Zahmaty, K. Syoji. A new grinding method foraspheric ceramic mirrors[J]. Journal of Materials Processing Technology,1996,62(4):387-392.
    [134] J. J. Ye, J. Guo, Y. B. Guo. Research on path planning and data processingsystem for high-precise aspheric measurement[C]. Proc. of SPIE,2007,6723:67235R-1-67235R-6.
    [135] M. Xiao, S. Jujo, S. Takahashi, et al. Nanometer profile measurement of largeaspheric optical surface by scanning deflectometry with rotatabledevices:Uncertainty propagation analysis and experiments[J]. PrecisionEngineering,2012,36(1):91-96.
    [136]蔡自兴.机器人学(第二版)[M].北京:清华大学出版社,2009.
    [137]李荣彬,张志辉,杜雪等.自由曲面光学元件的设计、加工及面形测量的集成制造技术[J].机械工程学报,2010,46(11):137-148.
    [138]靳辉.基于RBF混合神经网络的自由曲面特征重构的研究[D].哈尔滨:哈尔滨理工大学,2008.
    [139]张凤莲.基于投影、法失和主曲率的自由曲面造型[D].西安:西北工业大学,2003.
    [140]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700