软土流变固结理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流变性是软土的重要特性之一。历经60余年的发展,软土流变固结理论已得到很大的提升,但关于理论的进一步完善、流变模型及其参数的确定等问题仍然是困惑、棘手的未解难题。本文从理论和试验两个方面出发,对饱和软土的一维流变固结问题进行了较细致深入的研究,以完善软土流变固结理论,得到确定流变模型参数的可行方法,促进流变理论的实际应用。主要工作包括:
     1.基于四元件线性流变模型,求得了受单级加载、两步加载、循环荷载作用的软土一维流变固结解析解,并对各种荷载形式下的解进行了归纳总结。利用所得解分析了变荷载作用下的软土一维流变固结性状。结果表明,荷载形式和流变模型参数的变化均对固结过程有显著影响。
     2.基于三元件流变模型,利用叠加原理,得到了双面半透水边界下受常见循环荷载作用的软土一维流变固结解析解,并由此对具有双面半透水边界的软土层的一维流变固结性状进行了研究,分析了透水条件、模型参数对固结过程的不同影响。
     3.详细介绍了GDS先进固结试验系统和试验步骤,并利用该系统对萧山软土进行了常规分级加载固结与渗透试验、分级加载流变固结与渗透试验、压缩—回弹—再压缩流变固结与渗透试验,绘制了大量包括孔压消散曲线在内的试验结果曲线,并进行了分析总结。试验结果表明,萧山软粘土具有明显的非线性和流变特性,超固结比对次固结系数有显著的影响。
     4.提出了一种精度高、应用方便的根据试验数据确定线性流变模型参数的非线性拟合方法,编制了相应的自定义函数;利用该拟合方法对萧山软土一维流变固结试验数据进行了拟合,得到了三元件和四元件流变模型的参数,分析了其变化规律,并根据所得参数,结合解析理论对试样的沉降和孔压计算值与试验实测值进行了对比。
     5.确定了萧山软土的非线性流变模型参数,根据得到的参数利用现有的非线性流变固结半解析理论进行了计算,并将计算结果与实测值进行了对比。结果表明,理论计算所得的沉降和孔压与试验实测值基本相符;与线性流变模型相比,非线性流变模型更适合于萧山软土。
It is well known that rheological property is one of the important properties of soft soil. After the development of more than 60 years, the rheological consolidation theory have been greatly enhanced. However, about the further improvement of rheological consolidation theory, and rheological model of soft soil, as well as the determination of its parameters, etc., there are still many to be done. In order to make rheological consolidation theory more perfect, and find a feasible way for determining rheological parameters, as well as to promote the practical application of rheological consolidation theory, rheological consolidation of soft soil is studied carefully and in-depth from theoretically and experimental aspects in this dissertation. The main original work includes:1. Based on the linear rheological model of four units, analytical solutions are obtained and summarized for one-dimensional consolidation of soft soil under several types of time dependent loading, and the rheological consolidation behavior of soft soil is analyzed. It is indicated that the variations of both loading type and parameters of rheological model have great influence on the consolidation process.2. Based on the linear rheological model of three units, the analytical solution for one-dimensional consolidation of soft soil with two impeded boundaries under conventional cyclic loading is developed using integral method. The relevant rheological consolidation behavior of soil is investigated by using the solution and the different influences of impeded boundaries and rheological parameters on the consolidation are discussed3. GDS Advanced Consolidation Test System and the corresponding experimental steps are introduced in detail, and a variety sets of rheological consolidation tests with Xiao-shan soft soil are conducted on the test system. Many testing curves, including the ones for pore water pressure dissipation, are prepared to discover the behavior of rheological consoiidation of Xiao-shan sof soil. It is indicated that rheological characteristic of Xiao-shan soft soil is remarkable, and the over-consolidated ratio affects the coefficient of secondary consolidation significantly.4. A new convenient nonlinear curve fitting method with high accuracy is developed for determining rheological parameters from teat data. By using this method, the testing results of
    Xiao-shan soft soil is analyzed, and parameters of rheological model of three units and of four units are respectively obtained and the variation law of these parameters investigated. Comparisons are then made between the results obtained by the developed analytical consolidation theory using these parameters and the ones obtained directly from test.5. The parameters of non-linear rheological consolidation model are obtained for Xiao-shan soft soil based on the test data. Using these parameters, theoretical settlement and pore water pressure are obtained by using available semi-analytical method for nonlinear rheological consolidation analysis and compared with the ones from tests. It is shown that theoretical results are in fairly good agreements with that of tests, and that comparing to liner rheological model, non-linear rheological model is more suitable to Xiao-shan soft soil
引文
[1] 陈根媛(1984),多层地基一维固结计算方法与砂井地基计算的改进建议。水利水运科学研究,(2),1-13。
    [2] 陈宗基(1958a),固结及次时间效应的单向问题。土木工程学报,5(1),1-9。
    [3] 陈宗基(1958b),粘土层沉陷(由于固结和次时间效应)的二维问题。力学学报,2(1),1-9。
    [4] 陈宗基(1959),Structure mechanics of clay,中国科学,8 (1)。
    [5] 陈铁林,陈生水,周成,沈珠江.(2001).粘土的流变特性分析.岩士工程学报,23(3),279-283.
    [6] 陈晓平(2003).软土非线性弹粘性固结分析.第九届土力学及岩土工程学术会议论文集.清华大学出版社,北京,351-354.
    [7] 杜景灿,陆兆溱(1999),加权位移反演法确定岩土体结构面的力学参数。岩土工程学报,21 (2),209-212。
    [8] 高彦斌,朱合华,叶观宝,徐超(2004),饱和软粘土一维次压缩系数c_a值的试验研究。岩土工程学报,26 (4) 459-463。
    [9] 郭志平(1966),考虑到次固结的砂井地基设计。硕士学位论文,华东水利学院
    [10] 胡昌斌(2003),考虑土竖向波动效应的桩土纵向耦合振动理论。博士学位论文,浙江大学。
    [11] 黄文熙主编(1983),土的工程性质,水利水电出版社,北京。
    [12] 金问鲁(1980),两维粘土固结与次时间效应问题解。岩土工程学报,2 (2),26-33。
    [13] 栾茂田,钱令希(1992),成层饱和土体一维固结分析。岩土力学,13(4),45-56。
    [14] 门福录(1962),半无限粘滞弹性介质中的应力分布。力学学报,5 (2),117-126
    [15] 门福录(1963),粘土固结与次时间效应单维问题的近似解。水利学报,(1),44-54。
    [16] 蓝柳和(2002),成层软粘土地基非线性流变固结性状研究。博士学位论文,浙江大学。
    [17] 梁旭,蔡袁强,杜灶锋,潘晓东(2003),半透水边界的粘弹性土层在循环荷载作用下的一维固结。土木工程学报,36 (8),86-90。
    [18] 李冰河,谢康和等(1999a),变荷载下软粘土非线性一维固结半解析解。岩土工程学报,21 (3),288-293。
    [19] 李冰河,谢康和等(1999b),初始有效应力沿深度变化的非线性一维固结半解析解土木工程学报,32 (6),47-52。
    [20] 李作勤(1992),粘土固结变形的时间性。岩土工程学报,14 (6),60-67。
    [21] 刘世明(1988),软粘土的次固结变形特性研究。博士学位论文,浙江大学。
    [22] 栾茂田,钱令希(1992),层状饱和土体一维固结分析。岩土力学,13(4),45-56。
    [23] 马选荣,高效伟(1992),岩土工程中的反分析。力学与实践,17 (1),46-49。
    [24] 梅松华,李文秀,盛谦(2000),FLAC在岩土工程参数反演中的应用。矿冶工程,20(4),23-26。
    [25] 钱家欢(1986),流变理论在土力学方面的应用。第四届全国土力学及基础工程学术会议论文选集,中国建筑工业出版社。
    [26] 钱家欢,殷宗泽(1991),土工数值分析。北京:中国铁道出版社。
    [27] 史玉成(1990),上海地区软土流变特性理论分析与工程应用研究。博士学位论文,同济大学。
    [28] 孙钧,黄伟(1992)岩石力学参数弹塑性反演问题的优化方法。岩石力学与工程学报,11 (3),221-229。
    [29] 孙钧(1991),粘土流变力学特性及其工程应用研究。同济大学研究报告。
    [30] 汤斌,陈晓平,张伟(2003),考虑土体流变性状的固结理论发展综述。土工基础,17 (3),88-90。
    [31] 王贵君,孙文若(1996),硅藻岩蠕变特性研究。岩土工程学报,18 (6),55-60。
    [32] 王奎华,谢康和,曾国熙(1998),双面半透水边界的一维粘弹性固结理论。岩土工程学报,20 (2),34-36。
    [33] 王盛源(1964),粘弹性理论的推广及其在地基沉降计算中方面的应用。硕士学位论文,华东水利学院。
    [34] 王盛源(1981),变荷载下的粘弹性体一维固结问题。水利水运科学研究,(2),10-17。
    [35] 夏才初,孙钧(1996),蠕变试验中流变模型辨识及参数确定。同济大学学报,24(5),498-503。
    [36] 谢康和(1994),双层地基一维固结理论及应用。岩土工程学报,16 (5),24-35。
    [37] 谢康和,潘秋元(1995),变荷载下任意层地基一维固结理论。岩土工程学报,17(5),80-85。
    [38] 谢康和(1996),层状土一维固结形状分析。浙江大学学报(自然科学版),30(5),567-575。
    [39] 谢康和,李冰河(1999),半解析法在软粘土一维大应变固结问题中的应用,中国学术期刊文摘,5 (2),254-255。
    [40] 谢宁(1993),软土非线性流变的理论、试验和应用研究。博士学位论文,同济大学。
    [41] 谢宁,孙钧(1995),土体非线性流变的有限元解析及其工程应用。岩土工程学报,17 (4),95-99。
    [42] 谢宁,孙钧(1996),上海地区饱和软粘土流变特性。同济大学学报,24 (3),235-237。
    [43] 徐长节,蔡袁强,吴世明(1999),任意荷载下成层弹性地基的一维固结。土木工程学报,32 (4),57-63。
    [44] 徐志英(1964),考虑到土骨架蠕变的三向固结理论。水利学报,(4)。
    [45] 许宏发,钱七虎,吴华杰,陈伟(2003),确定软土流变模型参数的回归反演发。岩土工程学报,25(3)。
    [46] 叶卫平,方安平,于本方(2003),Origin7.0科技绘图及数据分析。机械工业出版社。
    [47] 殷宗泽,张海波,朱俊高,李国维(2003),软土的次固结。岩土工程学报,25 (5),521-526。
    [48] 于新豹,刘松玉,缪林昌(2003),软土次固结特性试验研究。岩土工程技术,第1期,34-38。
    [49] 殷建华,Jack I. Clark(1994),土与时间相关的一维应力-应变性状、粘弹塑性模型和固结分析。岩土力学,15 (3),65-80。
    [50] 殷建华,Jack I. Clark(1994),土与时间相关的一维应力-应变性状、粘弹塑性模型和固结分析(续)。岩土力学,15 (4),65-75。
    [51] 袁建新(1982),土的弹粘塑性关系。岩土工程学报,14 (4)。
    [52] 张超杰(2003),结构性软土一维弹粘塑性固结性状研究。博士学位论文,浙江大学。
    [53] 赵维炳(1987),广义Voigt模型模拟的饱和土体固结理论研究及其应用。博士学位论文,河海大学。
    [54] 赵维炳(1989),广义Voigt模型模拟的饱和土体一维固结理论及其应用。岩土工程学报,11 (5),78-85。
    [55] 詹美礼(1991),软土流变试验及隧道有限元分析。博士学位论文,河海大学。
    [56] 詹美礼,钱家欢,陈绪禄(1991),软土流变特性试验及流变模型。岩土工程学报,15 (3),54-62。
    [57] 郑辉(2004),软粘土地基大应变非线性流变固结理论研究。博士学位论文,浙江大学。
    [58] 郑榕明,陆浩亮,孙钧(1996),软土工程中的非线性流变分析。岩土工程学报,18(5),1-13。
    [59] 周德培(1995),流变力学原理及其在岩土工程中毒应用。西南交通大学出版社。
    [60] 庄迎春(2005),软土非单调压缩固结试验与理论研究。博士学位论文,浙江大学。
    [61] 朱向荣(1993),软土预压流变特性研究,博士学位论文,浙江大学。
    [62] Abelev, M. Y. & Kubtski, V. L., et al. (1981), Investigation of soils creep, Proc. of the 10th ICSMFE, 1, 523-526. Stockholm.
    [63] Aboshi, H. (1973), An experimental investigation on the similitude in the consolidation of a soft clay including the secondary creep settlement, Proc. of the 8th ICSMFE, 4, 88-93.
    [64] Adams (1965), The engineering behavior of a Canadian muskey. Proc. of the 6th ICSMFE, 1, 3-7.
    [65] Baligh MM, Levadoux JN. Consolidation theory of cyclic loading. Journal of Geotechnical Engineering Division ASCE 1978; 104(GT4):415-431.
    [66] Barden, L. (1965), Consolidation of clay with non-linear viscosity. J. of Geotechnique, 15(4), 345-362.
    [67] Barden, L. (1968), Primary and secondary consolidation of clay and peat J of Geotechnique, 18(4), 345-362.
    [68] Barden, L. (1969), Time dependent deformation of normally consolidated clays and peats, ASCE, 95(SM1), 1-31.
    [69] Barden, L. & Berry, P. L. (1969), Discussion of paper by Wu, Resendiz. & Neukirchner ASCE, 93(SM5), 340-344.
    [70] Berre, T. & Iversen, K. (1972), Oedemeter tests with different specimen heights on a clay exhibiting large secondary compression. J. of Geotechnique, 22(1), 53-70.
    [71] Berry, P. L. & Poskitt, T. J. (1972), The consolidation of peat. Geotechnique, 22(1), 27-52
    [72] Berry, P. L., Wilkinson, W. B. (1969), The radial consolidation of clay soils. Geotechnique, 19(2), 253-284.
    [73] Bishop, A. W. & Lovebury, H. T. (1969), Creep characteristics of two undisturbed clays, Proc. of the 7th ICSMFE, 1, 29-37. Mexico City.
    [74] Bjerrum, L. (1967), Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings, J. of Geotechnique, 17(2), 81-118.
    [75] Buisman, A. S. K. (1936), Results of long duration settlement tests. Proc. of the 1st ICSMFE, 1, 103-107.
    [76] Chen JZ, Zhu, XR, Xie KH, Pan QY, Zeng GX. One dimensional consolidation of soft clay under trapezoidal cyclic loading. Proc. of the Second International Conference on Soft Soil Engineering. Nanjing, China, 27-30 May 1996:211-216.
    [77] Christie, I. F. (1965), Secondary compression effects during one-dimensional consolidation tests. Proc. of the 6th ICSMFE, 1, 198-202. Montreal.
    [78] Christie, I. F. & Tonks, P. M. (1985), Developments in the time lines theory of consolidation. Proc. of the 11th ICSMFE, 1/A/8, 423-426. San Francisco.
    [79] Cividini A. (1983), Parameter estimation of a static geotechnical model using a Bayes' approach. Int J Rock Mech Min Sci & Geomech Abstr, 20(5), 215-226.
    [80] Crawford, C. B. (1964), Interpretation of the consolidation test. ASCE, 90(SM5), 87-102.
    [81] Davis, E. H. & Raymond, G. P. (1965), A non-linear theory of consolidation. Geotechnique, 15(2), 161-173.
    [82] De Jong, G. D. J. (1968), Consolidation models consisting of an assembly of viscous elements on a cavity channel network. Geotechnique, 18(2), 195-228.
    [83] Duncan, J. M., Rajot, J. P. & Perrone, V. J. (1996), Coupled analysis of consolidation and secondary compression. Proc. of the 2nd Int. Conf. on Soft Engineering, 1, 3-27. Nanjing.
    [84] Esu, F. (1977), Creep Characteristics of overconsolidated jointed clay. Proc. of the 9th ICSMFE, 1, 93-100. Tokyo.
    [85] Eyring, H. (1936), Viscosity, plasticity, diffusion as examples of absolute reaction rates, J. Chem. Phys., 4, 283.
    [86] Favaretti M, Soranzo M. A simplified consolidation theory in cyclic loading conditions. Proc. of Int. Symposium on Compression and Consolidation of Clayey Soils. Japan, 1995; 1: 405-409.
    [87] Garlanger, J. E. (1972), The consolidation of soils exhibiting creep under constant effective stress. J. of Geotechnique, 22(1), 71-78.
    [88] Geuze, E. C. W. A. & Tan Tjong Kie. (1953), The Mechanical behavior of clays. Proc. of the 2nd international Congress on Rheology, Oxford. Geotechnique (1).
    [89] Gibson, R. E. & Lo, K. Y. (1961), A theory of consolidation for soils exhibiting secondary compression, Acta Polytechnica Scandinavia. 296: Chapter 10.
    [90] Graham, J., Crooks, J. H. A., & Bell, A. L. (1983), Time effects on the stress-strain behavior of natural soft clays. J. of Geotechnique, 33(3), 327-340.
    [91] Graham, J., & Lau, S. L. K. (1988), Influence of tress release disturbance, storage, and reconsolidation procedure on the shear behavior of reconstituted underwater clay J of Geotechnique, 38(2), 279-300.
    [92] Gray H. Simultanous consolidation of contiguous Layers of Unlike Compressible soil[J]. Transactions, ASCE, 1945, 111:1327~1356.
    [93] Hansen, B. (1969), A mathematical model for creep phenomena in clay. Proc. of the 7th ICSMFE, 12, Mexico.
    [94] Jamiolkowski, M., Ladd, C. C., Germain, J. T. & Lancetlotta, R. (1985), New developments in field and laboratory testing of soils. Proc. of the 11th ICSMFE, 1, 57-61.
    [95] Kabbaj, M., Tavenas, F., & Leroueil, S. (1988), In situ and laboratory stress-strain relationship. J, of Geotechnique, 38(1), 83-100.
    [96] Kavazanjian, E., et al. (1985), Time-dependent deformations in clay soils. Proc. of the 11th ICSMFE, 1/A/30, 535-538. San Francisco.
    [97] Koppejan, A. W. (1948), A formula combining the Terzaghi load compression relationship and the Buisman secular time effect. Proc. of the 2nd ICSMFE, 3, Rotterdam.
    [98] Kutter, B. L. & Sathialingarn, N. (1992), Elastic-viscoplastic modeling of the rate-dependent behavior of clays. J. of Geotechnique, 42(3), 427-441.
    [99] Lacerda, W. A. & Houston, W. N. (1973), Stress relaxation in soils, Proc. of the 8th ICSMFE, 1, 221-227. Moscow.
    [100] Ladd, C. C., Foott, R., Ishihara, K., Schlosser, F. & Poulos, H. J. (1977), Stress-deformation and strength characteristics. Proc. of the 9th ICSMFE, 2, State of the art repot, 421-494, Tokyo.
    [101] Lehane, B. M. & Jardine, R. J. (2003), Effects of long-term pre-loading on the performance of a footing on clay. Geotechnique 53, No.8, 689-695.
    [102] Leo, C. J. & Xie, K. H. (2001), An efficient solution of one-dimensional consolidation of layered soft soils with time effects. Proc. 10th Int. Conference on Computer Methods and Advances in Geomechanics. 2:1791-1794. Arizona: Tucson.
    [103] Leonards, G. A. (1977), Proc. of the 9th ICSMFE, 3, Panel discussion, 384-386, Tokyo.
    [104] Leonards, G. A., Ramiah B. K. (1960), Time Effects in the Consolidation of Clays. Symposium on Time Rate of Loading in Testing Soils, ASTM, Special Tech Pub No.254.
    [105] Leroueil, S., Kabbaj, M., Tavenas, F., & Bouchard, R. (1985), Stress-strain-strain rate relationfor the compressibility of sensitive natural clays. J. of Geotechnique, 35(2), 159-180.
    [106] Leroueil, S., Kabbaj, M., Tavenas, F., & Bouchard, R. (1986), Reply to discussion on stress-strain-strain rate relationfor the compressibility of sensitive natural days. J of Geotechnique, 36(2), 288-290.
    [107] Leroueil, S., Kabbaj, M., (1987), Discussion on settlement analysis of embankments on soft clays. ASCE, 113(GT9), 1067-1070.
    [108] Lo, K. Y. (1961), Secondary compression of clays. ASCE, 87(SM4), 61-87.
    [109] Lowe, J. (1974), New concepts in consolidation and settlement analysis. ASCE, 100(GT6), 571-612.
    [110] McDOWELL, G. R. (2003), Micromechanics of creep of granular materials. Geotechnique 53, No. 10,915-916.
    [111] Mesri, G.(1973), Coefficient of secondary compression. ASCE, 99(SM1), 123-137.
    [112] Mesri, G.(1990), Viscous-elastic-plastic modeling of 1-D time-dependent behavior of clays: Discussion. Canadian Geotechnical Journal. 27, 259-261.
    [113] Mesri, G. & Castro, A. (1987), Cα/Cc concept and kO during secondary compression. ASCE, 113(GT3), 230-247.
    [114] Mesri, G. & Choi, Y. K.(1979), Strain rate behavior of Saint-Jeant-Vianney clay: Discussion. Canadian Geotechnical Journal. 16, 831-834.
    [115] Mesri, G. & Choi, Y. K.(1984), Time effects on the stress-strain behavior of natural soft clays: Discussion. J. of Geotechnique, 34(3), 439-442.
    [116] Mesri, G. & Choi, Y. K. (1985a), Settlement analysis of embankments on soft clays. ASCE, 111(GT4), 441-464.
    [117] Mesri, G. & Choi, Y. K. (1985b), The uniqueness of the end-of-primary (eop) void ratio-effective stress relationship. Proc. of the 11thICSMFE, 2, 587-593.
    [118] Mesri, G. & Feng, T. W. (1986), Stress-strain-strain rate relation for the compressibility of sensitive natural clays: Discussion. Geotechnique, 36(2), 283-297.
    [119] Mesri, G. & Godlewski, P. M. (1977), Time and stress compressibility interrelationship. ASCE, 103(GT5), 417-430.
    [120] Mesri, G & Rokhsar, A. (1974), Theory of consolidation for clays. ASCE, 100(GT8), 889-904.
    [121] Murakami, Y. (1988), Secondary compression in the stage of primary consolidation. Soils and Foundations, 28(3), 169-174.
    [122] Murayama, S., Sekiguchi, H. & Ueda, T. (1974), A study of the stress-strain-time behavior of saturated clays based on a theory of nonlinear viscoelasticity. Soils and Foundations, 14(2), 19-33.
    [123] Murayama, S. & Shibata, T. (1961), Rheological properties of clays, Proc. of 5th ICSMFE, 269-274.
    [124] Murayama, S. & Shibata, T. (1964), Flow and stress relaxation of clays (International Union of Theoretical and Applied Mechanics). Symp. Rheol. Soil. Mech., Grenoble p. 99.
    [125] Newland, P. L. & Allely, B. H. (1960), A study of the consolidation characteristics of a clay.Geotechnique, 10(2), 62-47.
    [126] Olson RE. Consolidation under time-dependent loading. Journal of Geotechnical Engineering Division ASCE 1977; 103(GTl):55-60.
    [127] Poskitt, T. J. (1967), A note on the consolidation of clay with non-linear viscosity. Geotechnique, 17,284-289.
    [128] Poskitt, T. J., Birdsall, R. O. (1971), A theoretical and experimental investigation of mildly non-linear consolidation behavior in saturated soil. Canadian Geotechnical Journal 8(2) 182-216.
    [129] Raiche A. Pattern recognition approach to geophysical inversion using neural nets. Geophys J Int, 105(6), 209-212.
    [130] Rowe, P. W. & Barden, L. (1966), A new consolidation cell. Geotechnique, 16(2), 162-170
    [131] Shifftman R. L. Consolidation of soils under time dependent loading and varying permeability. Proceedings Hihgway 1958; Research 37:584-617.
    [132] Schiffman, R. L. & Stein, J. R. (1970), One-dimensional consolidation of layered systems. ASCE, 96(SM4), 1499-1504.
    [133] Schiffman, R. L. (1980), Finite and infinitesimal strain consolidation. ASCE, 106(GT2), 203-207.
    [134] Sekiguchi, H. & Toriihara, M. (1976), Theory of one-dimensional consolidation of clays with consideration of their rheological properties. Soils and Foundations, 16(1), 27-44
    [135] Sridharm & Chandrakaran, S. (1989), Discussion for secondary compression in the stage of primary consolidation. Soils and Foundations, 29(4), 137-141.
    [136] Tan TK. Secondary time effects and consolidation of clays. Chinese Journal of Civil Engineering 1957; 5(1): 1-9.
    [137] Taylor, D. W. (1940), Research on consolidation of clays. Serial 82. Massachusetts Massachusetts Institute of Technology, Dept. of Civil and Sanitary Engineering.
    [138] Taylor, D. W., Merchant, W. (1940), A theory of clay consolidation accounting for secondary compression. J. of Mathematics and Physics, 19(3), 167-185.
    [139] Terzaghi, K. (1923), Theoretical soil mechanics. New York.
    [140] Terzaghi, K. (1941), Undisturbed clay samples and undisturbed clays. J. Boston Soc Civ Engrs, 28(3), 211-231.
    [141] Wahls, H. E. (1962), Analysis of primary and secondary consolidation. ASCE. 88(SM6). 207-231.
    [142] Wilson NE, Elgohary MM. Consolidation of soils under cyclic loading. Canadian Geotechnical Journal 1974; 11(3):420-423.
    [143] Wu, T. H., Resendiz, D., Neukirchner, R. J. (1966), The analysis of consolidation by rate process theory. ASCE, 92(SM6), 229-248.
    [144] Xie, K. H., Guo, S., Li, B. H. & Zeng, G. X. (1997), A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading. Proc. of the 9th Int. Conf on Computer Methods and Advances in Geomechanics. 2, 1053-1058. Wuhan.
    [145] Xie, K. H. & Leo, C. J. (1999), An investigation into the nonlinear consolidation of layered soft soils. Research Report CEll, School of Civic Engineering and Environment, UWS, Nepean, Australia.
    [146] Xie, K. H., Li, B. H. & Li, Q. L. (1996), A nonlinear theory of consolidation under time-dependent loading. Proc. 2th ICSSE. Nanjing.
    [147] Xie, K. H. & Liu, X. W. (1995), A study on one dimensional consolidation of soils exhibiting rheological characteristics. Compression and Consolidation of Clayey Soils, Yoshikuni & Kusakabe (eds). 1, 385-388. Rotterdam: Balkema.
    [148] Xie, K. H., Wang, K. H. & Zeng, G. X. (1996), A study on 1-D consolidation of soils exhibiting rheological characteristics with impeded boundary. Proc. 2th ICSSE. 1, 357-362. Nanjing.
    [149] Yin, J. H. & Graham, J. (1989), Visco-elastic-plastie modeling of 1-D time-dependent behaviour of clays. Canadian Geotechnical Journal. 26(2), 199-209.
    [150] Yin, J. H. & Graham, J. (1990), Visco-elastic-plastic modeling of 1-D time-dependent behaviour of clays: Reply. Canadian Geotechnical Journal. 27(2), 262-265.
    [151] Yin, J. H. & Graham, J. (1994), Equivalent times and 1-D elastic visco-plastic modeling of time-dependent stress-strain behaviour of clays. Canadian Geotechnical Journal. 31 (1), 42-52.
    [152] Yin, J. H., Graham, J., Clark, J. I., Gao, L. (1994), Modeling unanticipated pore water pressures in soft clays. Canadian Geotechnical Journal. 31 (5), 773-778.
    [153] Yin, J. H. & Graham, J. (1999), Elastic visco-plastic modeling of the time-dependent stress-strain behavior of soils. Canadian Geotechnical Journal. 36(4), 736-745.
    [154] Yin, J. H. & Zhu, J. G. (1999), Elastic visco-plastic consolidation modeling of soft clay. Chinese Journal of Geotechnical engineering. 21(3), 360-365.
    [155] Zeevaert L.(1958), Consolidation of Mexico City Volcanic Clay. Conf. On Soils for Engrg. Purposes, ASTM, STP, No, 232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700