单兵武器协同仿真与系统优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以单兵综合作战系统武器分系统为研究对象,针对其研制过程中涉及多个学科领域知识的特点,从系统角度出发,运用协同仿真与多学科设计优化等现代设计理论与方法,对其展开研究。
     结合单兵武器系统的战术技术要求,从结构、弹道和动力学三个方面对单兵武器系统进行多学科分解,将其分解为榴弹结构、武器结构、内弹道、外弹道、终点弹道、武器自动机动力学、弹丸-身管耦合运动、人枪相互作用等八个学科,结合各学科领域的知识,建立了各单学科仿真分析模型;在此基础上,为从全局角度对单兵武器系统的整体性能进行研究,构建了单兵武器系统协同仿真与多学科设计优化框架。
     对多学科设计优化搜索策略展开研究,重点研究了遗传算法,为提高其优化效率,对遗传算法的并行性进行了研究,并对其交叉和变异算子进行了自适应改造,结合免疫学理论,在遗传算法中引入了免疫算子,形成了自适应并行免疫遗传算法。运用该算法对三个复杂多峰函数进行了优化求解,在保证收敛精度的情况下,大幅提高了收敛速度。
     根据单兵武器系统协同仿真框架,基于协同仿真理论与方法,建立了单兵武器系统全弹道协同仿真、弹道-武器协同仿真和人枪系统协同仿真三个模型。对各协同仿真模型进行了仿真研究与参数影响分析,将仿真结果与试验结果进行对比,验证了单兵武器系统各协同仿真模型的有效性及准确性。
     根据单兵武器系统多学科设计优化框架,针对单兵步榴合一武器发射的小口径榴弹,建立了包含榴弹结构、内弹道、外弹道、终点弹道和武器动力学五个学科的小口径榴弹多学科设计优化模型,分别以最大杀伤面积、弹丸最短飞行时间、杀伤威力与武器后坐力的综合性能为优化目标,对其进行了多学科设计优化研究,与原设计相比,优化设计后榴弹性能目标性能得到显著提高。对杀伤威力和武器后坐力综合性能进行优化设计时,分别采用了模拟退火算法和自适应并行免疫遗传算法,从优化结果上看,自适应并行免疫遗传算法寻优能力及寻优效率更强。
     建立了弹丸在膛内运动的弹丸-身管耦合运动参数化有限元仿真模型,验证了该模型的有效性和正确性;考虑到弹丸-身管耦合运动模型在进行优化求解时的计算效率,基于正交试验设计构建了弹丸-身管耦合运动的Kriging近似模型。建立了包含内弹道、身管质量、身管强度和弹丸-身管耦合运动四个学科的弹丸-身管耦合系统多学科设计优化模型,以身管质量最轻以及弹丸在膛内运动时期身管纵向振动角速度最小为优化目标,对其进行了优化研究,获得了弹丸-身管耦合系统的优化方案。
     针对武器发射时人枪间的相互作用,建立了包含武器结构、内弹道、外弹道和人枪相互作用的单兵人枪系统多学科设计优化模型,以武器质量最轻、弹丸飞行时间最短及人枪相互作用力最小为优化目标,分别对其进行了单目标和多目标的优化设计,与原设计相比,优化后单兵人枪系统的目标性能得到有效提高。对比单目标和多目标优化结果,多目标优化结果避免了因某个目标性能的优化而导致其它性能严重劣化的现象。
     开发了单兵武器协同仿真与系统优化设计软件平台,对单兵武器系统研制中涉及的各仿真与优化模型、支撑软件进行了集成和封装;基于网络与数据库技术,实现了各设计参数与模型的统一管理,以及各设计终端之间的分布式运行。该软件平台为单兵武器系统设计人员提供了实用、简便、高效、安全的设计支撑环境,提升了其建模、仿真与优化的能力。
The research and development process of the weapon subsystem which belongs to integrated individual solider combat system involves multiple disciplinary knowledge. In allusion to the characteristic, the individual weapon system is studied from the perspective of system, using the modern design theory and method of collaborative simulation and multidisciplinary design optimization(MDO).
     Combined with the tactical and technical requirements, and from the three aspects of structure, ballistics, dynamics, the individual weapon system is decomposed into eight disciplinary fields, which are grenade structure, weapon structure, interior ballistics, exterior ballistics, terminal ballistics, automatic mechanism dynamics, projectile-barrel dynamics and human-gun interaction. The single field simulation models are build according to their own knowledge. On this basis, in order to study the overall performance of the individual weapon system for the global perspective, the framework of collaborative simulation and MDO is build.
     The search strategy of MDO and especially the genetic algorithm(GA) is studied. In order to improve the optimization efficiency of GA, some improvement measures are taken, and the adaptive parallel immune genetic algorithm(APIGA) is proposed. The algorithm is parallelized and the crossover and mutation operator are adaptively changed during the optimization. Combined with the immunology theory, the immune operator is brought into the algorithm. With the APIGA, three complex multimodal function are optimized. The results show that the convergence rate is greatly improved under the condition of enough convergence precision.
     Based on the collaborative simulation framework of individual weapon system and the collaborative simulation theory and method, the simulation models of the whole trajectory, trajectory-weapon system and human-gun system are built. The simulation models are executed and the effects of design parameters are analyzed. The validity and accuracy of the collaborative simulation models are verified by comparing the simulation and experimental results.
     According to the MDO framework of individual weapon system, the optimization model of small caliber grenade which involves structure, interior ballistics, exterior ballistics, terminal ballistics and dynamics is set up. Separately aimed at the maximum lethal power, the minimum time of the grenade flying, the combination properties of lethal power and recoil force, the model is optimized and the target performances enhanced remarkably after the optimization compared to the original design. The simulated annealing algorithm and APIGA are used respectively when the combination properties of lethal power and recoil force is optimized. Judging from the optimization results, the optimization ability and efficiency of the APIGA is much better.
     To study the process of the projectile moving inner the barrel, the parametric dynamics finite element model of projectile-barrel is built, and it's validity and accuracy is verified. Considering the compute efficiency of the optimization which contains the finite element model, the Kriging approximation model of the projectile-barrel dynamics model is built based on the orthogonal designs. The MDO model of projectile-barrel coupling system which involves interiors ballistics, barrel mass, barrel strength and projectile-barrel dynamics model is set up. Aiming at the lightest mass and the minimum angular velocity of barrel vertical vibration, the model is optimized and the optimal scheme of the system is obtained.
     In allusion to the interaction of human and gun when the weapon is firing, the MDO model of human-gun system which involves weapon structure, interior ballistics, exterior ballistics and interaction of human-gun is build. Considering the minimum recoil force, the lightest mass and the shortest time of the bullet flying as the objectives, single objective and multi-objectives optimization are carried out. In comparison with the original design, the performance of the individual weapon system is improved efficiently after the optimization. Compared to the single objective optimization, the multi-objective optimization avoids the phenomenon that a single objective is optimized and the others are degraded seriously simultaneously.
     The collaborative simulation and MDO platform is developed. All the simulation&optimization models, and the supporting software are integrated and packaged in the platform. Based on the technique of network and database, the design parameters and the models are managed unified and the design terminals are distributed performed. The platform provides a practical, convenient, efficiency and safe design supporting environment, and it improves the modeling, simulation and optimization ability of the designers.
引文
[1]董跃农.轻武器装备第四次浪潮:士兵系统[M].北京:国防工业出版社,2006
    [2]B. S. Cadarette, Sawka, M. D. Quigley, J. M. McKay, et al. A Physiological Evaluation of the Soldier Integrated Protective Ensemble (SIPE) Clothing System[R]. Army Research INST of Environmental Medicine Natick MA, Feb.1993, AD A261443
    [3]J. A. Keefe, R. T. Mcintyre, V. E. Middleton. Modeling and Simulation of the Soldier as a System [R]. Army Natick Soldier Research Development and Engineering Center MA, Jun.2010,ADA522420
    [4]P. N. Benchoff, J. Strother, M. Tillman. The Enhanced, Integrated Soldier System on Janus (Army)[R]. Military Academy West Point NY Operations Research Center, Apr. 1993,ADA361418
    [5]N. L. Clifton, D. W. Copeland. The Land Warrior Soldier System- A Case Study for The Acquisition of Soldier System[R]. Naval Postgraduate School Monterey CA, Dec.2008, ADA493630
    [6]J. L. Dyer, J. D. Salvetti, A. W. Vaughan, et al. Reduced Exposure Firing with the Land Warrior System[R]. Northrop Grumman Mission Systems Columbus GA, May 2005, ADA435129
    [7]S. C. Livingston, J. T. Root, R. L. Mast, et al. Surrogates for Future Force Warrior (FFW) Training Research[R]. Northrop Grumman Mission Systems Monterey CA, Mar.2005, ADA433353
    [8]霍俊仪.20mm榴弹空中运动特性研究[D].南京:南京理工大学,2003
    [9]李峰,徐诚,王永娟.轻武器虚拟样机有效性研究[J].机械设计,2007.7,24(7):45~47
    [10]赵彦峻,骆宇飞,齐玉辉,徐诚.单兵自动武器建模与仿真分析[J].南京理工大学学报,2009.12,33(6):774~778
    [11]陈剑.单兵系统中生命参数检测技术的初步研究[D].第四军医大学,2005
    [12]李卿.单兵系统生命参数的测控平台设计[D].南京:南京理工大学,2009
    [13]王雅静.单兵系统生命参数检测技术的研究[D].南京:南京理工大学,2009
    [14]许论辉,许礼武,罗云.基于AMBE-2000的单兵语音通信终端设计[J].武器装备自动化,2005,24(4):22~23
    [15]金纯,齐岩松ZigBee在单兵作战系统中的应用[J].现代电子技术,2006.1,216:29~31
    [16]陈晓,董大勇,祖媛媛等.单兵装备系统人机工效仿真评价技术初步研究[J].防护装备技术研究,2009.12:12~15
    [17]王曙光,王瑞林.单兵综合作战系统的效能评价[J].火力与指挥控制,2007.2,32(2):51~54
    [18]王曙光,王瑞林.单兵综合作战系统综合性能评价的灰色方法[J].装备指挥技术学院学报,2006.2,17(1):18~22
    [19]闫培新,王少然.基于作战仿真的单兵综合装备作战效能评估方法[J].火力与指挥控制,2008.4,33(增刊):116~118
    [20]DoD. Acquisition of the Objective Individual Combat Weapon[R]. Office of the Ddeputy Inspector General for Auditing of the Department of Defense Arlington VA, Oct.2005, ADA471954
    [21]DoD. Acquisition:Acquisition of the Objective Individual Combat Weapon Increments II and III[R]. Office of the Ddeputy Inspector General for Auditing of the Department of Defense Arlington VA, May 2006, ADA472000
    [22]E. C. Webb. An Analysis of the Transition of the Objective Individual Combat Weapon From Advanced Technology Demonstration to Acquisition Program[R]. Naval Postgraduate School Monterey CA, Mar.2002, ADA403708
    [23]T. G. Harris. Interactive Simulation Training System for the Objective Individual Combat Weapon System[R]. Army War Coll Carlisle Barracks PA, Apr.2003, ADA415285
    [24]S. T. Jenkins, D. S. Lowrey. A Comparative Analysis of Current and Planned Small Arms Weapon Systems[R]. Naval Postgraduate School Monterey CA, Dec.2004, ADA429392
    [25]Dod. Airbursting Fuze Technology Used for the Objective Individual Combat Weapon and the Advanced Crew Served Weapon[R]. Office of the Deputy Inspector General for Auditing of the Department of Defense Arlington VA, Jun.2006, ADA472196
    [26]吴志亮.特种小型机电引信设计及关键技术研究[D].南京:南京理工大学,2010
    [27]徐万和,张越,吴志林.20mm空炸杀伤榴弹电子引信定距精度分析[J].南京理工大学学报,2003.12,27(6):661~664
    [28]杨阳.单兵20mm榴弹射击效力分析[D].南京:南京理工大学,2002
    [29]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].北京航空航天大学出版社,2008
    [30]周栋,王成波,姚念奎.基于虚拟样机技术的舰载机滑跃起飞斜板段仿真分析[J].飞机设计,2008.8,28(4):37-40
    [31]李合新.基于虚拟样机的空空导弹引战模型[J].弹箭与制导学报,2011.6,31(3):15~18
    [32]廖莎莎,吴成.机载导弹发射动力学建模与虚拟样机仿真[J].北京理工大学学报,2011.9,31(9):1013~1017
    [33]韩小平,赵富全,郝刚,周世海.基于虚拟样机技术的30mm自动炮动态特性仿真研究[J].火炮发射与控制学报,2012.3,1:18~21
    [34]郑鹏.基于虚拟样机技术的某舰炮自动机动力学仿真研究[D].南京:南京理工大学,2010
    [35]董雪花,王亚平,徐诚.某突击步枪自动机含间隙刚柔耦合建模与仿真分析[J].兵工学报,2007.9,28(9):1131~1137
    [36]刘宏,康小勇,陈明.虚拟样机技术在枪械维修中的应用研究[J].军械工程学院学报,2007.4,19(4):33~36
    [37]R. Courant. Variational Methods for the Solution of Problem of Equilibrium and Vibrations [J]. Bulletin of American Mathematical Society,1943,49:1-23
    [38]M. J. Turner, R. W. Clough, H. C. Martin, L. J. Topp. Stiffness and Deflection Analysis of Complex Structures [J]. Journal of the Aeronautical Sciences,1956,23:805-823
    [39]R. W. Clough. The Finite Element Method in Plane Stress Analysis[C]. Proc.2nd ASME Conference on Electronic Computation, Pittsburgh, Sept.1960:345-378
    [40]O. C. Zienkiewicz, Y. k. Cheung. The Finite Element Method in Structural and Continuum Mechanics[M]. London:McGraw-Hill,1967
    [41]J. T. Oden. Finite Element for Nonlinear Continua[M]. New York:McGraw-Hill,1972
    [42]郝秀平,张家越,薄玉成,徐健.基于ANSYS/LS-DYNA的击针撞击应力数值仿真[J].山西师范大学学报,2009.12,23(4):54-58
    [43]胡志刚,聂宏,徐诚,王亚平.考虑自动机移动的两类机枪动力学模型研究[J].兵工学报,2007.11,28(11):1293~1297
    [44]徐保成,崔青春,曾志银,鲁玉祥.基于LS-DYNA的火炮空投着陆过程仿真[J].火炮发射与控制学报,2011.6,2:35~38
    [45]樊黎霞,刘力力,刘庆东,董雪花.身管线膛精锻加工过程的数值分析[J].兵工学报,2009.8,30(8):1098~1102
    [46]查俊,丁成标,叶少勇等.基于ANSYS的某型高射机枪有限元分析[J].四川兵工学报,2011.3,32(3):39-40,55
    [47]杨斌.单一材质匀速运动弹丸挤进特性分析[D].南京:南京理工大学,2011
    [48]赵晓宁,何勇,张先锋.高速杆式弹侵彻有限厚靶板数值模拟[J].系统仿真学报,2010.2,22(2):340~343
    [49]吴永海,徐诚,陆昌龙,李峰.基于流固耦合的某速射火炮身管温度场仿真计算[J].兵工学报,2008.3,29(3):266~270
    [50]熊光楞,郭斌,陈晓波.协同仿真与虚拟样机技术[M].北京:清华大学出版社,2004
    [51]P. Fritzson, V. Engelson. Modelica-A Unifiied Object-Oriented Language for System Modeling and Simulation[C]. Proceedings of European Conference on Object-oriented Programming, Brussels, Jul.1998:67-90
    [52]D. V. Beek, J. E. Rooda. Multi-domain Modeling, Simulation, and Control[C]. Proc. of 4th International Conference on Automation of Mixed Processes, Dortmund,2000: 139-146
    [53]王祺.面向Modelica的多体系统笛卡尔方法建模[D].合肥:中国科技大学,2010
    [54]R. E. Grande, A. Boukerche. Dynamic Balancing of Communication and Computation Load for HLA-based Simulations on Large-scale Distributed Systems[J]. Journal of Parallel and Distributed Computing, Jan.2011,71(1):40-52.
    [55]刘源,孙兆伟,刘树学.小卫星星载电子系统协同仿真技术研究[J].系统仿真学报,2009.3,21(5):1332~1335
    [56]李群力,魏佳宁.协同仿真平台下鱼雷仿真模型设计与实现[J].火力与指挥控制,2007.7,32(7):77~79
    [57]岳英超,肖田元,范文慧,马成.面向高速动车组列车的协同仿真平台[J].系统仿真学报,2011.8,23(8):1681~1685
    [58]BMS. Co-Simulation Boosts Vehicle Design Efficiency at Ford[J]. Computer-Aided Engineering,1999,18(7):8
    [59]赖一楠.XX卫星热控百叶窗系统设计及虚拟样机协同仿真[D].哈尔滨:哈尔滨工业大学,2006
    [60]杜秀菊,董兆伟,王兴贵,张庆霞.基于接口的协同仿真在武器系统中的应用研究[J].系统仿真学报,2006.5,18(5):1371~1374
    [61]王振国,陈小前,罗文彩,张为华.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社,2006
    [62]J. P. Giesing, J. M. Barthelemy. A Summary of Industry MDO Application and Needs[C]. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimizaiton, St. Louis, Sept.1998:1-20
    [63]J. Sobieszczanski-Sobieski. A Linear Decomposition Method for Optimization Problem-Blueprint for Development[R]. Hampton, Virginia,1982:NASA-TM-83248
    [64]J. Sobieszczanski-Sobieski. Optimization by Decomposition:a Step from Hierarchic to Non-Hierarchic Systems[C].2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, Virginia, Sept.1988:51-78
    [65]J. Sobieszczanski-Sobieski. The Sensitivity of Complex, Internally Coupled Systems[R]. Hampton, Virginia,1988:NASA-TM-100537
    [66]AIAA Multidisciplinary Design Optimization Technical Committee. Current State of the Art on Multidisciplinary Design Optimization(MDO)[M]. New York:American Institute of Aeronautics & Astronautic,1991
    [67]J. E. Renaud, G. A. Gabriele. Sequential Global Approximation in Non-Hierarchic System Decomposition and Optimization[C].19th Design Automation Conference, Miami, Sept.1991
    [68]J. E. Renaud, G. A. Gabriele. Improved Coordination in Non-Hierarchic System Optimization[J]. AIAA Journal,1993,31(12):2730-2739
    [69]J. E. Renaud, G. A. Gabriele. Approximation in Non-Hierarchic System Optimization [J]. AIAA Journal, Jan.1994,32(1):1030-1039
    [70]R. S. Sellar, M. Stelmack, S.M. BAtill, J. E. Renaud. Response Surface Approximation for Discipline Coordination in Multidisciplinary Design Optimization[C].37th Structure Dynamics and Material Conference, Salt Lake, Apr.1996:1-11
    [71]C. L. Bloebaum, P. Hajela, J. Sobieszczanski-Sobieski. Non-Hierarchic System Decomposition in Structural Optimization[J]. Engineering Optimization,1992,19: 171-186
    [72]C. L. Bloebaum, P. Hajela, J. Sobieszczanski-Sobieski. Heuristic Decomposition for Non-Hierarchic System[C].32nd Structures, Structural Dynamics and Materials Conference, Salt Lake, Apr.1991:344-353
    [73]J. Kroo, S. Alts, J. Sobieszczanski-Sobieski. Multidisciplinary Optimization Methods for Aircraft Preliminary Desig[R].1994, AIAA-94-4325
    [74]R. Braun, J. Kroo, A. Moore. Use of the Collaborative Optimization Architecture for Launch Vehicle Design. Bellevue, WA, Sept.1996, AIAA-96-4018
    [75]I. P. Sobieski, V. M. Manning, I. M. Kroo. Response Surface Estimation and Refinement in Collaborative Optimization[R]. AIAA-98-4753
    [76]M. Z. Parviz, V V. Toropov, A. S. Wood. Collaborative Optimization Framework Based on the Interaction of Low-and-high-fidelity Models and the Moving Least Squares Method[C].47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, May 2006
    [77]杨维维,赵勇,陈小钱,姚雯.一种改进的协同优化过程研究[J].系统工程与电子技术,2007,29(9):1564~1567
    [78]J. Sobieszczanski-Sobieski, J. Agte, J. R. Moore. Bi-level Integrated System Synthesis(BLISS)[C].7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis,1998
    [79]R. D. Braun, H. S. Wright, M. A. Croom, Design of the ARES Mars Airplane and Mission Architecture[J]. Journal of Spacecraft and Rockets,2006,43(5):1026-1034
    [80]N. Durante, A. Dufour, V. Pain. Multidisciplinary Analysis and Optimization Approach for the Design of Expendable Launchers[C]. In:10th AIAA/ASSMO Multidisciplinary Analysis and Optimization Conference, Albany, Aug.2004
    [81]Philipp Geyer. Multidisciplinary Grammars Supporting Design Optimization of Buildings[J]. Res Eng Design,2008.18:197-216
    [82]N. Radovcich, D. Layton. The F-22 Structural Aeroelastic Design Process with MDO Examples[C]. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Sept.1998
    [83]J. Bennett, P. Fenyes, W. Haering. Issues in Industrial Multidisciplinary Optimization[C]. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, Sept.1998
    [84]谷良贤,龚春林.多学科设计优化方法比较[J].弹箭与制导学报,2005,25(1):60~62
    [85]余雄庆,姚卫星,薛飞等.关于多学科设计优化计算框架的探讨[J].机械科学与技术,2004.3,23(3):286~289
    [86]赵勇,吴先宇,陈小前,王振国.飞行器多学科集成设计环境及其关键技术[J].弹箭与制导学报,2006,252~255
    [87]余雄庆.多学科设计算法及其在飞机设计中的应用研究[D].南京:南京航空航天大学,1999
    [88]谷良贤.整体式冲压发动机导弹总体一体化设计[D].西安:西北工业大学,2002
    [89]陈琪锋.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:国防科技大学,2003
    [90]胡朝辉,成艾国,钟志华.多学科优化设计在热成形车架轻量化中的应用[J].中国机械工程,2010.3,21(6):728~732
    [91]陈炉云,郭维,王德禹.多学科设计优化技术在舰船设计中的应用[J].船海工程,2006,173:28~31
    [92]胡迎春,陈树勋,李尚平.基于全局协调的甘蔗收割机多学科优化设计研究[J].中国机械工程,2007.6,18(11):1355~1358
    [93]刘蔚.多学科设计优化方法在7000米载人潜水器总体设计中的应用[D].上海:上海交通大学,2007
    [94]胡志刚,徐诚,郭凯.一种枪械总体动态优化设计的新方法[J].兵工学报,2005.3, 26(2):150~154
    [95]Zhao Yan Jun, Xu Cheng, Wang Ya Ping. Research on Individual Soldier Automatic Weapon Design Based on MDO(C).2009 International Conference on Modeling and Simulation, Manchester, England, May 2009:53-56
    [96]R. E. Perez. A Multidisciplinary Optimization Framework for Flight Dynamics and Control Integration in Aircraft Design[D]. Toronto:Aerospace Science and Engineering University of Toronto,2007
    [97]Nikhil Aphale. Coupling Suspension in Multiobjective Multidisciplinary Design Optimization[D]. Buffalo:State University of New York,2011
    [98]Brian T. Leonard. High-fidelity Multidisciplinary Design Optimization of Flexible Aircraft Wings[D]. Toronto:Ryerson University,2004
    [99]V. M. Manning. Large-scale Design of Supersonic Aircraft Via Collaborative Optimization[D]. Stanford:Stanford University,1999
    [100]Chen Hung Huang. Development of Multi-objective Concurrent Subspace Optimization and Visualization Methods for Multidisciplinary Design[D]. Buffalo: State University of New York,2003
    [101]Sumeet Parashar. Development of Multi-objective Genetic Algorithm Concurrent Subspace Optimization (MOGACSSO) Method with Robustness[D]. Buffalo:State University of New York,2006
    [102]J. Sobieszczanski-Sobieski, J. S. Agte, R. R. Sandusky. Bi-level Integrated System Synthesis (BLISS)[R].1998, AIAA-98-4916
    [103]A. S. Khalid. Development and Implementation of Rotorcraft Preliminary Design Methodology Using Multidisciplinary Design Optimization[D]. Atlanta Botanical: Georgia Institute of Technology,2006
    [104]李响,李为吉.利用协同优化方法实现复杂系统分解并行设计优化[J].宇航学报,2004.5,25(3):300-304
    [105]白小涛.飞机多学科设计协同优化及近似技术研究[D].西安:西北工业大学,2005
    [106]《步兵自动武器及弹药设计手册》编写组.步兵自动武器及弹药设计手册(上册)[M].北京:国防工业出版社,1977
    [107]《步兵自动武器及弹药设计手册》编写组.步兵自动武器及弹药设计手册(中册)[M].北京:国防工业出版社,1977
    [108]易声耀,张竞.自动武器原理与构造学[M].北京:国防工业出版社,2009
    [109]欧学炳,殷仁龙,王学颜.自动武器结构设计[M].北京:北京理工大学出版社,1995
    [110]王裕安,徐万和,薄玉成.自动武器构造[M].北京:北京理工大学出版社,1994
    [111]李德芬,过永德.自动武器振动基础[M].北京:兵器工业出版社,1991
    [112]王宝元,李魁武.自动武器机构动力学[M].北京:国防工业出版社,2003
    [113]戴成勋,靳天佑,朵英贤.自动武器设计新编[M].北京:国防工业出版社,1999
    [114]王昌明.自动武器弹道学[M].北京:兵器工业出版社,1994
    [115]金志明.枪炮内弹道学[M].北京:北京理工大学出版社,2004
    [116]浦发,芮筱亭.外弹道学[M].北京:国防工业出版社,1989
    [117]魏惠之,朱鹤松,汪东晖,都兴良.弹丸设计理论[M].北京:国防工业出版社,1985
    [118]翁春生,王浩.计算内弹道学[M].北京:国防工业出版社,2006
    [119]郭文凤,刘树华,杨少宇.火炮内弹道计算机辅助优化设计[J].机械管理开发,2004.10,5:20~23
    [120]袁志华,周秋忠,郝博,安长星.榴弹弹丸质点弹道性能分析与可视化仿真[J].计算机仿真,2003.10,20(10):14~16
    [121]王儒策,赵国志.弹丸终点效应[M].北京:北京理工大学出版社,1993
    [122]隋树元,王树山.终点效应学[M].北京:国防工业出版社,2000
    [123]陈立平,张云清,任卫群,覃刚.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005
    [124]徐诚,王亚平.火炮与自动武器动力学[M].北京:北京理工大学出版社,2006
    [125]宫鹏涵,陈锦喜,李永建,万龙.某榴弹发射器刚柔耦合动力学建模与仿真研究[J].兵工自动化,2008,27(2):46~48
    [126]王亚平,徐诚,郭凯.人枪系统建模及数值仿真研究[J].兵工学报,2002,23(4):551~554
    [127]包建东,王昌明,何云峰.人-枪模型的建立及仿真分析[J].兵工学报,2009.5,30(5):513~517
    [128]GB10000-88,中国成年人人体尺寸[S].国家技术监督局,1988
    [129]Jean L. Dyer. After Action Reviews With the Ground Soldier System[R].2005, ADA438040
    [130]梁尚明,殷国富.现代机械优化设计方法[M].北京:化学工业出版社,2005
    [131]王安麟,姜涛,刘广军.现代设计方法[M].华中科技大学出版社,2010.1
    [132]邢文训.现代优化计算方法[M].北京:清华大学出版社,2006
    [133]项宝卫.结构优化中的模拟退火算法研究和应用[D].大连:大连理工大学,2004
    [134]梁艳春.群智能优化算法理论与应用[M].北京:科学出版社,2009
    [135]M. Dorigo, T. Stutzle. Ant Colony Optimization[M]. The MIT Press,2004
    [136]Holland J H. Adaptation in Natural and Artificial Systems:an Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence[M]. Ann Arbor: University of Michigan Press,1975
    [137]D. Greenhalgh, S. Marshall. Convergence Criteria for Genetic Algorithms[J]. SIAM J. COMPUT,2000,30(1):269-282
    [138]孙海雷.改进的遗传算法求解TSP问题[D].重庆:重庆大学,2007
    [139]严心池,安伟光,赵维涛.自适应免疫遗传算法[J].应用力学学报,2005.9,22(3):445~449
    [140]张玲,刘勇,何伟.自适应遗传算法在车牌定位中的应用[J].计算机应用,2008.1,28(1):184~186
    [141]傅建平,张晓东,张培林,王成.基于改进遗传算法的反后坐装置故障诊断方法[J].火炮发射与控制,2007.6,2:69~72
    [142]王磊.免疫进化计算理论及应用[D].西安:西安电子科技大学,2001
    [143]马佳.改进免疫遗传算法及其在优化调度问题中的应用研究[D].沈阳:东北大学,2007
    [144]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2003
    [145]汪光文.基于并行遗传算法的风扇/压气机叶片气动优化设计[D].南京:南京航空航天大学,2009
    [146]岳嶔.粗粒度并行遗传算法的计算性能及其应用研究[D].武汉:华中科技大学,2008
    [147]XIONG Guangleng, CHEN Xiaobo. The Co-simulation Technology for Complex Product Design[C]. Proceedings of Asian Simulation Conference, Shanghai, China, 2002:75-80
    [148]R. Maghnouji, G. J. Vreede, A. Verbraeck, H. G. Sol. Collaborative Simulation Modeling:Experiences and Lessons Learned[C]. Proceedings of the 34th Hawaii International Conference on System Sciences, Hawaii,2001:88-97
    [149]芮国强.基于HLA的协同仿真研究[D].合肥:中国科学技术大学,2011
    [150]Valasek M. Software Tools for Mechatronic Vehicles:Design Through Modeling and Simulation[J]. Vehicle System Dynamics Supplement,1999,33:214-230
    [151]IEEE Standards Board. IEEE Std 1278.1-1995. IEEE Standard for Distributed Interactive Simulation-Application Protocols[S]. New York:The IEEE Inc,1995
    [152]IEEE Standards Board. IEEE Std 1278.1a-1998. IEEE Standard for Distributed Interactive Simulation-Application Protocols[S]. New York:The IEEE Inc,1998
    [153]U.S. Department of Defense. High Level Architecture Interface Specification. Version1.3[M]. New York:The IEEE Inc,1998
    [154]张高明,王瑞林,张本军,陈锦喜.基于ADAMS的某型高射机枪虚拟样机建模与仿真[J].军械工程学院学报,2008.12,20(6):54~61
    [155]MSC.Software. MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社,2004
    [156]毛保全,邵毅.火炮自动武器优化设计[M].北京:国防工业出版社,2007
    [157]蒋浩征.弹药优化设计[M].北京:兵器工业出版社,1995
    [158]Solidworks公司Solidworks API二次开发[M].北京:机械工业出版社,2005
    [159]付宏鸽,郑广花.基于VB的SolidWorks夹具标准件的二次开发[J].廊坊:北华航天工业学院学报,2008.2,18(1):4-9
    [160]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [161]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007
    [162]赵海鸥LS-DYNA动力学分析指南[M].北京:兵器工业出版社,2003
    [163]尚晓江,苏建宇,王化锋ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:机械工业出版社,2008
    [164]G. R. Johnson, W. H. Cook. A Constitutive Model and Data for Metals Subjeeted to Large Strain, High Strain Rates and High Temperatures[C]. Proceedings of the 7th International Symposium on Ballistics, Netherlands, Hague,1983:541-547
    [165]G. R. Johnson, T. J. Holmquist. A Computational Constitutive Model for Brittle Materials Subjected to Large Strains, High Strain Rates, and High Pressures[C]. Proceedings of Explomet Conference, San Diego,1990:564-572
    [166]G. R. Johnson, T. J. Holmquist. An Improved Computational Constitutive Model for Brittle Materials[C]. High Pressure Science and Technology, New York,1994:981-994
    [167]LS-DYNA Keyword User's Manual Version 971 [M]. Livermore Software Technology Corporation, May 2007
    [168]A. Giunta. Aircraft Multidisplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods[D]. Virginia Polytechnic Institute, May 1997
    [169]Matherton. Principles of Geo-Statistics[J]. Economic Geology,1963,58:1246-1266
    [170]M. J. SASENA. Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations[D]. Ann Arbor:University of Michigan,2002
    [171]陈志民.基于Kriging模型的汽轮机基础可靠性动力优化方法[D].大连:大连理工大学,2007
    [172]张胜兰,郑冬黎,郝琪,李楚琳.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2008
    [173]李楚琳,张胜兰,冯樱,杨朝阳HyperWorks分析应用实例[M].北京:机械工业出版社,2008
    [174]B. Welch. Tcl/Tk组合教程[M].北京:电子工业出版社,2001
    [175]任露泉.试验设计及其优化[M].北京:科学出版社,2009
    [176]游海龙,贾新章,张小波,董萍.Kriging插值与拉丁超立方试验相结合构造电路元模型[J].系统仿真学报,2005.11,17(11):2752~2755
    [177]刘鸿文.材料力学[M].北京:高等教育出版社,2004
    [178]高媛.非支配排序遗传算法(NSGA)的研究与应用[D].杭州:浙江大学,2006
    [179]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009
    [180]N. Srinivas, K. Deb. Multiobjective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation,1995,2(3):221-248
    [181]K. Deb, S. Agrawal, A. Pratap, T. Meyarivan. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:NSGA-Ⅱ[J]. Lecture Notes in Computer Science,2000,19(17):849-858
    [182]K. Deb, A. Pratap, S. Agarwal, T. MeyarivanA. Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. Evolutionary Computation, Apr.2002,6(2):182-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700