提高微光信号检测灵敏度的新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微光信号检测是指夜间和其它低光照度时目标信息的获取、转换、增强、记录和显示,它使人眼视觉在空间、时域和频域得到有效扩展。微光信号检测在军事安全、科学研究以及工程技术领域发挥重要作用。随着科技的发展各种微光信号检测器件都具有很高的灵敏度,但在光照极其微弱的条件下,它们依然具有检测极限。所以如何进一步突破照度极限提高微光检测的灵敏度是一个永恒的主题。为此本文提出一种提高微光信号检测灵敏度的新方法,该方法可以使一维和二维光电检测系统的灵敏度得到明显提高,这为微光信号检测增添了一种可行的手段,更为其它传感器使用过程中分辨力与灵敏度的提高开辟了一个新的途径。
     1.在对光电直接检测系统中基本工作原理、噪声来源、灵敏度以及阈值的分析的基础上,建立光电直接检测系统的黑箱理论分析模型,进而将光电直接检测系统视为类似A/D转换的量化系统。在此前提下,借鉴成形信号与过采样技术,并尝试将光学成形信号与过采样技术相结合,以提高光电直接检测系统的灵敏度。同时以一维微光信号检测为例,在初步理论分析的基础上,通过实验验证了该方法的有效性。
     2.采用帧积累与成形信号技术,进行提高二维微弱图像信号的检测灵敏度的理论研究及实验验证。首先通过统计理论证明了用该方法可以得到微弱图像信号的无偏估计,并采用Lindberg-Levy定理计算出用该方法可以将信噪比提高m△x_s~2/[sx_s (1-△x_s)]倍(m为帧数,△x_s为微弱图像信号)。通过对微弱投影的检测实验,验证了这种方法的有效性。
     3.对帧积累与成形信号技术进行优化,克服其使用过程中因两次帧积累所造成的成像速度慢操作复杂的缺点。首先通过摄像头前的LED产生锯齿型光学成形信号,在镜头中发生漫散射后均匀分布在CCD上,使得该方法适用于远距离微弱成像;然后在数据处理过程中采用最小二乘法去除光学成形信号的成分,获得微弱图像信号的最佳拟合矩阵,使所需帧数减少一半,成像速度提高一倍。
     4.以Altera公司的DE2多媒体开发平台为核心设计基于FPGA的微弱图像检测系统。系统以帧积累与光学成形信号技术为理论基础,利用FPGA可以对数据进行并行处理的特点,实现了对微弱图像检测数据的高速实时处理,从而克服了以PC机为微弱图像处理核心的处理速度的限制,减轻了由于数据离线处理所带来的存储负担。同时该检测系统便携式的特点有助于在各种环境下进行微弱图像检测,从而为帧积累与光学成形信号技术的进一步完善创造更加有利的条件。
Low-light-level optical signal detection which includes the signal aquistion,conversion, enhancement, recording and display can expand human vision function inspace, time, and frequency domain. Low-light-level optical signal detection issignificant in science research, safety engineering and space astronomy. Sensitvity isan important parameter of measuring instrument.The instrument can sense tiny signalchange with higher sensitivity. To improve the instrument sensitivity is a baiscapproach in weak signal detection. This thesis provides a novel method to improve thelow-light-level optical signal detection sensivity. The principle of this method comesfrom the over-sampling technology of A/D conversion. By superposing a saw-toothwave light which we called optical shaped function on the low-light-level opticalsignal, we can get the unbiased estimate for the low-light-level optical signal aftersuperposition signal accumulation, thus improving the low-light-level optical signaldetection senstibility. The main contents of this thesis are as follows:
     (1) By analysis of its working principle, noise source, sensitivity for thephotoelectric direct detection system, we construct the black-box model for thephotoelectric direct detection system. Based on this model, the photoelectric directdetection system can be considered as an AD conversion system. We incorporate theoversampling and shaped function technique of AD conversion into the detection,therefore the detection sensitivity of the photoelectric direct detection system has beenimproved. After a preliminary principle analysis, we prove its efficacy by theexperiment with a direct detection system for the1-D low-light-level optical signaldetection.
     (2) Based on the analysis of1-D low-light-level optical signal detection, a novelmethod which employs the frame accumulation and shaped function is given toimprove the low-light-level image signal detection sensibility. By using theprobabilistic theory, we demonstrate that we can get the unbiased estimate for thelow-light-level image with this method. According to the Lindberg-Levy Theory, wecalculate out the image sensor’s SNR (signal-to-noise ratio) which has been improvedm△x_s~2/[sx_s (1-△x_s)] times than before. The efficacy of this method has been proved by alow-light-level shadow image detection experiment.
     (3) The method which employs the frame accumulation and shaped functiontechnique is effective in low-light-level imaging. Yet it has some drawbacks such aslower imaging speed and complex operation. In order to optimize this method, weimplement least-square algorithm into data processing to remove the component ofthe shaped function signal. This algorithm simplifies the imaging process and doublesthe imaging speed. Meanwhile, we apply a saw-tooth wave light as the shapedfunction signal to the image sensor by mounting a LED beside the camera lens. Thismodification makes the method adapted to the distant object imaging.
     (4) We design a low-light-level imaging system with our frame accumulation andshaped function technique. The hardware of the imaging system includes Altera’sDE2multimedia developmen board and a daughter card to generate the optical shapedfunction signal. The sofware of the imaging system contains the vedio signal decodemodule, vedio signal processing module, vedio signal DAC module and opticalshaped function signal DAC module. The low-light-level imaging system can get thebest fitting data matrix for the low-light-level image with least square algorithm.
引文
[1]周立伟,目标探测与识别,北京:北京理工大学出版社,2002,62~63
    [2]周立伟,光电子成像:回顾与展望,中国计量学院学报,2001,12(2):25-29
    [3]艾克聪,微光夜视技术的进展与展望,应用光学,2006,27(4):303–307
    [4]金捷,检测技术,北京:清华大学出版社,2005,53~54
    [5]曾庆勇,微弱信号检测,杭州:浙江大学出版社,1994,17~18
    [6] Some Issues in Low Light Level Vision, International Dark-Sky Association(IDA)—Information Sheet#136
    [7] Vinit Dhulla, Georgiy Gudkov, Andrey Stepoukhovitch, et al.Single photondetection module for multi-channel detection of weak fluorescencesignals.Proceedings of SPIE, Smart Medical and Biomedical Sensor Technology III.Bellingham WA,USA: International Society for Optical Engineering,2005:600719
    [8]杜仕峰,张东香,施玉显,等,皮秒BBO-OPG/OPA系统对极微弱光信号放大的实验研究,量子电子学报,2007,24(1):126
    [9] Ulisses Braga-Neto, Manish Choudhary, John Goutsias, Automatic targetdetection and tracking in forward-looking infrared image sequences usingmorphological connected operators, J. Electron. Imaging,2004,13,802;
    [10] Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography:Principles and applictations. Reports on Progress in Physics,2003,66:239-303
    [11]谭显裕,微光夜视和红外成像技术的发展及军用前景,航空兵器,2001,3:29-34
    [12]秦建飞,蔡云骧,杨高峰,基于微光夜视系统总分辨力的目标探测概率计算,解放军理工大学学报(自然科学版),2011,12(3):29-34
    [13]王吉晖,金伟其,王霞,基于最小可分辨对比度的直视微光夜视系统综合性能评价,兵工学报,2010,02:184-190
    [14]吕立波,现代夜视技术浅析,中国公共安全(综合版),2009,04:139-143
    [15] Michael J. Sholl, Gary M. Bernstein, David A. Content, et al. ObservatoryConceptual Development for the Joint Dark Energy Mission Joint Dark EnergyMission. Proc. SPIE2009,7436,743603
    [16] Jeffrey Baumgardner. Michael Mendillo, the Use of Small Telescopes forSpectral Imaging of Low-light-level Extended Atmospheres in the Solar System,Earth Moon Planet,2009,105:107-113
    [17]孙传东,陈良益,水的光学特性及其对水下成像的影响,应用光学,2000,21(4):39-46
    [18]朱彩霞,闫亚东,余文德,等,水下微光成像系统,舰船科学技术,2007,29(6):56-58
    [19] E. Widder, L. Frey, J. Bowers, Improved Bioluminescence measurementinstrument-A new high-intake defined excitation bathyphotometer developed for theUS Navy. Sea Technology,2005,46:10-15
    [20]张鑫,深海环境及深海沉积物拉曼光谱原位定量探测技术研究[博士学位论文],山东:中国海洋大学,2009
    [21]沈凌敏,张琦,何俊华,等,水下微光高速摄像照明技术的研究与应用,微计算机信息,2010,01:111-112,143
    [22]谢树森,雷仕湛,光子技术,北京:科学出版社,2004,187~192
    [23]马世荣,惠延平,郭双平,等,人肝癌HepG2细胞超微弱发光的观察,医学研究生学报,2006,19(2):100-103
    [24] Yinghua Sun, Jennifer Phipps, Daniel S. Elson, Heather Stoy, Steven Tinling,Jeremy Meier, Brian Poirier, Frank S. Chuang, D. Gregory Farwell, and Laura Marcu,Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oralcarcinoma, Opt. Lett.2009,34:2081-2083.
    [25] CH. Contag, BD. Ross. It's not just about anatomy: In vivo bioluminescenceimaging as an eyepiece into biology, J Magn Reson Imaging,2002,16:378-387
    [26] Hua Bao, Changhui Rao, Yudong Zhang, Yun Dai, Xuejun Rao, and Yubo Fan,Hybrid filtering and enhancement of high-resolution adaptive-optics retinal images,Opt. Lett.2009,34:3484-3486
    [27]徐可欣,高峰,赵会娟.生物医学光子学,北京:科学出版社,2007.91~92
    [28] Nadhi Thekkek, Rebecca Richards-Kortum. Optical Imaging for CervicalCancer Detection: Solutions for a Continuing Global Problem, Nature ReviewsCancer,2008,8:725-731
    [29]周立伟,微光成像技术的发展与展望,现代光学与光子学的进展——庆祝王大衍院士从事科研活动六十五周年专辑,天津:天津科学技术出版社,2003,317~336
    [30] J. Shi, M. Ouyang, W. Gong, S. Li and D. Liu. A Brillouin lidar system usingF–P etalon and ICCD for remote sensing of the ocean. Applied Physics B: Lasers andOptics,2008,90,569–571
    [31]刘光荣,周立伟,王仲春,高雅允,背照明CCD微光成像技术,红外技术,2000,22(1):8-12
    [32] M. Suyama, T. Sato, S. Ema, et, al. Single-photon-sensitive EBCCD withadditional multiplication, Proc. SPIE,2006,6294:629407
    [33] Colin G. Coates, Donal J. Denvir, Emer Conroy, et al. Back-illuminatedelectron multiplying technology: the world’s most sensitive CCD for ultralow-lightmicroscopy, Proc. SPIE,2003,4962:319
    [34]杨承,朱大勇,EBCCD等几种常见成像器件的分析及比较,仪器仪表学报,2005,26(8):275-276
    [35] Pei-Hsun Wu, Nathaniel Nelson, and Yiider Tseng, A general method forimproving spatial resolution by optimization of electron multiplication in CCDimaging, Opt. Express2010,18:5199-5212
    [36]郭培源,付扬,光电检测技术,北京:北京航空航天出版社,2005,110~111
    [37]周秀云,张涛,尹伯彪,等,光电检测技术及应用,2009:168~174
    [38]林凌,洪权,李刚,等,模拟乘法器MLT04在高精度微弱光信号锁相检测电路中的应用[J].光电子技术,2005,25(4):263-266
    [39]邹燕,冯丽爽,张春熹,等,锁定放大器在微弱光信号检测中的应用,电测与仪表,2005,42(479):15-17,41
    [40]陈韶华,相敬林,一种改进的时域平均法检测微弱信号研究,2003,25(4):56-59
    [41] D. Romanov, A. Filin, R. Compton, and R. Levis, Phase matching infemtosecond BOXCARS, Opt. Lett.2007,32,3161-3163
    [42]李月,杨宝俊,谭力,等,微弱周期脉冲信号的取样积分-混沌系数联检测方法,2003,25(12):1653-1657
    [43]阮思旭,庄其仁,于百英,Boxcar积分器提高光纤光栅传感器解调精度的分析,传感器与微系统,2006,25(12):35-38
    [44]柯丽,杜强,苏哲,应用多级维纳滤波的OCT图像除噪方法,光学精密工程,2008,16(4):740-745
    [45] Laura Waller, Mankei Tsang, Sameera Ponda, et al, Phase and amplitudeimaging from noisy images by Kalman filtering, Opt. Express2011,19,2805-2814
    [46] Rangaraj M. Rangayyan, Mihai Ciuc, and Farshad Faghih,Adaptive-Neighborhood Filtering of Images Corrupted by Signal-Dependent Noise,Appl. Opt.1998,37,4477-4487
    [47]周浩敏,王睿,测试信号处理技术,北京:北京航空航天出版社,2004.383~391
    [48] Desmond C. Adler, Tony H. Ko, and James G. Fujimoto, Speckle reduction inoptical coherence tomography images by use of a spatially adaptive wavelet filter, Opt.Lett.2004,29,2878-2880
    [49] Paul Bao, Lei Zhang, Noise Reduction for Magnetic Resonance Images viaAdaptive Multiscale Products Thresholding, IEEE Transactions on Medical Imaging,2003,22(9):1089-1099
    [50] Markus A. Mayer, Anja Borsdorf, Martin Wagner, Joachim Hornegger,Christian Y. Mardin, and Ralf P. Tornow, Wavelet denoising of multiframe opticalcoherence tomography data, Biomed. Opt. Express2012,3,572-589
    [51]林敏,肖艳萍,赵军,基于小波变换和随机共振的微弱信号检测方法,传感技术学报,2006,19(3):678-681
    [52] Alexander Wong, Akshaya Mishra, Kostadinka Bizheva, and David A. Clausi,General Bayesian estimation for speckle noise reduction in optical coherencetomography retinal imagery, Opt. Express2010,18,8338-8352
    [53]鲁亚光,自适应小波阈值去噪在光谱信号处理中的应用,光谱实验室,2004,21(03):602-605
    [54]张建军,胡惠灵,刘征宇,等,光照不均管道内图像增强算法的研究与应用,计算机工程,2011,21(03):602-605
    [55] Areli Montes-Perez, Cruz Meneses-Fabian, and Gustavo Rodriguez-Zurita,Isotropic edge-enhancement by the Hilbert-transform in optical tomography of phaseobjects, Opt. Express2011,19,5350-5356
    [56] Noriaki Hashimoto, Yuri Murakami, Pinky A. Bautista, Masahiro Yamaguchi,Takashi Obi, Nagaaki Ohyama, Kuniaki Uto, and Yukio Kosugi,"Multispectral imageenhancement for effective visualization," Opt. Express2011,19,9315-9329
    [57] Hasan Demirel, Gholamreza Anbarjafari, IMAGE Resolution Enhancement byUsing Discrete and Stationary Wavelet Decomposition, IEEE Transactions on ImageProcessing,2011,20(5):1458-1460
    [58] A. Temizel and T. Vlachos, Wavelet domain image resolution enhancementusing cycle-spinning, Electron. Lett.,2005,41(3):119–121
    [59] Paul A. Dellenback, Jayakrishnan Macharivilakathu, and Scott R. Pierce,Contrast-Enhancement Techniques for Particle-Image Velocimetry, Appl. Opt.,2000,39:5978-5990
    [60] S. D. Chen, A. Rahman Ramli,“Contrast Enhancement usingRecursiveMean-Separate Histogram Equalization for Scalable BrightnessPreservation,” IEEE Transactions on Consumer Electronics,2003,49(4):1301-1309,
    [61] C. C. Sun. S. J. Ruan, M. C. Shie, T. W. Pai, Dynamic Contrast Enhancementbased on Histogram Specification, IEEE Transactions on Consumer Electronics,2005,51(4):1300-1305
    [62] Soong-Der Chen, A. Rahman Ramli, Preserving brightness in histogramequalization based contrast enhancement techniques, Digital Signal Processing,2004,12(5):413-428
    [63] Osamu Matoba, Thomas J. Naughton, Yann Frauel, Nicolas Bertaux, andBahram Javidi, Real-Time Three-Dimensional Object Reconstruction by Use of aPhase-Encoded Digital Hologram, Appl. Opt.41,6187-6192(2002)
    [64] G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, Enhancedreconstruction of three-dimensional shape and texture from integral photographyimages, Appl. Opt.,2007,46:5311-5320
    [65] Lingfeng Yu, Yingfei An, and Lilong Cai, Numerical reconstruction of digitalholograms with variable viewing angles, Opt. Express,2002,10:1250-1257
    [66] Satoshi Ito and Yoshifumi Yamada, Optical On-Line Running Reconstructionof MR-Images in the Phase-Scrambling Fourier-Imaging Technique, Appl. Opt.2002,41:5527-5537
    [67] Stephanie J. Chiu, Xiao T. Li, Peter Nicholas, Cynthia A. Toth, Joseph A. Izatt,and Sina Farsiu,"Automatic segmentation of seven retinal layers in SDOCT imagescongruent with expert manual segmentation," Opt. Express,2010,18:19413-19428
    [68]刘利雄,马忠梅,赵恒博,等,一种基于主动轮廓模型的心脏核磁共振图像分割方法,计算机学报,2012,35(1):146-153
    [69] Akshaya Mishra, Alexander Wong, Kostadinka Bizheva, and David A. Clausi,Intra-retinal layer segmentation in optical coherence tomography images, Opt.Express,2009,17:23719-23728
    [70] Zhi Liu, Jing-qi Yan, David Zhang, and Qing-Li Li, Automated tonguesegmentation in hyperspectral images for medicine, Appl. Opt.,2007,46:8328-8334
    [71] William Ross Ashby, An Introduction to Cybernetics, London: Chapman&Hall.1957,86~113(Online version,1999: http://pcp.vub.ac.be/books/IntroCyb.pdf)
    [72]孙海峰,崔翔,齐磊,基于黑箱理论与传统等效电路的无源元件建模方法,中国电机工程学报,2010,30(6),112-115
    [73] Horwarh, B.D., Al-Attar, T., A physical model for tunable patch antennas,Quality Electronic Design,(ISQED),201112th International Symposium on, vol., no.:1-4,14-16
    [74] Le Montagner, Y., Angelini, E., Olivo-Marin, J., Comparison of reconstructionalgorithms in compressed sensing applied to biological imaging, Biomedical Imaging:From Nano to Macro,2011IEEE International Symposium on, vol., no.:.105-108
    [75] Thai, P.Q., Alphones, A.; Lim, D.R.;, Hybrid optical beam-former in receivermode, Microwave Photonics,2011International Topical Meeting on&MicrowavePhotonics Conference,2011Asia-Pacific, MWP/APMP, vol., no.,.357-360,18-21
    [76] Tenne, Y, Computational Intelligence Algorithm for Simulation-drivenOptimization Problems, Advances in Engineering Software,47(1):62-71
    [77] A V奥本海姆,R W谢弗,J R巴克,离散时间信号处理(第2版)(刘海棠,黄建国译),西安:西安交通大学出版社,2001,150~167
    [78] Vrcelj, B., Vaidyanathan, P.P., Equalization with oversampling in multiuser CDMAsystems, Signal Processing, IEEE Transactions on [see also Acoustics, Speech, andSignal Processing, IEEE Transactions on],2005,53(5):1837~1851
    [79] Yin Yongsheng, Hu Yonghua, Gao Minglun, Analysis and application of CDRcircuit using oversampling, Journal of Applied Sciences,2006,24(3):240~244
    [80] Xu Wei, Wang Jianli, Chen Tao, Application of oversampling technique in thedesign of FOG data collection, Control&Measurement,2007,3:75~76,28
    [81] Lim S, Apostolopoulos J, Gamal A E. Benefits of temporal oversampling inoptical flow estimation[C]. Image Processing,2004. ICIP '04.2004InternationalConference,2004,4(24-27):2567-2570.
    [82] Sharif M, Gharavi-Alkhansari M, Khalaj B H. On the peak-to-average power ofOFDM signals based on oversampling[J].Communications, IEEE Transactions,2003,51(1):72–78
    [83]李刚,张丽君,林凌,等.基于过采样技术的生物电信号检测[J],电子学报,2008,36(7):1465-1467
    [84]李刚,张丽君,林凌,结合过采样技术和锯齿成形函数的微弱信号检测,电子学报,2008,36(4):756-759
    [85] Texas Instruments Europe. Oversampling Techniques Using the TMS320C24xFamily [EB/OL]. Literature Number: SPRA461,Texas Instruments,1998-6.
    [86]李刚,汤宏颖,林凌,运用过采样与成形信号技术提高检测灵敏度,天津大学学报,2010,43(10):901-905
    [87]李刚,林凌,田晓方,练中学单片机教程,北京:北京航空航天大学出版社,2006,10~210
    [88]廖延彪,成像光学导论,北京:清华大学出版社,2008,5~10
    [89]宋丰华,现代空间光电系统及应用,北京:国防工业出版社,2004,25~26
    [90] International Standard ISO15739: Photography-Electronic still-pictureimaging-Noise measurements.(First edition1003-05-01)
    [91] Gang Li, Hongying Tang, Dongsung Kim, Jean Gao, Ling Lin, Employment ofFrame Accumulation and Shaped Function for Upgrading Low-light-level ImageDetection Sensitivity, Optics Letters,37(8):1361–1363
    [92]米本和也,CCD/CMOS图像传感器基础与应用(陈榕庭,彭美佳译),北京:科学出版社,2006,98~108
    [93] Hilda Faraji and W. James MacLean,"CCD noise removal in digital images,"IEEE Trans. Image Processing,2006,15(9):2676-2685,
    [94]陈迎娟,张之江,张智强,CCD像素响应不均匀性的校正方法,光学精密工程,2004,12(2):216-220
    [95] Zhiping Jiang, X. G. Xu, and X.-C. Zhang, Improvement of terahertz imagingwith a dynamic subtraction technique, Appl. Opt.2000,39,2982-2987
    [96]S Dhokkar, B Serio, P Lagonotte, P Meyrueis, Power transistor near-infraredmicrothermography using an intensified CCD camera and frame integration, Meas.Sci. Technol.2007,18,2696–2703
    [97] D. J. Schroeder, Astronomical optics, Academic Press.1999,433
    [98]周宏潮,王正明,量化误差分析与信号重建,弹道学报,2005,17(3):7-11
    [99] W. Chou and R. M. Gray, Dithering and its effects on sigma-delta andmultistage sigma-delta modulation, IEEE Trans. Inform. Theory,1991,37,500–513
    [100] J. Vanderkooy and S. P. Lipshitz, Dither in digital audio, J. AudioEng.Soc.,1987,35,966-975
    [101]杨永发,籍明文,张崇岐,等,概率论与数理统计教程,天津:南开大学出版社,2003,177~182
    [102]丁峰,基于输出估计的多输入系统随机梯度估计算法,南京信息工程大学学报(自然科学版),2010,2(6):481-488
    [103] Chenyang Xu, Daniel Marks, Minh Do, and Stephen Boppart, Separation ofabsorption and scattering profiles in spectroscopic optical coherence tomographyusing a least-squares algorithm, Opt. Express2004,12,4790-4803
    [104] Alexander Cong and Ge Wang, A finite-element-based reconstruction methodfor3D fluorescence tomography, Opt. Express2005,13,9847-9857
    [105]代锦辉,最小二乘法处理自变量误差实验数据的方法,实验科学与技术,2006,4:21,46
    [106]杨旭武,实验误差原理与数据处理,北京:科学出版社,2009,49~50
    [107]潘兵,谢惠民,数字图像相关中基于位移场局部最小二乘拟合的全场应变测量,光学学报,2007,27(11):1980-1986
    [108]闫蓓,王斌,李媛,基于最小二乘法的椭圆拟合改进算法,北京航空航天大学学报,2008,34(3):295-298
    [109]李喆,丁振良,袁峰,基于分层插值和最小二乘拟合的亚像素细分算法,南京理工大学学报(自然科学版),2008,32(5):615-618
    [110]陈前,王甦菁,刘小华等,一种快速的虹膜定位算法,吉林大学学报(理学版),2011,49(6):1095-1100
    [111]孙宏伟,房建成,李艳,椭圆拟合方法在磁罗盘罗差校准中的应用,光学精密工程,2009,17(12):3034-3039
    [112]陈宝玲,张冰,近代物理实验,哈尔滨:哈尔滨地图出版社,2007,24~30
    [113]马宏,王金波,仪器精度理论,北京:北京航空航天大学出版社,2009,46~47
    [114]陈树祥,朱洪海,杭雪珍,正确认识贝塞尔公式,计量与测试技术,2003,(01):32,37
    [115]朱洪海,对贝塞尔公式证法的探讨,计量与测试技术,2001,(6):8-9
    [116]庄正辉,吴先球,陈浩,贝塞尔公式的推导及其物理意义探讨,大学物理实验,2010,23(4):80-82
    [117] John R. Taylor. An Introduction to Error Analysis. University Science Books,1981:294-298
    [118]张本良,贝塞尔公式用于估算函数误差的论证及其使用范围,武汉工学院学报,1992,14(4):56-61
    [119]吴锋,李端勇,大学物理实验/基本篇,北京:科学出版社,2009,21~26
    [120]郑羽,提高频域OCT性能的若干关键技术研究,[博士学位论文],天津:天津大学,2007:49
    [121]郁道银,谈恒英,工程光学,机械工业出版社,2006,52~54
    [122]杨春玲,朱敏,EDA技术与实验,哈尔滨工业大学出版社,2009,31~33
    [123] Analog devices,12-Bit,210MPS, Tx DAC D/A Converter AD9742,2004
    [124] Analog devices, Multiformat SDTV Video Decoder ADV7181B,2005
    [125] Integrated Silicon Solution, Inc,1Meg Bits×16Bits×4Banks (64-MBIT)Synchronous Dynamic RAM, IS42S16400,2008, Rev D.
    [126] Daode Zhang, Guangyou Yang, Jiangtao Zhang, et al, Hardware Design ofImage Recognition System Based ARM and FPGA, Industrial Electronics andApplications,2008. ICIEA2008.3rd IEEE Conference on:635-638
    [127] Ziting Wang, A image capture and storage system based on SOPC, Image andSignal Processing (CISP),20103rd International Congress on,2010,4:1999-2002
    [128]程方敏,黄启俊,向守坤,等,基于FPGA的高速SDRAM控制器的视频应用,电子技术,2009,(07):22-24
    [129]胡为,DDR SDRAM在嵌入式系统中的应用,单片机与嵌入式系统应用,2006,(03):28-31
    [130] Video Electronics Standards Association, VESA and Industry Standards andGuidelines for Computer Display Monitor Timing (DMT), Version1.0, Revision10,October29,2004
    [131] Analog Devices, CMOS,330MHz, Triple10-Bit High Speed Video DAC,ADV7123,2010, Rev, D

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700